
Agent-Based Systems
Tutorial 1

Michael Rovatsos

Q1 For which of the following applications would an agent-based solution be appropriate?

1. A word processing software suite

2. An MP3 player with wireless networking capabilities

3. An automated monitoring system for a national railway network

Consider, for each application, a single-agent and a multiagent solution separately. Give
reasons for your answer.

Solution suggestions: Criteria for using agent/multiagent solutions that should be dis-
cussed here are the following:

– decentralisation of data and control, asynchronous computation by distributed com-
ponents

– self-interested components representing different users with different goals

– need to delegate complex tasks to autonomous agents and not to tell them exactly
what to do in each step

– interaction between several components, particularly when patterns of interaction and
communication cannot be predicted at design time

Additional criteria often mentioned are:

– exploiting redundancy by having several agents for the same task (particularly rele-
vant in safety-critical applications)

– applicability of agent notion as a “natural” metaphor (e.g. when using organisational
abstractions in the design of systems or in the case of “lifelike”/”believable” user assis-
tant agents)

– increased scalability through high degree of encapsulation (agent capabilities complex
to implement once, but once that has been done they should be able to interact with
arbitrary numbers of other agents)

For the examples, the following answers would be appropriate (I only mention certain
arguments, you can go systematically through the list above to discuss further ones):

1. Word processor: neither agent nor multiagent-based solution is appropriate. Indi-
vidual tasks (like tabbing, creating tables, spell-checking etc.) are too simple, docu-
ment shouldn’t change without user input, only very little potential for concurrency
(e.g. background spell-checking, but agents not really necessary for that). [As an

1

aside, you can mention the Microsoft “paperclip” assistant, this wasn’t well-received
by the public at all, although it originally even incorporated very smart machine
learning capabilities.]

2. Wireless-enabled MP3 player: agent-based solution appropriate (might detect other
players, exchange data, negotiate with them, etc.), should be proactively doing that
(user wants to listen to music undisturbed); multiagent solution probably not neces-
sary (device would probably only do – at most – a couple of things at a time); point
out that there is a difference between modelling the MAS consisting of several such
players, and modelling an individual agent for one player.

3. Railway monitoring system: a multiagent system solution is appropriate here – agents
can control different nodes (organisational design may be suitable including hierar-
chies), redundancy can be exploited to ensure responsiveness even if some nodes have
inaccurate data or in case of node failure, many different tasks, can be quite com-
plex, different nodes might represent different railway companies and actually be self-
interested, system can be easily extended if network changes physically. Single-agent
solution probably not appropriate, complexity too high for a monolithic system.

Q2 Prove or refute the following statements:

1. For every purely reactive agent, there is a behaviourally equivalent standard agent.

2. For every standard agent, there is a behaviourally equivalent purely reactive agent.

3. For every state-based agent there is behaviourally equivalent standard agent.

4. For every standard agent there is behaviourally equivalent state-based agent.

5. Every utility function defined over runs can be expressed by a utility function de-
fined over states.

6. Every utility function defined over states can be expressed by a utility function
defined over runs.

Solution suggestions:
Two agents Ag1 and Ag2 are called behaviourally equivalent with respect to environment
Env iff R(Ag1, Env) = R(Ag2, Env). If this is true for any environment Env, the
are simply called behaviourally equivalent. Since this definition is based on sets of runs,
the proof technique is by set inclusion, i.e. we pick a random element r ∈ R(Ag1, Env)
and show that is is contained in R(Ag2, Env) for given Ag1, Ag2 and arbitrary Env to
show the “⊆” direction, and then we pick a r′ ∈ R(Ag2, Env) to show the converse “⊇”.
From R(Ag1, Env) ⊆ R(Ag2, Env) and R(Ag1, Env) ⊇ R(Ag2, Env) we conjecture that
R(Ag1, Env) = R(Ag2, Env).

1. Let Ag1 : E → Ac a purely reactive agent. We define a standard agent Ag2 : RE →
Ac by setting Ag2(e0

α0→ · · · αu−1→ eu) = Ag1(eu) for every r = e0
α0→ · · · αu−1→ eu ∈ RE .

Now we prove that the sets of runs generated by both agents are identical.

“⊆”: Let r ∈ R(Ag1, Env). We can write r as e0
Ag1(e0)→ · · · Ag1(eu−1)→ eu since Ag1

is a purely reactive agent. But since Ag2(e0
α0→ · · · αu−1→ eu) = Ag1(eu) by definition

for every u, Ag2(e0
α0→ · · · αi−1→ ei) = Ag1(ei) = Ag1(e0

α0→ · · · αi−1→ ei) holds for any
1 ≤ i ≤ u, and therefore r ∈ R(Ag2, Env).

2

“⊇”: Let r′ = e0
α0→ · · · αu−1→ eu ∈ R(Ag2, Env). It holds that Ag2(e0

α0→ · · · αi−1→ ei) =

Ag1(ei) for all 1 ≤ i ≤ u, so we can write r′ as e0
Ag1(e0)→ · · · Ag1(eu−1)→ eu and thus

r′ ∈ R(Ag1, Env).
Since we have defined a standard agent Ag2 that produces the same runs in the same
(arbitrary) environment as a purely reactive (fixed, but arbitrary) agent Ag1, we can
always find a standard agent that is behaviourally equivalent to a purely reactive
agent.

