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Suggestions for solutions are printed in italics below each question

Q1 Consider the politics in the UK example from the lecture: Ω = {ωL, ωD, ωC}, where ωL

represents the Labour Party, ωD the Liberal Democrats and ωC the Conservative Party.
Voters have the following preferences:

– 43% of |Ag | are left-wing voters: ωL � ωD � ωC

– 12% of |Ag | are centre-left voters: ωD � ωL � ωC

– 45% of |Ag | are right-wing voters: ωC � ωD � ωL

1. Which party will win an election based on the following voting procedures:

– Plurality
– Sequential majority elections with ωL, ωD, ωC

2. Is it possible to fix the election agenda in favour of any outcome?

3. Assuming that a new fourth party ωN emerges altering the preferences of the voters
to:

– 38% of |Ag | are left-wing voters: ωL � ωD � ωN � ωC

– 11% of |Ag | are centre-left voters: ωD � ωL � ωN � ωC

– 39% of |Ag | are right-wing voters: ωC � ωD � ωL � ωN

– 12% of |Ag | are voters of the new party: ωN � ωC � ωD � ωL

In favour of which party is it possible to fix the election agenda in sequential ma-
jority elections?

4. Determine the winner of the election using the following voting procedures:

– The Borda count
– The Slater ranking

Solution suggestions:

1. Plurality: The outcome that appears first in most preference orders wins. Winner
is ωC

Sequential majority elections are based on multiple pairwise elections. The order
of the elections is defined by the election agenda. The election agenda ωL, ωD, ωC

denotes that ωL will initially face ωD. Then, the winner will go on to face ωC ,
determining the winner of the overall election.
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– ωD wins against ωL, since 57% of the voters rank it higher than ωL.
– ωD wins against ωC , since 55% of the voters rank it higher than ωC .
– ωD wins the election.

2. We construct a majority graph. Nodes in the graph correspond to outcomes, i.e.
ωD, ωL, ωC . There is an edge from ω to ω′ if a majority of voters rank ω above ω′.
From the preferences of the voters we have:

– ωD wins against ωL, since 57% of the voters rank it higher than ωL.
– ωD wins against ωC , since 55% of the voters rank it higher than ωC .
– ωL wins against ωC , since 55% of the voters rank it higher than ωC .

ωC

ωD ωL

We are able to fix the election in favour of an outcome if there exists some agenda
that would result in this outcome being the overall winner. Then the outcome
is called a possible winner. We can check if an outcome ωi is a possible winner
if there exists a path from ωi to every other node ωj in the majority graph. The
outcome ωD is the only possible winner. Also, since there is an edge from ωD to
every other node in the graph, ωD is the Condorcet winner, i.e. the overall winner
for every possible agenda.

3. We construct the majority graph for the updated problem:

– ωD wins against ωL, since 62% of the voters rank it higher.
– ωC wins against ωD, since 51% of the voters rank it higher.
– ωC wins against ωL, since 51% of the voters rank it higher.
– ωL wins against ωN , since 88% of the voters rank it higher.
– ωD wins against ωN , since 88% of the voters rank it higher.
– ωN wins against ωC , since 61% of the voters rank it higher.

ωN

ωLωD

ωC

There is a path from every node to every other node. Therefore, all outcomes are
possible winners. We can use the following agendas to fix the elections:
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– ωL wins with the agenda ωD, ωC , ωN , ωL.
– ωD wins with the agenda ωC , ωN , ωL, ωD.
– ωC wins with the agenda ωN , ωL, ωD, ωC .
– ωN wins with the agenda ωL, ωD, ωC , ωN .

4. The Borda count looks at the entire preference ordering, counts the strength of
opinion in favour of a candidate. In order to calculate it: for all preference orders
and outcomes (|Ω = k|), if ωi is lth in a preference ordering, increment its strength
by k − l. For simplicity we calculate the Borda count for 100 voters.

ωL : 38 ∗ (4− 1) + 11 ∗ (4− 2) + 39 ∗ (4− 3) + 12 ∗ (4− 4) = 114 + 22 + 39 = 175

ωD : 38 ∗ (4− 2) + 11 ∗ (4− 1) + 39 ∗ (4− 2) + 12 ∗ (4− 3) = 76 + 33 + 78 + 12 = 199

