

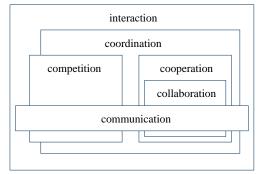
Bargaining

Argumentation in multiagent systems

• Logics for multiagent systems

2/25

4/25


	Where are we?
Agent-Based Systems	 Last time Reactive and hybrid agent architectures
Michael Rovatsos mrovatso@inf.ed.ac.uk	 Criticism of symbolic Al/deliberative architectures Situated/embodied/behaviour-based intelligence, emergence Subsumption architecture Hybrid approaches: the best of both worlds?
Lecture 6 – Agent Communication	 Horizontal layering: Touring Machines Vertical layering: InteRRaP Today
	Agent Communication


Categories of agent interaction

- Remember first lecture
 - Interaction does not always imply action
 - Coordination does not always imply communication
- Basic typology of interaction:

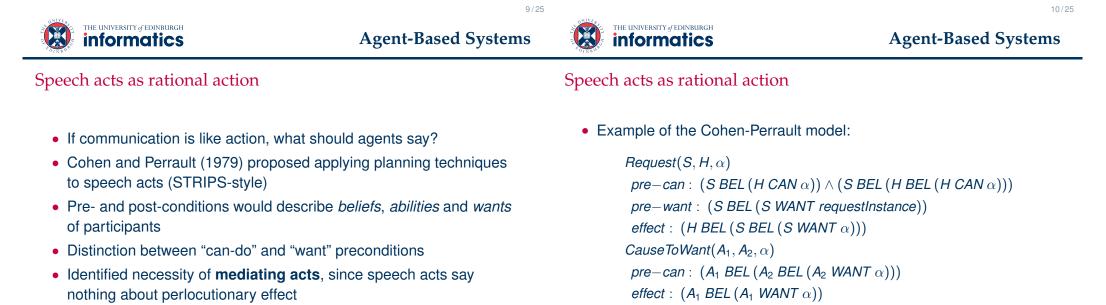
Categories of agent interaction

- Non-/Quasi-communicative interaction:
 - Shared environment (interaction via resource/capability sharing)
 - "Pheromone" communication (ant algorithms)
- Communication:
 - Information exchange: sharing knowledge, exchanging views
 - Collaboration, distributed planning: optimising use of resources and distribution of tasks, coordinating execution
 - · Negotiation: reaching agreement in the presence of conflict
 - (Human-machine dialogue, reporting errors, etc.)

5/25

- Austin (1962): Utterances are produced like "physical" actions to change the state of the world
- Speech act theory is a theory of how utterances are used to achieve one's intentions

- Examples: promise, request, purport, insist, demand, etc.
- Propositional content = what the speech act is about
- Example:
 - Performative: request/inform/enquire
 - Propositional content: "the window is open"



Speech act theory

- Searle (1972) identified following categories of performatives:
 - assertives/representatives (informing, making a claim)
 - directives (requesting, commanding)
 - commissives (promising, refusing)
 - declaratives (effecting change to state of the world)
 - expressives (expressing mental states)
- Ambiguity problems:
 - "Please open the window!"
 - "The window is open."
 - "I will open the window."
 - ...
- Debate as to whether this (or any!) typology is appropriate (and innate to human thinking)

Speech act theory

- Austin and Searle also analysed the conditions under which speech acts can be successfully completed
- Austin's felicity conditions:
 - 1. There must be an accepted conventional procedure for the performative
 - 2. The procedure must be executed correctly and completely
 - 3. The act must be sincere, any *uptake* must be completed as far as possible
- Searle's properties for success of (e.g.) a request:
 - 1. I/O conditions (ability to hear request, normal situation)
 - Preparatory conditions must hold (requested action can be performed, speaker must believe this, hearer will not perform action anyway)
 - 3. Sincerity conditions (wanting the action to be performed)

• Cohen and Levesque later integrated that in their model of intentions (as previously discussed)

• This has been the most influential approach to using communication in multiagent systems!

Agent communication languages

- Agent communication languages (ACLs) define standards for messages exchanged among agents
- Usually based on speech act theory, messages are specified by:
 - Sender/receiver(s) of the message
 - Performative to describe intended actions
 - Propositional content in some content language
- Most commonly used languages:
 - KQML/KIF
 - FIPA-ACL (today de-facto standard)
- FIPA=Foundation for Intelligent Physical Agents

KQML/KIF

- KQML Knowledge Query and Manipulation Language
- An "outer" language, defines various acceptable performatives
- Example performatives:
 - ask-if ('is it true that...')
 - perform ('please perform the following action...')
 - tell ('it is true that...')
 - reply ('the answer is ...')
- Message format:

```
(performative
```

:sender	<word></word>	:receiver	<word></word>
:in-reply-to	<word></word>	:reply-with	<word></word>
:language	<word></word>	:ontology	<word></word>
:content	<expression>)</expression>		

