THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Agent-Based Systems

Michael Rovatsos
mrovatso@inf.ed.ac.uk

Lecture 2 — Abstract Agent Architectures

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Where are we?

Last time ...
¢ Introduced basic and advanced aspects of agency
e Situatedness, autonomy and environments
o Reactivity, proactiveness and social ability
e Compared agents to other types of systems
Today ...
o Abstract Agent Architectures

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Abstract agent architectures

e Purpose of this lecture: formalise what we have discussed so far
o Will result in an abstract specification of agents

e Not about concrete agent architectures which we can actually
implement (but see later)

o Assume a discrete, finite set of environment states E = {e, €, ...}
(or approximation of continuous state space)

¢ Assume action repertoire of agents is defined by Ac = {a, o/, ...}

e |dea: environment starts at some state and agent chooses action
in each state which leads to new (set of) state(s)

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Abstract agent architectures

¢ Run = sequence of interleaved environment states and actions

roe B e Ne B0, 4" g

Define R = {r,r’,...} the set of all such possible finite sequences
RAIRE subsets of R that end with an action/environment state

State transformer function is a function 7 : R¢ — o(E)
7 maps each run ending with an agent action to the set of possible
resulting states
e Depends on history of previous states
e Uncertainty/non-determinism modelled by allowing for multiple
successor states

If 7(r) = () system terminates (we assume it always will eventually)

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Abstract agent architectures

o Next, we have to specify how agent functions

e Agents choose actions depending on states

¢ In contrast to environments, we assume them to be deterministic
¢ In the most general sense an agent is a function

Ag:RE = Ac

o If set of all agents is AG, define system as pair of an agent Ag and
an environment Env

¢ Denote runs of system by R(Ag, Env) and assume they are all
terminal (and thus finite)

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Abstract agent architectures
e A sequence (ep, ap, €1, a1, . . .) represents a run of agent Ag in

environment Env = (E, e,, 7) if
(i) ep is initial state of E
(i) o = Ag(eo)
(iiiy Foru>20
ey € 7((eo, g, €1, ..., ay—1))
and
ay = Ag((eo, g, €1, ..., €4))

e Two agents Ags and Ag. are called behaviourally equivalent with
respect to environment Env iff
R(Ag1, Env) = R(Agz, Env)

e |f this is true for any environment Env, the are simply called
behaviourally equivalent

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Purely reactive agents

Pure reactivity means basing decisions only on present state
History is not taken into account

“Behaviourist” model of activity: actions are based on
stimulus-response schemata

Formally they are described by a function
Ag: E — Ac

Every purely reactive agent can be mapped to an agent defined on
runs (the reverse is usually not true)

Example: thermostat with two environment states

Ag(e) =

heater off if e = temperature OK
heater on else

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Perception and action

Model so far is easy, but more design choices have to be made to
turn it into more concrete agent architectures

Agent architectures describe the internal structure of an agent
(data structures, operations on them, control flow)

First steps: define perception and action subsystems
Define functions see : E — Per and action : Per* — Ac where

e Per is a non-empty set of percepts that the agent can obtained
through its sensors

e see describes this process of perception and action defines
decisions based on percept sequences

Agent definition now becomes Ag = (see, action)

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Perception and action

If e1 # ex € E and see(e1) = see(ez) we call ey and e

indistinguishable

Let x ="the room temperature is OK” and y="Tony Blair is Prime

Minister” be the only two facts that describe environment

Then we have E = {{—x, -y}, {—x,y}, {x,~y},{x,¥}}
— Y —— Y~

] e €3 €4
If percepts of thermostat are p; (too cold) and p» (OK),
indistinguishable states occur (unless PM makes room chilly)

fe=e Ve=e
see(e):{p1 ! 1 2
P ife=e3Ve=e

We write e ~ € (equivalence relation over states)
The coarser these equivalence classes, the less effective is
perception (if | ~ | = | E| agent is omniscient)

16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Agents with state

e Mapping from runs to actions somewhat counter-intuitive

o We should rather think of agents as having internal states to
reflect the internal representation they have of themselves and
their environment

e Assuming an agent has a set / of internal states, we can define its
abstract architecture as follows:

see: E — Per
action : | — Ac
next : | x Per — |
e Behaviour: If initial internal state is /,
e Observe environment, obtain see(e)
Update internal state to be i’ + next(i, see(e))

Action selection given by action(i")
Enter next cycle with i < /'

10/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Telling an agent what to do

Fundamental aspect of autonomy:
We want to tell agent what to do, but not how to do it

After all, this is what we want to be different from systems not
based on intelligent agents
Roughly speaking, we can specify

e task to perform

o (set of) goal state(s) to be reached
e to maximise some performance measure

We start with the latter, which is based on utilities associated with
states

11/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Utilities

Utilities describe “quality” of a state through some numerical value

Doesn’t specify how to reach preferred states

Utility functions: v: E - R

Using this, we can define overall utility of an agent to be
o Worst utility of visited states (pessimistic)
e Best utility of visited states (optimistic)

e Average utility of visited states
e ...

Disadvantage: long-term view is difficult to take into account
e We canuserunsinstead: u: R — R

12/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Optimal agents

e Assuming the utility function u is bounded
(i.e. 3k € RVr € R .u(r) < k) we can define what optimal agents
are:
An optimal agent is one that maximises expected utility
(MEU principle)

¢ To define this, assume P(r|Ag, Env) is the probability that run r
occurs when agent Ag is operating in environment Env
e For optimal agent, the following equation holds:

AQopt = arg Agmee}i(g Z P(r|Ag, Env)u(r)
reR(Ag,Env)
¢ Often notion of bounded optimal agent is more useful, since not
any function Ag : RF — Ac can be implemented on any machine
e Define AG, = {Ag|Ag € AGcan be implemented on machine m}
and restrict maximisation to AG, above

13/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Predicate task specifications

Often more natural to define a predicate over runs (idea of success
and failure)

Assume u ranges over {0, 1}, run r € R satisfies a task
specification if u(r) = 1 (fails, else)
Define: W(r) iff u(r) = 1 and a task environment (Env, W) with
T E the set of all task environments
Further, let Ry (Ag, Env) = {r|r € R(Ag, Env) A W(r)} the set of
runs of agent Ag that satisfy W
e Ag succeeds in task environment (Env, V) iff
Rw(Ag, Env) = R(Ag, Env)
¢ Quite demanding (pessimistic), we may require instead that there
exists such a run (3r € R(Ag, Env) .V(r))
We can extend state transformer function 7 by probabilities and
require that P(W|Ag, Env) = 3 ., (ag.env) P(r|Ag, ENV)

14/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Achievement and maintenance tasks

e Two very common types of tasks:

e “achieve state of affairs ¢”
¢ “maintain state of affairs ¢”

Achievement tasks are defined by a set of goal states

Formally: (Env, V) is an achievement task iff

3G C EVr € R(Ag,Env) V(r) < Jdec G .ecr

Maintenance tasks are about avoiding certain failure states

Formally: (Env, B) is a maintenance task iff

B C EVre R(Ag,Env) V(r) & VeecB.e¢r

There also exist more complex combinations of these

15/16

THE UNIVERSITY of EDINBURGH

informatics Agent-Based Systems

Summary

Discussed abstract agent architectures

Environments, perception & action

Purely reactive agents, agents with state

Utility-based agents

Task-based agents, achievement/maintenance tasks

Next time: Deductive Reasoning Agents

16/16

	Introduction
	Abstract agent architectures
	Purely reactive agents
	Agents with state

	Agents, goals and utilities
	Utilities
	Predicate task specifications

	Summary