2. Proof by contradiction. We build a standard agent Ag1 in an environment with states
{e0, e1} and actions {α0, α1} such that Ag1(e0

α0→ e1) = α1 and Ag1(e1
α0→ e1) = α0.

From all possible agent designs for a purely reactive agent Ag2 in this environment,
it has to either hold that Ag2(e1) = α1 or Ag2(e1) = α0. Let us assume Ag2(e1) =
α1 then Ag2(e0

α0→ e1) = Ag2(e1) = α1 and Ag2(e1
α0→ e1) = Ag2(e1) = α1 so

Ag2 cannot be behaviourally equivalent to Ag1. By using the same argument for
Ag2(e1) = α0 we can show that no such Ag2 can exist. If there is at least one standard
agent for which no purely reactive agent exists then this disproves the claim.

3. Assume Ag1 is a standard agent as before. A state-based Ag2 is defined by functions
see : E → Per, action : I → Ac, next : I × Per → I such that Ag2(e0

α0→
· · · αu−1→ eu) = α′u iff see(eu) = pu, next(su, pu) = su+1 and action(su) = α′u.
Define the percept set of Ag2 as a one-to-one mapping of all environments to percepts
i.e. Per = E and the set of internal states as the set of all percept state sequences
I = Per∗. Then, for every run r = e0

α0→ · · · αu−1→ eu of Ag1 we set: see(ei) = ei,
next(e1 · · · ei, ei) = e1 · · · eiei+1 and action(e1 · · · ei) = αi for all 1 ≤ i ≤ u. It is
easy to show that Ag2(e0

α0→ · · · αu−1→ eu) = Ag1(e0
α0→ · · · αu−1→ eu) and with this that

the two agents are behaviourally equivalent.

4. Assume Ag1 is a state-based agent defined by functions see : E → Per, action : I →
Ac, next : I × Per → I such that Ag2(e0

α0→ · · · αu−1→ eu) = αu if see(eu) = pu,
next(su, pu) = su+1 and action(su) = αu. Since the actions generated by Ag1
are uniquely determined by percept and internal state sequences as, we can easily
set Ag1(e0

α0→ · · · αu−1→ eu) = αu for some standard agent Ag2 and show it is be-
haviourally equivalent to Ag1. It can be left to the students as an exercise to show
that each run can be mapped to such a percept/state sequence and the action outcome
defined accordingly for Ag1 to be αu.

5. and 6.: Utility functions defined over runs are strictly more expressive than those
defined over environment states. The proof is almost identical as that for parts 1 and
2 (a simple counterexample can be found for a run-based utility function that cannot
be expressed as a state-based utility function).

Q3 The game of rock-paper-scissors is a single-shot two-player game in which each agent
can pick from either of three moves R, P and S simultaneously. The result is evaluated
using the following rules:

– P beats R

– R beats S

– S beats P

– all other combinations result in a tie

3

Assume our opponent (the “environment”) plays P with probability 0.4, S with proba-
bility 0.5, and R with probability 0.1.

(a) Specify an optimal (stochastic) agent for this problem according to the MEU cri-
terion given that the utility for losing the game is -1 and the utility for winning is
+1, 0 for a tie.

(b) Can you generalise the result for any opponent strategy rather than the one defined
in part (a)?

Solution suggestions: Part (a): In the book (p. 39), the maximum expected utility prin-
ciple is expressed using probabilities of runs. A simple representation for the possible runs
is through two-letter combinations e.g. PS where the first letter stands for “agent move”
and the second for “environment move” (so PS means “agent plays P , environment plays
S”). The 3 · 3 = 9 resulting runs can be grouped together into “win”, “lose” and “tie” cases,
but this is not necessary, strictly speaking. With this, we can specify the agent’s design
(or strategy) through two parameters p, r ∈ [0 : 1] denoting the probability of the agent
two play P and R (the probability of S can be computed implicitly as 1 − p − r), and the
expected utility of a strategy under the given environment Env becomes

EU(p, r, Env) =u(win) · P (win|p, r, Env) + u(lose)P (lost|p, r, Env) + u(tie)P (tie|p, r, Env)
=(+1) · (P (PR) + P (RS) + P (SP)) + (−1) · (P (RP) + P (SR) + P (PS))

+ 0 · (P (RR) + P (SS) + P (PP))

=(p · 0.1 + r · 0.5 + (1− p− r) · 0.4)− (r · 0.4 + (1− p− r) · 0.1 + p · 0.5)
=0.1p+ 0.5r + 0.4− 0.4p− 0.4r − 0.4r − 0.1 + 0.1p+ 0.1r − 0.5p

=0.3− 0.7p− 0.2r

What we are looking for is the optimal agent design, i.e.

max
p,r∈[0:1]

EU(p, r, Env)

and (luckily), since EU(p, r, Env) is decreasing in both p and r, the optimal strategy is
p = 0 and r = 0 (i.e. the agent always plays s). Note, however, that the search space of
values for p and r might have to be searched exhaustively if the environment was different,
or we would have to apply other optimisation techniques.
Part (b): No. In the general case (for identical utilities), the above equation reads

EU(p, r, Env) =(pr′ + r(1− p′ − r′) + (1− p− r)p′)− (rp′ + (1− p− r)r′ + p(1− p′ − r′))
=3pr′ + r − 3rp′ + p′ − r′ − p

for probabilities p′ and r′ of the environment playing P and R, respectively, so obviously
the optimal agent design depends very much on the quantities of these values.

4