13/25 14/25 THE UNIVERSITY of EDINBURGH the university of edinburgh **Agent-Based Systems** informatics **Agent-Based Systems** KQML/KIF Example • KQML does not say anything about *content* of messages (advertise :sender Agent1 \rightarrow need content languages :receiver Agent2 • *KIF* – Knowledge Interchange Format: a logical language to :in-reply-to ID1 describe knowledge :reply-with ID2 :language KQML Essentially first-order logic with some extensions/restrictions :ontology kqml-ontology • Examples: :content (ask • (=> (and (real-num ?x) (even-num ?n)) :sender Agent1 (> (expt ?x ?n) > 0)) :receiver Agent3 • (interested joe '(salary ,?x ,?y ,?z)) :language Prolog Can be also used to describe ontology referred to by interacting :ontology blocks-world "on(X,Y)")) agents :content

KQML/KIF

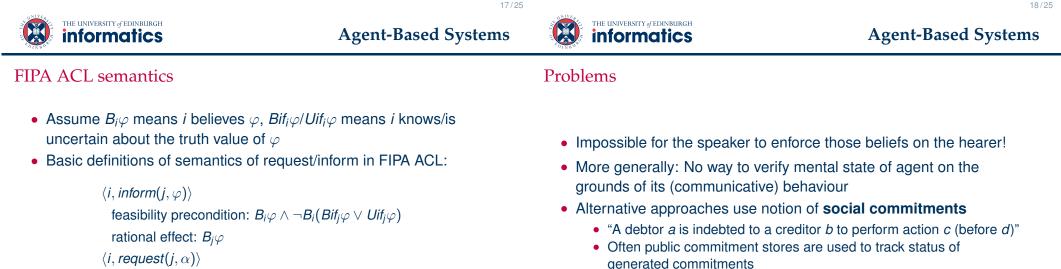
- KQML/KIF were very successful, but also some problems
- List of performatives (up to 41!) not fixed
 - interoperability problems
- No formal semantics, only informal descriptions of meaning
- KQML completely lacks commissives, this is a massive restriction!
- Performative set of KQML rather *ad hoc*, not theoretically clear or very elegant
- These lead to the development of FIPA ACL

FIPA ACL

- In recent years, FIPA started work on a program of agent standards

 the centrepiece is an ACL called FIPA-ACL
- Basic structure is quite similar to KQML, but semantics expressed in a formal language called SL

```
(inform :sender agent1 :receiver agent5
            :content (price good200 150)
            :language s1 :ontology hpl-auction)
```


- "Inform" and "Request" basic performatives, all others (about 20) are macro definitions (defined in terms of these)
- The meaning of inform and request is defined in two parts:

At least (non)fulfilment of commitments can be verified

communication semantics!

• This is a fundamental problem of all mentalistic approaches to

- "Feasibility precondition", i.e. what must be true in order for the speech act to succeed
- "Rational effect", i.e. what the sender of the message hopes to bring about

- feasibility precondition: $B_i Agent(\alpha, j) \land \neg B_i I_j Done(\alpha)$ rational effect: $Done(\alpha)$
- Here, Agent(α, j) means that j can perform j, Done(α) means that the action has been done

Agent-Based Systems

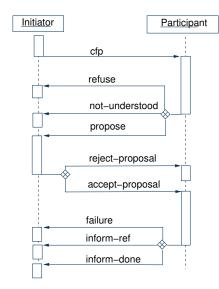
Agent-Based Systems

Ontologies

- One aspect we have not discussed so far: how can agents ensure the **terminology** they use is commonly understood?
- What are ontologies?
 - philosophically speaking: a theory of nature of being or existence
 - practically speaking: a formal specification of a shared conceptualisation
- Ontologies have become a prominent are of research in particular with the rise of the **Semantic Web**
- Many interesting problems: ontology matching and mapping, ontology negotiation, ontology learning etc.
- For our purposes sufficient to know that agreement on terminology is prerequisite for meaningful communication

Interaction protocols

- ACLs define the syntax and semantics of individual utterances
- But they don't specify what agent conversations look like
- This is done by **interaction protocols** for different types of agent dialogues
- Interaction protocols govern the exchange of a series of messages among agents
- Restrict the range and ordering of possible messages (effectively define patterns of admissible sequences of messages)
- Often formalised using finite-state diagrams or "interaction diagrams" in FIPA-AgentUML
 - Define agent roles, message patterns, semantic constrains


Agent-Based Systems

Contract-net protocol

- One of the oldest, most widely used agent interaction protocols
- A manager agent announces one or several tasks, agents place bids for performing them
- Task is assigned by manager according to evaluation function applied to agents' bids (e.g. choose cheapest agent)
- Idea of exploiting local cost function (agents' private knowledge) for distributed optimal task allocation
- Even in purely cooperative settings, decentralisation can improve global performance
- A typical example of "how it can make sense to agentify a system"
- Successfully applied to different domains (e.g. transport logistics)

Contract-net protocol

the university of edinburgh

Agent-Based Systems

Summary

- Different kinds of interaction and communication
- Focus on agent-to-agent communication
- Speech act theory theoretical foundation for ACLs
- Agent communication languages & their semantics
- Interaction protocols
- But how about agent strategies in interaction and their global effects?
- Next time: Methods for Coordination