

- In games like the Prisoner's Dilemma cooperation is prevented because:
 - Binding agreements are not possible
 - Utility is given directly to individuals as the result of individual action
- These features do not hold in many real world situations:
 - Contracts can form binding arrangements
 - Revenue that a company earns is not credited to an individual
- When we lift these assumptions cooperation is both possible and rational
- Cooperative game theory asks which contracts are meaningful solutions among self-interested agents

Terminology

- $Ag = \{1, \ldots, n\}$ agents (typically n > 2)
- Any subset C of Ag is called a coalition
- *C* = *Ag* is the grand coalition,
- A cooperative game is a pair $\mathcal{G} = \langle Ag, \nu \rangle$
- $\nu : \mathbf{2}^{Ag} \to \mathbb{R}$ is the **characteristic function** of the game
- $\nu(C)$ is the utility C can achieve, regardless of Ag C's behaviour
- Singleton coalitions contain one agent (describe what agents can achieve alone)
- Neither individual actions and utilities matter, nor the origin of ν

Three Stages of Cooperative Action

- Coalition structure generation
 - Asking which coalitions will form, concerned with stability
 - For example, a productive agent has the incentive to defect from a coalition with a lazy agent
 - Necessary but not sufficient condition for establishment of a coalition
- Solving the optimisation problem of each coalition
 - Decide on collective plans
 - Maximise the collective utility of the coalition
- Dividing the value of the solution of each coaltion
 - Concerned with fairness of contract
 - How much an agent should receive based on her contribution

Outcomes and Objections

- An **outcome** $x = \langle x_1, \dots, x_k \rangle$ for a coalition *C* in game $\langle Ag, \nu \rangle$ is a distribution of C's utility to members of C
- Outcomes must be feasible (don't overspend) and efficient (don't underspend): $\sum_{i \in C} x_i = \nu(C)$
- Example:
 - $Ag = \{1, 2\}, \nu(\{1\}) = 5, \nu(\{2\}) = 5 \text{ and } \nu(\{1, 2\}) = 20$
 - Possible outcomes for $C = \{1, 2\}$ are $\langle 20, 0 \rangle$, $\langle 19, 1 \rangle$, ..., $\langle 0, 20 \rangle$
- C objects to an outcome for the grand coalition if there is some outcome for C in which all members of C are strictly better off
- Formally, $C \subseteq Ag$ objects to $x = \langle x_1, \ldots, x_n \rangle$ for the grand coalition, iff there exists some outcome $x' = \langle x'_1, \ldots, x'_k \rangle$ for *C*, such that $x'_i > x_i$ for all $i \in C$

5/16 6/16 the university of edinburgh the university of edinburgh **Agent-Based Systems Agent-Based Systems** The Core The Shapley Value (I) • The core of a coalitional game is the set of outcomes that no

- sub-coalition can object to
- If the core is non-empty, then the grand coalition is stable
- The core of the previous example contains all outcomes between $\langle 15, 5 \rangle$ and $\langle 5, 15 \rangle$ inclusive
- Problems:
 - Sometimes the core is empty
 - **Fairness:** (15,5) distributes all the surplus generated by the cooperation to one agent (fairness?)
 - The definition of the core involves quantification over all possible coalitions, so all of them have to be enumerated

- To eliminate unfair distribution, try to divide surplus according to contribution
- Define marginal contribution of *i* to *C*: $\mu_i(C) = \nu(C \cup \{i\}) \nu(C)$
- Axioms any fair distribution should satisfy:
 - Symmetry: if two agents contribute the same they should receive the same pay-off (they are interchangeable)
 - Dummy player: agents that do not add value to any coalition should get what they earn on their own
 - Additivity: if two games are combined, the value a player gets should be the sum of the values it gets in individual games

