
Agent-Based Systems

Agent-Based Systems

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 3 – Deductive Reasoning Agents

1 / 16

Agent-Based Systems

Where are we?

Last time . . .

• Talked about abstract agent architectures

• Agents with and without state

• Goals and utilities

• Task environments

Today . . .

• Deductive Reasoning Agents

2 / 16

Agent-Based Systems

Deductive reasoning agents

• After abstract agent architectures we have to make things more
concrete we take viewpoint of “symbolic AI” as a starting point

• Main assumptions:
• Agents use symbolic representations of the world around them
• They can reason about the world by syntactically manipulating

symbols
• Sufficient to achieve intelligent behaviour (“symbol system

hypothesis”)

• Deductive reasoning = specific kind of symbolic approach where
representations are logical formulae and syntactic manipulation
used is logical deduction (theorem proving)

• Core issues: transduction problem, representation/reasoning
problem

3 / 16

Agent-Based Systems

Agents as theorem provers

• Simple model of “deliberate” agents: internal state is a database of
first-order logic formulae

• This information corresponds to the “belief” of the agent (may be
erroneous, out of date, etc.)

• L set of sentences of first-order logic, D = ℘(L) set of all
L-databases (=set of internal agent states)

• Write ∆ `ρ ϕ if ϕ can be proved from DB ∆ ∈ D using (only)
deduction rules ρ

• Modify our abstract architecture specification:

see : E → Per

action : D → Ac

next : D × Per → D

4 / 16

Agent-Based Systems

Agents as theorem provers

• Assume special predicate Do(α) for action description α
• If Do(α) can be derived, α is the best action to perform
• Control loop:

Function: Action Selection as Theorem Proving
1. function action(∆ : D) returns an action Ac
2. for each α ∈ Ac do
3. if ∆ `ρ Do(α) then
4. return α
5. for each α ∈ Ac do
6. if ∆ 6`ρ ¬Do(α) then
7. return α
8. return null

• If no “good” action is found, agent searches for consistent actions
instead (that are not explicitly forbidden)

• Do you notice any problems here?
5 / 16

Agent-Based Systems

Example: the vacuum world

• A small robot to help with housework
• Perception: dirt sensor, orientation (north, south, east, west)
• Actions: suck up dirt, step forward, turn right by 90 degrees
• Starting point (0, 0), robot cannot exit room

dirt dirt

(2,0)

(2,1)

(2,2)

(1,0)

(1,1)

(1,2)

(0,0)

(0,1)

(0,2)

• Goal: traverse the room continually, search for and remove dirt

6 / 16

Agent-Based Systems

Example: the vacuum world
• Formulate this problem in logical terms:
• Percept is dirt or null , actions forward , suck or turn
• Domain predicates In(x , y), Dirt(x , y), Facing(d)
• next function must update internal (belief) state of agent correctly

• old(∆) := {P(t1 . . . tn)|P ∈ {In,Dirt ,Facing} ∧ P(t1 . . . tn) ∈ ∆}
• Assume new : D × Per → D adds new predicates to database

(what does this function look like?)
• Then, next(∆, p) = (∆\old(∆)) ∪ new(∆, p)

• Agent behaviour specified by (hardwired) rules, e.g.

In(x , y) ∧ Dirt(x , y)⇒ Do(suck)

In(0, 0) ∧ Facing(north) ∧ ¬Dirt(0, 0)⇒ Do(forward)

In(0, 1) ∧ Facing(north) ∧ ¬Dirt(0, 1)⇒ Do(forward)

In(0, 2) ∧ Facing(north) ∧ ¬Dirt(0, 2)⇒ Do(turn)

In(0, 2) ∧ Facing(east)⇒ Do(forward)

7 / 16

Agent-Based Systems

Critique of the DR approach

• How useful is this kind of agent design in practice?

• Naive implementation of this certainly won’t work!

• What if world changes since optimal action was calculated?
notion of calculative rationality (decision of system was

optimal when decision making began)

• In case of first-order logic, not even termination is guaranteed . . .
(let alone real-time behaviour)

• Also, formalisation of real-world environments (esp. sensor input)
often counter-intuitive or cumbersome

• Clear advantage: elegant semantics, declarative flavour, simplicity

8 / 16

Agent-Based Systems

Agent-oriented programming

• Based on Shoham’s (1993) idea of bringing societal view into
agent programming (AGENT0 programming language)

• Programming agents in terms of mentalistic notions (beliefs,
desires, intentions)

• Agent specified in terms of
• set of capabilities
• set of initial beliefs
• set of initial commitments
• set of commitment rules

• Key component: commitment rules, composed of message
condition, mental condition and action (private or communicative)

• Rule matching used to determine whether rule should fire

• Messages types: requests, unrequests (change commitments),
inform messages (change beliefs)