ωC : 38 ∗ (4− 4) + 11 ∗ (4− 4) + 39 ∗ (4− 1) + 12 ∗ (4− 2) = 117 + 24 = 141

ωN : 38 ∗ (4− 3) + 11 ∗ (4− 3) + 39 ∗ (4− 4) + 12 ∗ (4− 1) = 38 + 11 + 36 = 85

– Therefore, the winner is ωD

The Slater rankning tries to minimise the disagreements between the majority
graph and the social choice. We need to measure the degree of disagreement
for each possible ordering using the majority graph. The degree of disagreement
is the the number of edges that need to be flipped to make the ordering consistent
with the majority graph.
ωD �∗ ωC �∗ ωL �∗ ωN : 2 : (ωD, ωC) (ωC , ωN )
ωD �∗ ωC �∗ ωN �∗ ωL : 3 : (ωD, ωC) (ωC , ωN ) (ωN , ωL)
ωD �∗ ωL �∗ ωC �∗ ωN : 3 : (ωD, ωC) (ωL, ωC) (ωC , ωN )
ωD �∗ ωL �∗ ωN �∗ ωC : 2 : (ωD, ωC) (ωL, ωC)
ωD �∗ ωN �∗ ωC �∗ ωL : 2 : (ωD, ωC) (ωN , ωL)
ωD �∗ ωN �∗ ωL �∗ ωC : 3 : (ωD, ωC) (ωN , ωL) (ωL, ωC)
ωC �∗ ωD �∗ ωL �∗ ωN : 1 : (ωC , ωN )
ωC �∗ ωD �∗ ωN �∗ ωL : 2 : (ωC , ωN ) (ωN , ωL)
ωC �∗ ωL �∗ ωD �∗ ωN : 2 : (ωC , ωN ) (ωL, ωD)
ωC �∗ ωL �∗ ωN �∗ ωD : 3 : (ωC , ωN ) (ωL, ωD) (ωN , ωD)
ωC �∗ ωN �∗ ωD �∗ ωL : 3 : (ωC , ωN ) (ωN , ωD) (ωN , ωL)
ωC �∗ ωN �∗ ωL �∗ ωD : 4 : (ωC , ωN ) (ωN , ωL) (ωN , ωD) (ωL, ωD)
ωL �∗ ωD �∗ ωC �∗ ωN : 4 : (ωL, ωD) (ωL, ωC) (ωD, ωC) (ωC , ωN )
ωL �∗ ωD �∗ ωN �∗ ωC : 3 : (ωL, ωD) (ωL, ωC) (ωD, ωC)
ωL �∗ ωC �∗ ωD �∗ ωN : 3 : (ωL, ωC) (ωL, ωD) (ωC , ωN )
ωL �∗ ωC �∗ ωN �∗ ωD : 4 : (ωL, ωC) (ωL, ωD) (ωC , ωN ) (ωN , ωD)
ωL �∗ ωN �∗ ωD �∗ ωC : 4 : (ωL, ωD) (ωL, ωC) (ωN , ωD) (ωD, ωC)
ωL �∗ ωN �∗ ωC �∗ ωD : 3 : (ωL, ωC) (ωL, ωD) (ωN , ωD)
ωN �∗ ωD �∗ ωC �∗ ωL : 3 : (ωN , ωD) (ωN , ωL) (ωD, ωC)
ωN �∗ ωD �∗ ωL �∗ ωC : 4 : (ωN , ωD) (ωN , ωL) (ωD, ωC) (ωL, ωC)
ωN �∗ ωC �∗ ωD �∗ ωL : 2 : (ωN , ωD) (ωN , ωL)
ωN �∗ ωC �∗ ωL �∗ ωD : 3 : (ωN , ωL) (ωN , ωD) (ωL, ωD)
ωN �∗ ωL �∗ ωD �∗ ωC : 5 : (ωN , ωL) (ωN , ωD) (ωL, ωD) (ωL, ωC) (ωD, ωC)
ωN �∗ ωL �∗ ωC �∗ ωD : 4 : (ωN , ωL) (ωN , ωD) (ωL, ωC) (ωL, ωD)

We now select the ordering with the lower cost, which is ωC �∗ ωD �∗ ωL �∗ ωN .
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Q2 Consider the following coalitional games:

– (The glove game) Players have left and right hand gloves and they are trying to
form pairs. Players 1 and 2 have right hand gloves whereas player 3 has a left hand
glove. The agents have the following value function:

v(C) =

{
1 if C ∈ {{1, 3}, {2, 3}, {1, 2, 3}}
0 otherwise

– (The treasure of Sierra Madre game) 3 people find a treasure of many gold pieces
in the mountains of Sierra Madre. Each piece can be carried by two people but not
by a single person. The valuation function of this game is:

v(C) = b |C|
2
c

1. Compute the Core

2. Compute the Shapley value for both games.

Solution suggestions:

1. We start by describing the Core. An outcome x = 〈x1, . . . , xk〉 for a coalition
C in game 〈Ag , v〉 is a distribution of C ’s utility to members of C. Outcomes
must be feasible (don’t overspend) and efficient (don’t underspend):