• The Shapley value for agent *i* :

$$sh_i = rac{1}{|Ag|!} \sum_{o \in \Pi(Ag)} \mu_i(C_i(o))$$

- $\Pi(Ag)$ denotes the set of all possible orderings (e.g. for $Ag = \{1, 2, 3\}, \Pi(Ag) = \{(1, 2, 3), (1, 3, 2), (2, 1, 3), \ldots\})$
- $C_i(o)$ denotes the agents that appear before *i* in *o*
- Requires that
 - $\nu(\emptyset) = 0$ and
 - $\nu(C \cup C') \ge \nu(C) + \nu(C')$ if $C \cap C' = \emptyset$

(ν superadditive)

• Strong result: The Shapley value is the *only* value that satisfies the fairness axioms

Representation

- A naive representation of a coalition game is infeasible (exponential in the size of *Ag*):
 - 1, 2, 3 1 = 5 2 = 5 3 = 5 1, 2 = 10 1, 3 = 10 2, 3 = 20 1, 2, 3 = 25
- As with preference orderings, we need a **succinct** representations
- Modular representations exploit Shapley's axioms directly
- Basic idea: divide the game into smaller games and exploit additivity axiom

• Example:

- $rs_1 = \{a \land b \longrightarrow 5, b \longrightarrow 2\}$

- $\nu_{rs_1}(\{a\}) = 0$, $\nu_{rs_1}(\{b\}) = 2$ and $\nu_{rs_1}(\{a, b\}) = 7$

• Extension: allow negation in rules, e.g. $b \land \neg c \longrightarrow -2$

Shapley value can be computed in polynomial timeComplete representation, but not necessarily succinct

- Not a complete representation (not all characteristic functions can be represented)
- But easy to compute the Shapley value for a given player in polynomial time

-
$$sh_i = \frac{1}{2}\sum_j w_{i,j}$$

• Checking emptiness of the core is NP-complete, and membership to the core is co-NP-complete

11/16

Representations for Simple Games

• Simple games model yes/no voting systems

- **Zero-sum:** if $C \in W$ then $Ag \setminus C \notin W$

- Non-triviality: $\emptyset \subset W \subset \mathbf{2}^{Ag}$

- Empty coalition loses: $\emptyset \notin W$

- Grand coalition wins: $Ag \in W$

0 (losing) or 1 (winning)

• Important conditions:

Weighted Voting Games

the university of edinburgh

- For each agent $i \in Ag$ define a weight w_i and an overall **quota** q
- A coalition is winning if the sum of their weights exceeds the quota: $\nu(C) = \begin{cases} 1 & \text{if } \sum_{i \in C} w_i \ge q \\ 0 & \text{otherwise} \end{cases}$
- Example: Simple majority voting, $w_i = 1$ and $q = \frac{\lceil |Ag|+1 \rceil}{2}$
- Succinct (but incomplete) representation: (q; w₁,..., w_n)
- Extension: *k*-weighted voting games are a complete representation
 - overall game = "conjunction" k of k different weighted voting games
 - Winning coalition is the one that wins in all component games
 - Game dimension: k is at most exponential in the number of players
 - Checking whether a *k*-weighted voting game is minimal is NP-complete

• **Shapley-Shubic power index** = Shapley value in yes/no games

• A coalitional game is **simple** if the value of any coalition is either

• $Y = \langle Ag, W \rangle$, where $W \subseteq \mathbf{2}^{Ag}$ is the set of winning coalitions

- Monotonicity: if $C_1 \subseteq C_2$ and $C_1 \in W$ then $C_2 \in W$

Naive representation is exponential in the number of agents

• If $C \in W$, C would be able to determine the outcome, 'yes' or 'no'

- Measures the power of the voter in this case
- Computation is NP-hard, no reasonable polynomial time approximation
- Checking emptiness of the core can be done in polynomial time (*veto player*)
- Counter-intuitive properties:
 - In (100; 99, 99, 1), all voters have the same power $(\frac{1}{3})$
 - Dummy with non-zero power, e.g. $\langle 10; 6, 4, 2 \rangle,$ meaningful?
 - Adding new voters increases voter power, e.g. $\langle 10; 6, 4, 2, 8 \rangle$

- Coalition formation
- The core and the Shapley value
- Different representations
- Simple games
- Next time: Resource Allocation