Introduction to Jason

Introducing Jason

Jason is an interpreter for AgentSpeak programs, and a framework to create environments for
the development and testing of multi-agent systems. You will not need to be familiar with the
full power of Jason. In this assignment the environment is provided and you need only create
simple plan-rules that govern the agent’s behaviour.

The website for Jason is http://jason.sourceforge.net and it is the best place to
start for finding documentation and example code. In particular the documentation section of
the site contains links to the manual and a “getting started” tutorial, both of which are useful
reference documents.

Setting up Jason

An IDE is provided for the easy editing of AgentSpeak programs, running the envi-
ronment and debugging. To set it up simply follow the instructions below, taken from
http://jason.sourceforge.net/mini-tutorial/getting—started/ (which has
more info, and pictures).

1. Download Jason from http://jason.sourceforge.net

2. Extract the archive to a folder in your userspace. Something like tar xzf
Jason—1.4.2.tgz should do the trick.

3. Execute Jason by running . /jason. sh from the bin directory.

4. You will probably need to setup the location of your Java JDK. Go to the menu
Plugins— Plugins Options—Jason. On a DICE machine, “Java Home” should be set
to /usr/1lib/jvm/java/

At this stage we encourage loading some of the examples and running them, to get an idea of
how things work. The guides online may be of some assistance here.

Setting up the Environment
The steps below will take you through loading and running the assignment code:
1. Download the code from and decompress it, e.g. with tar xzf absl.tar.gz.

2. Start Jason, and load up infoSpeak.mas23.

3. Edit your code as appropriate, and run or debug with the buttons in the bottom right
area of the IDE.



A Brief Overview of an AgentSpeak Agent

This is a very brief overview, for further information it is strongly recommended to read the
Jason documentation and see the examples, and then attend the tutorial lecture.

The main components of an agent are beliefs, intentions and plans. Beliefs either come
from percepts, and are updated automatically each reasoning cycle, or are added from plans.
They are predicates, which may be of arity 0. An example of a position belief might be
pos (2, 3). Plans are of the following form:

triggering-event : guard
<- plan_step;
plan_step.

triggering-event - Defines which events may initiate a plan. It could be internal, from
plans, or external - from percepts. It can be addition, denoted by + or removal denoted
by -. It may be either a goal or a belief. So for example +!start would trigger on the
addition of a start achievement goal.

guard- A conjunction or disjunction of beliefs, logical formulae and certain built-in special
predicates, such as .random (N). An example of a guard depending on the position
would be pos (X,Y) & (X == 10). Note that variables must begin with an upper-

e

case letter, lowercase or numbers are constant. ”_” unifies with anything, and is the
“don’t care” symbol.

plan_step - There may be 0 or more steps, seperated by ; and terminated with a full-stop.
These can be actions, in the form do (action), or goals to achieve, in the form of
+!goal.

Simulation Environment

Percepts

Percepts provided by the world are as follows:

gsize (N, X,Y) - the current grid is scenario N, dimensions X by Y (cells 0 to (X-1))
depot (N, X,Y) - Grid scenario N, and the gold depot is at X,Y
pos (X, Y) - the agent’s current position

carrying._gold- this belief will be held if the agent has picked up gold. Note the agent can
only carry one piece of gold at a time

cell (X,Y,0Object) - if there’s an object in any of the 8 adjacent cells, then these beliefs will
hold. Object canbe obstacle, gold, or ally for another agent (note that the agent can
also perceive itself!)

Actions

The available actions are of the form do (Action) where Action is:

up - tomove up (Y-1 - note 0,0 is the top left of the grid)



down - to move down (Y+1)

right - to move right (X+1)

left - tomove left (X-1)

pick - to pick up some gold, only 1 piece can be carried at a time

drop - to drop some gold

Some Sample Code

Provided in the handout files is some sample code which you may find useful.

Helpful Links

e Jason homepage
e Jason Manual - dont bother too much with this
e Jason lecture slides from a course by Michael Wooldridge

e Other lecture slides from Faculdade de Ciencias e Tecnologia Universidade Nova de
Lisboa


http://jason.sourceforge.net/
http://jason.sourceforge.net/Jason.pdf
http://www.csc.liv.ac.uk/~mjw/teaching/robotics/agentspeak.pdf
http://ssdi.di.fct.unl.pt/mas/0910/slides/p1.pdf
http://ssdi.di.fct.unl.pt/mas/0910/slides/p1.pdf

