
Agent-Based Systems
Tutorial 3

Suggested solutions

Michael Rovatsos

Suggestions for solutions and hints are printed in italics below each question

Q1 (Adapted from Russell & Norvig) Shakey the robot was the application for which the
STRIPS language was originally developed. The figure below shows a version of Shakey’s
world consisting of four rooms and a corridor. Each room has a door and light switch.
Shakey can move from place to place, push movable objects, climb on (and down from)
rigid objects and turn light switches on and off (actually the real Shakey couldn’t, but
the planner can handle all these actions). Shakey needs to climb on a box to turn a light
switch, and we assume that all rooms are connected by doors which belong to both
rooms.

Room 4

Room 3

Room 2

Room 1 Door 1

Door 2

Door 3

Door 4

Box 1

Box 2
Box 3

Shakey

Switch 1

Switch 2

Switch 3

Switch 4

Box 4

Corridor

1. Develop a logical language for describing Shakey’s world

2. Describe Shakey’s actions by appropriate action schemata

1



3. Formally describe the initial state shown in the figure above

4. Construct a plan for Shakey to get Box2 into Room2 from this initial state

Solution suggestions: Obviously, many different designs are possible here. The one de-
scribed here is inspired Russell & Norvigs’s exercise (p. 414 in the R&N textbook, 2nd ed.)

1. We use the following predicates to describe the domain:

– In(o, x) to describe that Shakey/box/switch is in location x,
– Light(x) to denote that the light is on in location x,
– On(o, p) to denote that object (or Shakey) o is stacked on object, and
– Box(o) to denote the object o is a box.

As constants for locations we haveRoom1, . . . , Room4, Corridor for locations, Shakey
and Box1, . . . , Box4 for objects, Switch1, . . . , Switch4 for switches, and Floor as a
special constant for the floor of the building.

2. Shakey’s six actions can be described as follows:

Go(x, y) Push(b, x, y)

pre {In(Shakey, x), Location(y)} pre {Box(b), In(b, x), In(Shakey, x), Location(y)}
del {In(Shakey, x)} del {In(b, x), In(Shakey, x)}
add {In(Shakey, y))} add {In(b, y), In(Shakey, y)}

ClimbUp(b) ClimbDown(b)

pre {Box(b), In(b, x), In(Shakey, x), On(Shakey, F loor)} pre {Box(b), On(Shakey, b)}
del {On(Shakey, F loor)} del {On(Shakey, b)}
add {On(Shakey, b)} add {On(Shakey, F loor)}

TurnOn(s)

pre {On(Shakey, b), In(b, x), Switch(s, x),¬Light(x)}
del {}
add {Light(x)}

TurnOff(s)

pre {On(Shakey, b), In(b, x), Switch(s, x), Light(x)}
del {Light(x)}
add {}

Notes:

– The Location predicate is introduced to avoid attempts to move to a box or a
switch which would be nonsensical. The same is true for the Box and Switch
predicates. You can point out that generally variables can be bound to any con-
stant in the universe. Students with a knowledge of logic may worry about decid-
ability problems with computing preconditions. You can point out that these can
be avoided here since variables only range over finite sets of objects in STRIPS (in
fact, there are even more restrictions in the language, but this one would be suf-
ficient to make the language essentially equivalent to propositional (rather than
first-order) logic).

2



– The model above is simplified because it assumes the robot can climb on some-
thing or push something as soon as it is in the same room. A more fine-grained
model might use, two-dimensional coordinates for example. You can discuss what
this would entail, e.g. making decisions about the granularity of the grid that is
used, defining demarcation lines between the rooms and using two levels of ab-
straction for actions (I would still like to be able to say “go to room 3”).

– You may want to discuss the advantages and disadvantages of having actions that
are inverse to each other as in the above example. The main advantage is that the
agent never “gets stuck” (it can always undo its actions), but this also means that
if simple search is used, every undo action will be equally considered in each step
including undoing what one has just achieved (but there are techniques around
this, e.g. goal decomposition (trying to achieve the literals of the goal state one
by one incrementally)).

