
Agent-Based Systems
Tutorial 2 Solutions

Michael Rovatsos

Suggestions for solutions are printed in italics below each question

Q1 Formally define the function new : D × Per → D that updates the agent’s knowl-
edge base for the vacuum-world example (using a schematic tabular representation or
pseudo-code, if desired).
Solution suggestions: This is a very simple exercise. A simple pseudo-code description of
the new function is. (We assume that in the first time step the knowledge base contains
information about being in (0,0) and facing north.)

procedure new(list of facts D; percept P; new action A) outputs D’

initialise D’ to the empty set

forall d in D {

if d=In(x,y) then xpos = x; ypos = y;

else if d=Facing(f) then dir=f;

}

if A=forward then {

if dir=north and ypos<2 then newposx=xpos; newposy=ypos+1;

else if dir=west and xpos>0 then newposx=xpos-1; newposy=ypos;

else if dir=east and xpos<2 then newposx=xpos+1; newposy=ypos;

else if ypos>0 then newposx=xpos; newposy=ypos-1;

}

if A=turn then {

newposx=posx; newposy=posy;

if dir=north then dir=east;

else if dir=east then dir=south;

else if dir=south then dir=west;

else dir=north;

}

add Facing(dir) to D’;

add In(newposx,newposy) to D’;

if P=dirt then add Dirt(posx,posy) to D’;

end

You can point out that knowledge about the previous action is necessary and is missing
from the definition of the “new” function in the lecture slides. The above definition assumes
that the percept is just “dirt” or “null” and infers the direction from previous knowledge
and own action. Alternatively, the direction might be available as a percept.

Q2 Suggest a compact and elegant decision making algorithm for the vacuum world using
first-order logic that works for arbitrary grid sizes. You can use the usual quantifiers
∃ and ∀, equality =, integers and normal operations on them as well as a constant S

1



which denotes the size of the grid.
Solution suggestions: Many different designs are possible, but the core insight should be
that using rules that are as general as possible minimises the number of rules necessary
to describe a strategy. The problem can be made a bit more interesting if we allow an
additional action “move in random direction” to avoid having to specify conditions for
each and every situation and to analyse whether the robot can get stuck. Here is a very
simple example robot design with this additional non-deterministic action:

∀x ∀y .In(x, y) ∧Dirt(x, y)⇒ Do(suck)

∀x ∀y .In(x, y) ∧ (y = S ∨ x = S)⇒ Do(turn)

∀x ∀y .In(x, y)⇒ Do(randomMove)

Attention should also be drawn to the fact that the order of these rules in the knowledge
base matters in terms of optimal choices if the simple control loop is used that was shown in
the lecture. You can discuss whether having mutually exclusive preconditions in the above
rules solves this problem, and also what the importance of exhaustive preconditions is in
this context.

Q3 The following specification describes the famous “Snow White” example in Concurrent
MetateM:

SnowWhite(ask)[give] :

�ask(x)⇒ ♦give(x)
give(x) ∧ give(y)⇒ (x = y)

eager(give)[ask] :

start⇒ ask(eager)

�give(eager)⇒ ask(eager)

greedy(give)[ask] :

start⇒ �ask(greedy)
courteous(give)[ask] :

((¬ask(courteous) S give(eager))∧
(¬ask(courteous) S give(greedy)))⇒ ask(courteous)

shy(give)[ask] :

start⇒ ♦ask(shy)
�ask(x)⇒ ¬ask(shy)

�give(shy)⇒ ♦ask(shy)

Describe what the programme does and trace its operation in a table for the first three
time steps. For reference, the following table summarises the MetateM operators:

}ϕ ϕ is true tomorrow
�ϕ ϕ was true yesterday
♦ϕ ϕ now or at some point in the future
�ϕ ϕ now and at all points in the future
�ϕ ϕ was true sometimes in the past
�ϕ ϕ was always true in the past
ϕ U ψ ψ some time in the future ϕ until then
ϕ S ψ ψ some time in the past, ϕ since then (but not now)
ϕW ψ ψ was true unless ϕ was true in the past
ϕ Z ψ like “ S ” but ϕ may have never become true

2



Solution suggestions: An example run is shown in the table below (the first three steps
are not enough to illustrate the system’s behaviour as suggested in the question). Note that
for readability some messages irrelevant for the “dwarves” are not shown in this table.

time SnowWhite eager greedy courteous shy

0 ask(eager) ask(greedy) ask(shy)
1 ask(eager), ask(greedy) ask(greedy)
2 ask(greedy), give(eager) ask(greedy)
3 ask(greedy), give(greedy) give(eager) ask(greedy)
4 ask(greedy), ask(shy) ask(eager) ask(greedy) give(greedy)
5 ask(greedy), ask(eager) ask(greedy) ask(courteous)

The workings of this system are quite clear: the greedy agent will always ask for the re-
source, the eager agent will ask at the beginning and whenever it has just received it, the
courteous agent will only ask if it hasn’t asked since neither the greedy or the eager agent
got it, and the shy agent will only ask if no other agent has just asked for it (in fact, the
way the system is set up, the shy agent will never ask for the resource unless it does so
in the very first step). SnowWhite will give the resource eventually to anyone, but can
only provide it to one at a time. It is important to appreciate the difference between the
behaviour intended for the system by the programmer here, and whether there is actually
any way of satisfying all commitments and producing a run where all commitments have
been satisfied.

3


