

Agent-Based Systems

Michael Royatsos

mrovatso@inf.ed.ac.uk

Lecture 2 – Abstract Agent Architectures

Where are we?

Last time . . .

- Introduced basic and advanced aspects of agency
- Situatedness, autonomy and environments
- Reactivity, proactiveness and social ability
- Compared agents to other types of systems

Today ...

Abstract Agent Architectures

- Purpose of this lecture: formalise what we have discussed so far
- Will result in an abstract specification of agents
- Not about concrete agent architectures which we can actually implement (but see later)
- Assume a discrete, finite set of environment states $E = \{e, e', \ldots\}$ (or approximation of continuous state space)
- Assume action repertoire of agents is defined by $Ac = \{\alpha, \alpha', \ldots\}$
- Idea: environment starts at some state and agent chooses action in each state which leads to new (set of) state(s)

Run = sequence of interleaved environment states and actions

$$r: e_0 \stackrel{\alpha_0}{\rightarrow} e_1 \stackrel{\alpha_1}{\rightarrow} e_2 \stackrel{\alpha_2}{\rightarrow} \cdots e_{u-1} \stackrel{\alpha_{u-1}}{\rightarrow} e_u$$

- Define $\mathcal{R} = \{r, r', \ldots\}$ the set of all such possible finite sequences
- $\mathcal{R}^{\textit{Ac}}/\mathcal{R}^{\textit{E}}$ subsets of \mathcal{R} that end with an action/environment state
- State transformer function is a function $\tau: \mathcal{R}^{Ac} \to \wp(E)$
- \bullet τ maps each run ending with an agent action to the set of possible resulting states
 - · Depends on history of previous states
 - Uncertainty/non-determinism modelled by allowing for multiple successor states
- If $\tau(r) = \emptyset$ system terminates (we assume it always will eventually)

- Next, we have to specify how agent functions
- Agents choose actions depending on states
- In contrast to environments, we assume them to be deterministic
- In the most general sense an agent is a function

$$Ag: \mathcal{R}^{E} \rightarrow Ac$$

- If set of all agents is AG, define system as pair of an agent Ag and an environment Env
- Denote runs of system by R(Ag, Env) and assume they are all terminal (and thus finite)

- A sequence $(e_0, \alpha_0, e_1, \alpha_1, ...)$ represents a run of agent Ag in environment $Env = \langle E, e_0, \tau \rangle$ if
 - (i) e_0 is initial state of E
 - (ii) $\alpha_0 = Ag(e_0)$
 - (iii) For u > 0

$$e_{u} \in \tau((e_{0}, \alpha_{0}, e_{1}, \dots, \alpha_{u-1}))$$

and

$$\alpha_u = Ag((e_0, \alpha_0, e_1, \dots, e_u))$$

 Two agents Ag₁ and Ag₂ are called behaviourally equivalent with respect to environment Env iff

$$\mathcal{R}(Ag_1, Env) = \mathcal{R}(Ag_2, Env)$$

 If this is true for any environment Env, the are simply called behaviourally equivalent

Purely reactive agents

- Pure reactivity means basing decisions only on present state
- · History is not taken into account
- "Behaviourist" model of activity: actions are based on stimulus-response schemata
- Formally they are described by a function

$$Ag: E \rightarrow Ac$$

- Every purely reactive agent can be mapped to an agent defined on runs (the reverse is usually not true)
- Example: thermostat with two environment states

$$Ag(e) = \begin{cases} \text{heater off} & \text{if } e = \text{temperature OK} \\ \text{heater on} & \text{else} \end{cases}$$

Perception and action

- Model so far is easy, but more design choices have to be made to turn it into more concrete agent architectures
- Agent architectures describe the internal structure of an agent (data structures, operations on them, control flow)
- First steps: define perception and action subsystems
- Define functions see : $E \rightarrow Per$ and action : $Per^* \rightarrow Ac$ where
 - Per is a non-empty set of percepts that the agent can obtained through its sensors
 - see describes this process of perception and action defines decisions based on percept sequences
- Agent definition now becomes Ag = \(see, action \)

Perception and action

- If e₁ ≠ e₂ ∈ E and see(e₁) = see(e₂) we call e₁ and e₂ indistinguishable
- Let x = "the room temperature is OK" and y="Tony Blair is Prime Minister" be the only two facts that describe environment
- Then we have $E=\{\underbrace{\{\neg x, \neg y\}}_{e_1}, \underbrace{\{\neg x, y\}}_{e_2}, \underbrace{\{x, \neg y\}}_{e_3}, \underbrace{\{x, y\}}_{e_4}\}$
- If percepts of thermostat are p₁ (too cold) and p₂ (OK), indistinguishable states occur (unless PM makes room chilly)

$$see(e) = egin{cases} p_1 & ext{if } e = e_1 \lor e = e_2 \\ p_2 & ext{if } e = e_3 \lor e = e_4 \end{cases}$$