∑
i∈C xi =

v(C). C objects to an outcome for the grand coalition if there is some outcome
for C in which all members of C are strictly better off. Formally, C ⊆ Ag objects
to x = 〈x1, . . . , xn〉 for the grand coalition, iff there exists some outcome x′ =
〈x′1, . . . , x′k〉 for C, such that x′i > xi for all i ∈ C. The core of a coalitional game
is the set of outcomes that no sub-coalition can object to.
The core for the three player glove game contains the single allocation 〈0, 0, 1〉. No
agent is able to increase their utility by deviating. An allocation in which either
one of players 1 or 2 received any utility is not stable, as the other agents would
have the incentive to deviate and split this agent’s utility.
The core for the three player version of the treasure of Sierra Madre game is empty.
Since every piece of gold needs to be carried by two agents, the grand coalition
can gain v(Ag) = 1, which must be divided to the three players. Any two person
coalition C deviating from the grand coalition will receive v(C ) = 1, exactly as
much as the grand coalition. As a result two persons will always have the incentive
to deviate from the grand coalition in order to split the utility of the third player.
We may want to discuss how the problem changes when there are four players in
the game. In this case the core exists and it is the outcome x = 〈12 ,

1
2 ,

1
2 ,

1
2〉.

2. The Shapley value for agent i is:

shi =
1

|Ag |!
∑

o∈Π(Ag)

µi(Ci(o))

– Π(Ag) denotes the set of all possible orderings (e.g. for Ag = {1, 2, 3},
Π(Ag) = {(1, 2, 3), (1, 3, 2), (2, 1, 3), . . .}).
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– Ci(o) denotes the agents that appear before i in o.
– µi(C) = v(C ∪ {i})− v(C) is the marginal contribution of i to C.

Consider the glove game. The following table shoes the marginal contributions for
player 1:
Order Marginal contribution of player 1

1, 2, 3 v({1}) - v(∅) = 0− 0 = 0
1, 3, 2 v({1}) - v(∅) = 0− 0 = 0
2, 1, 3 v({1,2}) - v({2}) = 0− 0 = 0
2, 3, 1 v({1,2,3}) - v({2, 3}) = 1− 1 = 0
3, 1, 2 v({1,3}) - v({3}) = 1− 0 = 1
3, 2, 1 v({1,3,2}) - v({2, 3}) = 1− 1 = 0

sh1 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ1(C1(o)) =
1

6
∗ 1 =

1

6

Equivalently, sh2 = sh1 = 1
6 . Marginal contributions for player 3:

Order Marginal contribution of player 3

1, 2, 3 v({1,2,3}) - v({1, 2}) = 1− 0 = 1
1, 3, 2 v({1,3}) - v({1}) = 1− 0 = 1
2, 1, 3 v({1,2,3}) - v({1, 2}) = 1− 0 = 1
2, 3, 1 v({2,3}) - v({2}) = 1− 0 = 1
3, 1, 2 v({3}) - v(∅) = 0− 0 = 0
3, 2, 1 v({3}) - v(∅) = 0− 0 = 0

sh3 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ3(C3(o)) =
1

6
∗ 4 =

4

6

Consider the treasure of Sierra Madre game with three players 1, 2 and 3. The
following table shoes the marginal contributions for player 1:
Order Marginal contribution of player 1

1, 2, 3 v({1}) - v(∅) = 0− 0 = 0
1, 3, 2 v({1}) - v(∅) = 0− 0 = 0
2, 1, 3 v({1,2}) - v({2}) = 1− 0 = 1
2, 3, 1 v({1,2,3}) - v({2, 3}) = 1− 1 = 0
3, 1, 2 v({1,3}) - v({3}) = 1− 0 = 1
3, 2, 1 v({1,3,2}) - v({2, 3}) = 1− 1 = 0

sh1 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ1(C1(o)) =
1

6
∗ 2 =

1

3

Equivalently, sh2 = sh3 = sh1 = 1
3 .

Q3 Consider the following weighted voting game: 〈10; 6, 4, 2〉.

1. Calculate the Shapley-Shubik power index for all players.

2. How important is the role of player 3 in the game?
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3. Suppose we add one more player to the game: 〈10; 6, 4, 2, 8〉. How does this affect
the role of player 3?

Solution suggestions: In weighting voting games, a coalition is winning if the sum of
the weights of its members exceed the quota:

ν(C) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise

The Shapley-Shubik power index is the Shapley value when interpreted for yes/no
games. It measures the power of the voter to influence the political decision making
process.