9 / 16

Agent-Based Systems

Agent-oriented programming

• Suppose we want to describe commitment rule
“If I receive a message from agent requesting me to do action at
time and I believe that (a) agent is a friend, (b) I can do the action
and (c) at time I am not committed to doing any other action then
commit to action at time”

• This is what this looks like in AGENT0:
COMMIT(agent,REQUEST,DO(time,action)
(B,[now,Friend agent] AND CAN(self,action) AND NOT
[time,CMT(self,anyaction)]),

self, DO(time,action))

• Top-level control loop used to describe AGENT0 operation:
• Read all messages, update beliefs and commitments
• Execute all commitments with satisfied capability condition
• Loop.

10 / 16

Agent-Based Systems

Agent-oriented programming

abilities

commitments

beliefs

commitments
update

update beliefs

initialise

EXECUTE

messages in

internal actions
messages out

11 / 16

Agent-Based Systems

Concurrent MetateM

• Based on direct execution of logical formulae

• Concurrently executing agents communicate via asynchronous
broadcast message passing

• Agents programmed by temporal logic specification
• Two-part agent specification

• interface defines how agent interacts with other agents
• computational engine which defines how agent will act

• Agent interface consists of
• unique agent identifier
• “environment propositions”, i.e. messages accepted by the agent
• “component propositions”, i.e. messages agent will send

• Example: stack(pop, push)[popped , full]

12 / 16

Agent-Based Systems

Concurrent MetateM

• Computational engine based on MetateM, based on program rules:
antecedent about past⇒consequent about present and future

• “Declarative past and imperative future” paradigm
• Agents are trying to make present and future true given past

• Collect constraints with old commitments
• These taken together form current constraints
• Next state is constructed by trying to fulfil these
• Disjunctive formula choices
• Unsatisfied commitments are carried over to the next cycle

13 / 16

Agent-Based Systems

Propositional MetateM logic

• Propositional logic with (lots of) temporal operators
#ϕ ϕ is true tomorrow
�ϕ ϕ was true yesterday
♦ϕ ϕ now or at some point in the future
�ϕ ϕ now and at all points in the future
�ϕ ϕ was true sometimes in the past
�ϕ ϕ was always true in the past
ϕ U ψ ψ some time in the future ϕ until then
ϕ S ψ ψ some time in the past, ϕ since then (but not now)
ϕW ψ ψ was true unless ϕ was true in the past
ϕ Z ψ like “ S ” but ϕ may have never become true

• Beginning of time: special nullary operator (start) satisfied only at
the beginning

14 / 16

Agent-Based Systems

Agent execution

• Some examples:
• �important(agents): “now and for all times agents are important”
• ♦important(agents): “agents will be important at some point”
• ¬friends(us) U apologise(you): “not friends until you apologise”
• #apologise(you): “you will apologise tomorrow”

• Agent execution: attempt to match past-time antecedents of rules
against history, executing consequents of rules that fire

• More precisely:
1. Update history with received messages (environment propositions)
2. Check which rules fire by comparing antecedents with history
3. Jointly execute fired rule consequents together with commitments

carried over from previous cycles
4. Goto 1.

15 / 16

Agent-Based Systems

Example

• Specification of an example system:

rp(ask1, ask2)[give1, give2] :

�ask1⇒ ♦give1

�ask2⇒ ♦give2

start ⇒ �¬(give1 ∧ give2)

rc1(give1)[ask1] :

start ⇒ ask1

�ask1⇒ ask1

rc2(ask1, give2)[ask2] :

�(ask1 ∧ ¬ask2)⇒ ask2

• What does it do?

16 / 16

Agent-Based Systems

Example

• rp resource producer, cannot give to both agents at a time, but will
give eventually to any agent that asks

• rc1/rc2 are resource consumers:
• rc1 will ask in every cycle
• rc2 will always ask if it has not asked previously and rc1 has asked

• Example run:
time rp rc1 rc2

0 ask1
1 ask1 ask1 ask2
2 ask1,ask2,give1 ask1
3 ask1,give2 ask1,give1 ask2
4 ask1,ask2,give1 ask1 give2
5

17 / 16

Agent-Based Systems

Summary

• Deductive reasoning agents

• Working with pure logic specifications of agent behaviour

• General architecture, vacuum cleaner example

• Critique: elegant, but complexity and practicability issues

• Agent-oriented programming: first approach to use mentalistic
concepts in programming (but not a true programming language)

• Concurrent MetateM: powerful and expressive but somewhat
specific

• Next time: Practical Reasoning Agents

18 / 16

	Introduction
	Abstract agent architectures
	Purely reactive agents
	Agents with state

	Agents, goals and utilities
	Utilities
	Predicate task specifications

	Summary