– A final thing to note is that this simple kind of planning does not consider uncer-
tainty (the world is deterministic), incomplete knowledge (we have to know the
complete initial state to derive a plan, unlike, e.g. in the vacuum world example),
hierarchical decomposition (all actions are “primitive” actions, they cannot be
grouped together to refine plans depending on the level of granularity required in
a given situation – e.g. if we have a plan for building a house, we are not going
to plan each step in detail until obtaining planning permission i.e. achieving a
first significant sub-goal), re-planning and execution monitoring (no provisions
are made for actions that may fail or that the world state may change while the
plan is being executed).

3. Initial state:

{In(Shakey,Room3), On(Shakey, F loor), Light(Room4), Light(Room1),

In(Box1, Room1), . . . , In(Box4, Room1), Box(Box1), . . . , Box(Box4),

Switch(Switch1, Room1), . . . , Switch(Switch4, Room4),

Location(Room1), . . . , Location(Room4)}

4. Possible plan:

{Go(Room3, Room1), Push(Box2, Room3, Room2)}

Discuss notions of acceptability and correctness of a plan using this example. For this
purpose, it may be useful to trace the iterative modifications to the knowledge base
describing the initial state until the goal state is reached. It should also be explained
that the goal state obviously only needs to be a subset of the knowledge base in some
future state.

Q2 The Advanced Thermostat System: Assume a heater control system controls a living
room and a bedroom area, and is equipped with

– separate thermostats and heater units for both rooms

– timer clocks that allow the thermostat settings to be overruled at certain times (by
binary “on”/”off” settings) and also time to be sensed

– motions sensors to note whether people are present in the room

3



Your task is to build an intelligent BDI-based agent using the control loop discussed in
the lecture:

Practical Reasoning Agent Control Loop
1. B ← B0; I ← I0; /* initialisation */
2. while true do
3. get next percept ρ through see(. . .) function
4. B ← brf(B, ρ); D ← options(B, I); I ← filter(B,D, I);
5. π ← plan(B, I,Ac);
6. while not (empty(π) or succeeded(I,B) or impossible(I,B)) do
7. α← head(π);
8. execute(α);
9. π ← tail(π);
10. get next percept ρ though see(. . .) function
11. B ← brf(B, ρ);
12. if reconsider(I,B) then
13. D ← options(B, I); I ← filter(B,D, I)
14. if not sound(π, I, B) then
15. π ← plan(B, I,Ac)
16. end-while
17. end-while

For complex actions you can assume a plan library that will return a sequence of actions
to achieve any achievable goal from any given initial state.

1. Design a language for describing the advanced thermostat world formally in terms
of percepts, actions, and beliefs

2. Suggest a suitable agent design by formally defining the brf , options, filter and
reconsider functions

3. For a sequence of percepts of your choice of a few steps, sketch the operation of
your system by tracing the workings of the BDI control loop using the functions
you have designed

Solution suggestions:

1. In the following definitions we use B as a subscript for bedroom and L for the living
room. The percept set Per is going to consist of tuples of the form

[time, tl, tb,ml,mb, actionl, actionb]

where time ∈ Time is the current time (e.g. in hours and minutes hh : mm format),
ti is the temperature (in degrees centigrade) measured in each room (i ∈ {b, l}),
mi ∈ {true, false} is the boolean reading of the motion sensor in each room, and
actioni ∈ {on, timer, off , settemp(Temp), add(Start, End), remove(Start, End)}
is the action currently taken by the user for the heating controller of every room.
on and off turn the heating on and off, and overrule any existing timer events until
the setting is set back to timer. settemp sets the (user-)desired temperature in the
respective room to Temp, add and remove add and remove a timer setting from time
Start ∈ Time to time End ∈ Time at the respective controller.
For the belief set, we are going to use tuples of the form

[statel, stateb, presence, settempl, settempb, timerstorel, timerstoreb]

4



where statei ∈ hot, ok, cold, on, off , timer denotes whether the temperature is OK in
the respective room (i ∈ {l, b}) or it is too coold/too hot, and also whether the timer
has been overruled by the heating being set to on or off by the user, or timer in case a
timer event is currently occurring (note difference to “timer” action by user). presence
is a boolean value denoting that someone is in the house, settempi is an internal
store for the target temperature set by the user in the room, and timerstorei =
[(s1, e1), . . . , (sn, en)] is a store for the timer events set for the respective controller by
the user. (Note that our definition allows use of a singleton belief set since different
beliefs are mutually exclusive.