1. The following table shoes the marginal contributions for player 1:
Order Marginal contribution of player 1

1, 2, 3 v({1}) - v(∅) = 0− 0 = 0
1, 3, 2 v({1}) - v(∅) = 0− 0 = 0
2, 1, 3 v({1,2}) - v({2}) = 1− 0 = 1
2, 3, 1 v({1,2,3}) - v({2, 3}) = 1− 0 = 1
3, 1, 2 v({1,3}) - v({3}) = 0− 0 = 0
3, 2, 1 v({1,3,2}) - v({2, 3}) = 1− 0 = 1

sh1 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ1(C1(o)) =
1

6
∗ 3 =

3

6

The following table shoes the marginal contributions for player 2:
Order Marginal contribution of player 1

1, 2, 3 v({1,2}) - v({1}) = 1− 0 = 1
1, 3, 2 v({1,2,3}) - v({1, 3}) = 1− 0 = 1
2, 1, 3 v({2}) - v(∅) = 0− 0 = 0
2, 3, 1 v({2}) - v(∅) = 0− 0 = 0
3, 1, 2 v({1,2,3}) - v({1, 3}) = 1− 0 = 0
3, 2, 1 v({1,3,2}) - v({3}) = 1− 0 = 1

sh2 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ2(C2(o)) =
1

6
∗ 3 =

3

6

Marginal contributions for player 3:
Order Marginal contribution of player 3

1, 2, 3 v({1,2,3}) - v({1, 2}) = 1− 1 = 0
1, 3, 2 v({1,3}) - v({1}) = 0− 0 = 0
2, 1, 3 v({1,2,3}) - v({1, 2}) = 1− 1 = 0
2, 3, 1 v({2,3}) - v({2}) = 0− 0 = 0
3, 1, 2 v({3}) - v(∅) = 0− 0 = 0
3, 2, 1 v({3}) - v(∅) = 0− 0 = 0

sh3 =
1

|{1, 2, 3}|!
∑

o∈Π({1,2,3})

µ3(C3(o)) =
1

6
∗ 0 = 0
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2. Player 3 has no power. There is no coalition whose value will be increased after
adding this player. Such player are called dummies. The fact that the third voter
has a non-zero weight is meaningless.

3. Consider the marginal contributions for player 3 to game 〈10; 6, 4, 2, 8〉:
Order Marginal contribution of player 3

1, 2, 3, 4 v({1,2,3}) - v({1, 2}) = 1− 1 = 0
1, 2, 4, 3 v({1,2,3,4}) - v({1, 2, 4}) = 1− 1 = 0
1, 3, 2, 4 v({1,3}) - v({1}) = 0− 0 = 0
1, 3, 4, 2 v({1,3}) - v({1}) = 0− 0 = 0
1, 4, 2, 3 v({1,2,3,4}) - v({1, 2, 4}) = 1− 1 = 0
1, 4, 3, 2 v({1,3,4}) - v({1, 4}) = 1− 1 = 0
2, 1, 3, 4 v({1,2,3}) - v({1, 2}) = 1− 1 = 0
2, 1, 4, 3 v({1,2,3,4}) - v({1, 2, 4}) = 1− 1 = 0
2, 3, 1, 4 v({2,3}) - v({2}) = 0− 0 = 0
2, 3, 4, 3 v({2,3}) - v({2}) = 0− 0 = 0
2, 4, 1, 3 v({1,2,3,4}) - v({1, 2, 4}) = 1− 1 = 0
2, 4, 3, 1 v({2,3,4}) - v({2, 4}) = 1− 1 = 0
3, 1, 2, 4 v({3}) - v(∅) = 0− 0 = 0
3, 1, 4, 2 v({3}) - v(∅) = 0− 0 = 0
3, 2, 1, 4 v({3}) - v(∅) = 0− 0 = 0
3, 2, 4, 1 v({3}) - v(∅) = 0− 0 = 0
3, 4, 1, 2 v({3}) - v(∅) = 0− 0 = 0
3, 4, 2, 1 v({3}) - v(∅) = 0− 0 = 0
4, 1, 2, 3 v({1,2,3,4}) - v({1, 2, 3}) = 1− 1 = 0
4, 1, 3, 2 v({1,3,4}) - v({1, 4}) = 1− 1 = 0
4, 2, 1, 3 v({1,2,3,4}) - v({1, 2, 4}) = 1− 1 = 0
4, 2, 3, 1 v({2,3,4}) - v({2, 4}) = 1− 1 = 0
4, 3, 1, 2 v({3,4}) - v({4}) = 1− 0 = 1
4, 3, 2, 1 v({3,4}) - v({4}) = 1− 0 = 1

sh3 =
1

|{1, 2, 3, 4}|!
∑

o∈Π({1,2,3,4})

µ3(C3(o)) =
1

24
∗ 2 =

2

24

The addition of player 4 increased the power of player 3, since if 3 is added to the
coalition 4 its value increases.
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