

- I believe $p, p \rightarrow q$; you believe $\neg q$
- How can agents reach agreements about what to believe?
- Argumentation provides principled techniques for deciding what to believe in the face of inconsistencies
- We achieve this by comparing arguments that can be compiled from the agents' beliefs
- Arguments usually present beliefs and describe reasonable iustifications

- between humans:
- 1. Logical mode (deductive, proof-like, concerned with making correct inferences)
- 2. Emotional mode (appeals to feelings, attitudes, etc.)
- 3. Visceral mode (physical, social aspects)
- 4. Kisceral mode (appeals to the intuitive, mystical or religious)
- Different types are used in different situations (e.g. logical mode (hopefully) in courts of law)

Abstract Argumentation

- We can decide what to believe while looking at arguments at the abstract level (Dung, 1995):
 - Disregarding their internal structures, e.g. arguments a, b, c, d
 - Focus on the **attack** relation, e.g. *a* attacks *b* or $a \rightarrow b$
 - Not concerned with the origin of arguments or the attack relation
- An abstract argumentation system $\mathcal{A} = \langle X, \rightarrow \rangle$ is defined by
 - a set of arguments X (just a collection of objects),
 - $\rightarrow \subseteq X \times X$ a binary **attack** relation on arguments
- Example: $\langle \{p, q, r, s\}, \{(r, q), (s, q), (q, p)\} \rangle$

Arguments: p, q, r, sAttacks: $r \rightarrow q, s \rightarrow q, q \rightarrow p$

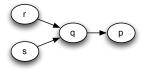
• Which arguments can we consider to be rationally justified? There is no universal definition for acceptability

Agent-Based Systems

Preferred Extensions

- Preferred extensions are maximal (w.r.t. set inclusion) admissible sets, e.g. {p, r, s} is a preferred extension, but not Ø or {p}
- Preferred extensions help determine which arguments should be accepted but are not always useful:

Preferred extensions are not necessarily unique e.g. $\{a\}$ and $\{b\}$ here



The only preferred extension may be the empty set

- An argument is **sceptically accepted** if it is a member of every preferred extension
- An argument is credulously accepted if it is a member of at least one preferred extension

Terminology

- Lets consider some meaningful properties for rationally justified sets of arguments
- A set of arguments *S* is **conflict-free** if if there are no arguments *a*, *b* in *S* such that *a* attacks *b*, e.g.

$\emptyset, \{p\}, \{q\}, \{r\}, \{s\}, \{r, s\}, \{p, r\}, \{p, s\}, \{p, r, s\}$

- An argument *a* is **acceptable** with respect to a set *S* of arguments iff for each argument *a*': if *a*' attacks *a* then *a*' is attacked by some argument in *S*
- A conflict-free set of arguments *S* is **admissible** iff each argument in *S* is acceptable w.r.t. *S*

e.g. $\emptyset, \{r\}, \{s\}, \{r, s\}, \{p, r\}, \{p, s\}, \{p, r, s\}$

Agent-Based Systems

THE UNIVERSITY of EDINBURGH informatics

Grounded Extensions (I)

- An alternative notion of acceptability is provided by the notion of grounded extension
- The (unique) grounded extension can be built incrementally:
 - 1 Arguments that are not attacked are "in"
 - 2 Delete from the graph every argument that is attacked by an argument that is in the grounded extension and go to Step 1
 - Iterate until there are no more changes to the argument graph
- The grounded extension
 - always exists and
 - is guaranteed to be unique, but
 - may be empty (if no arguments are free of attackers initially)

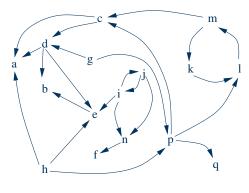
5/18

6/18

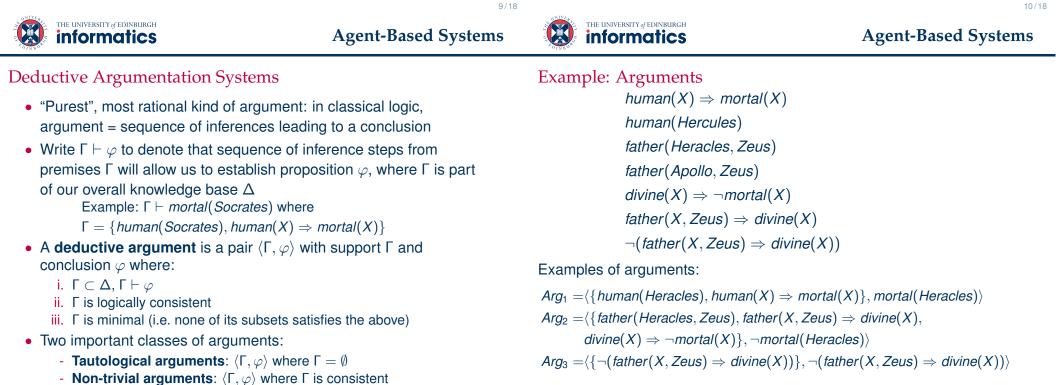
Agent-Based Systems

Grounded Extensions (II)

• The *characteristic function* of an argumentation system $\mathcal{A} = \langle X, \rightarrow \rangle$, is the function $\mathcal{F} : 2^X \rightarrow 2^X$, which is defined as follows:


 $\mathcal{F}(S) = \{a \mid a \text{ is acceptable w.r.t. } S\}$

- The grounded extension of an argumentation system is the least fixed point of the characteristic function ${\cal F}$
- Consider the sequence:


-
$$\mathcal{F}^0 = \emptyset$$
,

- $\mathcal{F}^{i+1} = \{ a \in X \mid a \text{ is acceptable w.r.t. } \mathcal{F}^i \}$
- ··· (until no arguments are added to the set)

Example

- Argument *h* has no attackers ➡ "in"
- Because of this, a is not acceptable ⇒ "out"
- For same reason p is out
- p only attacker of q, thus q is \Rightarrow "in"

The Attack Relation

The attack relation is defined as follows

- For any propositions φ and ψ, φ attacks ψ iff $\varphi \equiv \neg \psi$
- $\langle \Gamma_1, \varphi_1 \rangle$ rebuts $\langle \Gamma_2, \varphi_2 \rangle$ if φ_1 attacks φ_2
- $\langle \Gamma_1, \varphi_1 \rangle$ undercuts $\langle \Gamma_2, \varphi_2 \rangle$ if φ_1 attacks some $\psi \in \Gamma_2$
- $\langle \Gamma_1, \varphi_1 \rangle$ attacks $\langle \Gamma_2, \varphi_2 \rangle$ if it undercuts or rebuts it Example:

$$\begin{aligned} & \text{Arg}_1 = \langle \{\text{human}(\text{Heracles}), \text{human}(X) \Rightarrow \text{mortal}(X) \}, \text{mortal}(\text{Heracles}) \rangle \\ & \text{Arg}_2 = \langle \{\text{father}(\text{Heracles}, \text{Zeus}), \text{father}(X, \text{Zeus}) \Rightarrow \text{divine}(X), \\ & \text{divine}(X) \Rightarrow \neg \text{mortal}(X) \}, \neg \text{mortal}(\text{Heracles}) \rangle \end{aligned}$$

 $\textit{Arg}_3 = \langle \{\neg(\textit{father}(X,\textit{Zeus}) \Rightarrow \textit{divine}(X))\}, \neg(\textit{father}(X,\textit{Zeus}) \Rightarrow \textit{divine}(X)) \rangle$

- Arguments Arg₁ and Arg₂ are mutually rebutting
- Argument Arg₃ undercuts argument Arg₂

Argument Classes

We can identify five classes of argument type in order of increasing acceptability

- A1: The class of all arguments that can be constructed
- A2: The class of all non-trivial arguments that can be constructed
- A3: The class of all arguments that can be constructed with no rebutting arguments
- A4: The class of all arguments that can be constructed with no undercutting arguments
- A5: The class of all tautological arguments that can be constructed

the university of edinburgh the university of edinburgh **Agent-Based Systems Agent-Based Systems Example:** Argument Classes Argumentation dialogue systems Agents engage in dialogue to convince other agents of some state of affairs • Consider two agents 0 and 1 engaging in the following dialogue: $Arg_1 = \langle \{human(Heracles), human(X) \Rightarrow mortal(X)\}, mortal(Heracles) \rangle$ - Agent 0 attempts to convince 1 of some argument $Arg_2 = \langle \{father(Heracles, Zeus), father(X, Zeus) \Rightarrow divine(X), \}$ - Agent 1 attempts to rebut or undercut it $divine(X) \Rightarrow \neg mortal(X)$, $\neg mortal(Heracles)$ - Agent 0 in turn attempts to defeat 1's argument - And so on . . . $Arg_3 = \langle \{\neg(father(X, Zeus) \Rightarrow divine(X))\}, \neg(father(X, Zeus) \Rightarrow divine(X)) \rangle$ • Moves $\langle Player, Arg \rangle$ are steps in such a dialogue, $Player \in \{0, 1\}$, $Arg \in \mathcal{A}(\Delta)$ (the set of all arguments constructed from Δ) - Arg₁ and Arg₂ are mutually rebutting and thus in A2 • A sequence $\langle m_0, \ldots, m_k \rangle$ is a **dialogue history** if - $\langle \emptyset, divine(Heracles) \lor \neg divine(Heracles) \rangle$ is in A5 - $Player_{2i} = 0$, $Player_{2i+1} = 1$ for all $i \ge 0$ - $\langle \{father(apollo, Zeus), father(X, Zeus) \Rightarrow divine(X), divine(X) \Rightarrow \rangle$ - If *Player*_i = *Player*_i and $i \neq j$, then $Arg_i \neq Arg_i$, \neg *mortal*(*X*)}, \neg *mortal*(*apollo*)) is in A4 - Arg_{i+1} defeats Arg_i for all $i \ge 0$ • A dialogue ends if no further moves are possible, the winner is

13/18

Player_k

14/18

Participants' aim

Agent-Based Systems

Types of dialogue

Туре

Typology due to Walton and Krabbe (1995):

Initial situation

Summary

- Argumentation
- Abstract argumentation systems
- Deductive argumentation systems
- Argumentation-based dialogue
- Next time: Logics for Multiagent Systems

Persuasion	conflict of opinion	resolve the issue	persuade other
Negotiation	conflict of interest	make a deal	get best deal
Inquiry	general ignorance	growth of knowledge	find a proof
Deliberation	need for action	reach a decision	influence outcome
Information seeking	personal ignorance	spread knowledge	gain or pass on knowledge
Eristics	conflict/antagonism	reaching an accommodation	strike other party

Main goal