2. In these definitions we are going to use a schematic representation using wildcards *
wherever some values in the tuples are not affected. We also use functions add(L, i)
and remove(L, i) to denote addition/removal of an element to/from a list. We first
define the belief revision function as

brf([statel, stateb, presence, settempl, settempb, timerstorel, timerstoreb],

[time, tl, tb,ml,mb, actionl, actionb]) =

[state′l, state
′
b, presence

′, settemp′l, settemp
′
b, timerstore

′
l, timerstore

′
b]

where

– state′i = hot if ti > settempi and state′i = cold if ti < settempi, statei =
ok if ti = settempi, and statei ∈ {hot, ok, cold} or actioni = timer holds
({hot, cold, ok} are only possible if the timer is not overruled or the controller
was in one of those states previously),

– state′i = timer if ∃(S,E) ∈ timerstorei.S ≺ Time ≺ E (where ≺ means
“before” in a temporal sense) and statei ∈ {hot, ok, cold, timer},

– state′i = on if actioni = on, state′i = off if actioni = off ,
– presence′ = true if ml ∨mb,
– settemp′i = Temp if actioni = settemp(Temp),
– timerstore′i = add(timerstorei, (S,E)) if actioni = add(S,E),
– timerstore′i = remove(timerstorei, (S,E)) if actioni = remove(S,E)

(elements of the belief set not mentioned remain unchanged).
For desires, we are going to use a simple set

D = {MoneySaved,RightTemp,UserWishFulfilled}

and for intentions

I = {SaveGas,RightTempReached, T imerEventsFulfilled, CommandsFulfilled}

. With this, the options function can be defined as follows:

options([statel, stateb, presence, settempl, settempb, timerstorel, timerstoreb], I) = D

where

– D = {UserWishFulfilled} if ∃i.statei ∈ timer, on, off (there should only be
one option if we have reached a set heating time or the user has turned any
controller on or off),

5



– Else: if presence = false, D = {MoneySaved}; if presence = true, D =
{RightTemp}

Note that in this simple example, the options generated don’t depend on current in-
tentions I since essentially these can change in every instance, i.e. no desires are ruled
out because previous the agent has committed itself to previous intentions.
Next, for the filter function, letting

B = {[statel, stateb, presence, settempl, settempb, timerstorel, timerstoreb]}

we can define:

– filter(B, {RightTemp}, {RightTempReached}) = {RightTempReached} if
statei ∈ {cold, hot} for any i ∈ {l, b} and presence = true;
filter(B, {RightTemp}, {RightTempReached}) = {SaveGas} else (note that
this does not distinguish between different rooms, and might cause sub-optimal
behaviour),

– filter(B, {MoneySaved}, {RightTempReached}) = {SaveGas},
– filter(B, {UserWishFulfilled}, I) = {TimerEventsFulfilled, Commands
Fulfilled} if I 6∈ {TimerEventsFulfilled, CommandsFulfilled}

– . . .

A simple proposal for the reconsider function is to set it to true if any of the following
conditions occur:

– presence becomes true when it was false before and vice versa (can we actually
express that with the language used? – yes, we can implicitly, because the “recon-
sider” function also depends on previous intentions, and if the previous intention
was SaveGas we know that nobody is in);

– a timer event is modified while it is being executed,
– the set temperature is modified by the user during plan execution (can this be

identified from the way in which we express beliefs and percepts?).

The proposed solution is certainly not an ideal solution and it’s not even complete.
Discuss its shortcomings and related design issues, including what kind of planning
library would have to be provided for this domain. The primary goal of this exercise
is for people to get a feel for BDI-style agent design and to understand that it can be
tedious process even for such simple systems.

6