- We write $e \sim e'$ (equivalence relation over states)
- The coarser these equivalence classes, the less effective is perception (if | ~ | = |E| agent is omniscient)

Agents with state

- Mapping from runs to actions somewhat counter-intuitive
- We should rather think of agents as having internal states to reflect the internal representation they have of themselves and their environment
- Assuming an agent has a set I of internal states, we can define its abstract architecture as follows:

$$see : E \rightarrow Per$$
 $action : I \rightarrow Ac$
 $next : I \times Per \rightarrow I$

- Behaviour: If initial internal state is i,
 - Observe environment, obtain see(e)
 - Update internal state to be $i' \leftarrow next(i, see(e))$
 - Action selection given by action(i')
 - Enter next cycle with i ← i'

Telling an agent what to do

- Fundamental aspect of autonomy:
 - We want to tell agent what to do, but not how to do it
- After all, this is what we want to be different from systems not based on intelligent agents
- Roughly speaking, we can specify
 - task to perform
 - (set of) goal state(s) to be reached
 - to maximise some performance measure
- We start with the latter, which is based on utilities associated with states

Utilities

- Utilities describe "quality" of a state through some numerical value
- Doesn't specify how to reach preferred states
- Utility functions: $u: E \to \mathbb{R}$
- Using this, we can define overall utility of an agent to be
 - Worst utility of visited states (pessimistic)
 - Best utility of visited states (optimistic)
 - · Average utility of visited states
 - ...
- Disadvantage: long-term view is difficult to take into account
- We can use runs instead: $u: \mathcal{R} \to \mathbb{R}$

Optimal agents

• Assuming the utility function u is bounded (i.e. $\exists k \in \mathbb{R} \ \forall r \in \mathcal{R} \ .u(r) \leq k$) we can define what **optimal agents** are:

An optimal agent is one that maximises expected utility (MEU principle)

- To define this, assume P(r|Ag, Env) is the probability that run r occurs when agent Ag is operating in environment Env
- For optimal agent, the following equation holds:

$$Ag_{opt} = arg \max_{Ag \in \mathcal{AG}} \sum_{r \in \mathcal{R}(Aq, Env)} P(r|Ag, Env)u(r)$$

- Often notion of **bounded optimal agent** is more useful, since not any function Ag: R^E → Ac can be implemented on any machine
- Define $\mathcal{AG}_m = \{Ag | Ag \in \mathcal{AG} \text{can be implemented on machine } m\}$ and restrict maximisation to \mathcal{AG}_m above

Predicate task specifications

- Often more natural to define a predicate over runs (idea of success and failure)
- Assume u ranges over {0,1}, run r ∈ R satisfies a task specification if u(r) = 1 (fails, else)
- Define: $\Psi(r)$ iff u(r) = 1 and a **task environment** $\langle Env, \Psi \rangle$ with \mathcal{TE} the set of all task environments
- Further, let $\mathcal{R}_{\Psi}(Ag, Env) = \{r | r \in \mathcal{R}(Ag, Env) \land \Psi(r)\}$ the set of runs of agent Ag that satisfy Ψ
 - Ag succeeds in task environment ⟨Env, Ψ⟩ iff
 R_Ψ(Ag, Env) = R(Ag, Env)
 - Quite demanding (pessimistic), we may require instead that there exists such a run $(\exists r \in \mathcal{R}(Ag, Env). \Psi(r))$
- We can extend state transformer function τ by probabilities and require that $P(\Psi|Ag, Env) = \sum_{r \in \mathcal{R}_{\Psi}(Ag, Env)} P(r|Ag, Env)$

Achievement and maintenance tasks

- Two very common types of tasks:
 - "achieve state of affairs φ "
 - "maintain state of affairs φ "
- Achievement tasks are defined by a set of goal states
- Formally: $\langle Env, \Psi \rangle$ is an achievement task iff

$$\exists \mathcal{G} \subseteq E \ \forall r \in \mathcal{R}(Ag, Env) \ . \Psi(r) \Leftrightarrow \exists e \in \mathcal{G} \ . e \in r$$

- Maintenance tasks are about avoiding certain failure states
- Formally: $\langle Env, \mathcal{B} \rangle$ is a maintenance task iff

$$\exists \mathcal{B} \subseteq E \ \forall r \in \mathcal{R}(Ag, Env) \ . \Psi(r) \Leftrightarrow \forall e \in \mathcal{B} \ . e \notin r$$

There also exist more complex combinations of these

Summary

- Discussed abstract agent architectures
- Environments, perception & action
- Purely reactive agents, agents with state
- Utility-based agents
- Task-based agents, achievement/maintenance tasks
- Next time: Deductive Reasoning Agents