ABS 2011-12 stuff

Michael Rovatsos

1 Set-theoretic notation, functions and relations

- A set $A = \{a_1, \ldots, a_r\}$ is a collection of elements a_1, \ldots, a_r , it may be finite or infinite. Sets contain each element only once. The empty set is written as \emptyset . Examples: *Fruits* = $\{Apple, Orange\}$, the set of natural numbers $\mathbb{N} = \{1, 2, 3, \ldots\}$.
- We write $a \in S$ if a is contained in the set S, $a \notin S$ else. The cardinality (size) of a set S is denoted by |S|, e.g. $|\{1, 2, 3, 4\}| = 4$, $\emptyset = 0$, $\mathbb{N} = \infty$.
- S = T implies that S and T are equal, i.e. every element of S is in T and every element of T is in S.
- $S \subseteq T$ denotes that the set S is a subset of the set T, i.e. every element of S is also an element of T.
- The powerset $\wp(S)$ (or 2^S) is the set of all subsets of S, e.g. $\wp(\{1, 2, 3\}) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. For any finite set S, $|\wp(S)| = 2^{|S|}$.
- If $\exists a \in S \ .P(a)$, there exists an a in S for which the property P holds. E.g. $\exists a \in \mathbb{N} \ .a \leq 3$, this is true for $a \in \{1, 2, 3\}$.
- If ∀a ∈ S .P(a) property P holds for every element in S . E.g. ∀a ∈ N .a ≥ 1, this is true for any a ∈ N.
- $\{a \in S | P(a)\}$ is the set of all a in S for which P holds (S is sometimes omitted if it can be determined from context). For example, $\{a \in \mathbb{N} | \exists k \in \mathbb{N} | a = 2k\}$ is the set of all even natural numbers.
- $A \cup B$ is the union of sets, $A \cup B = \{x | x \in A \text{ or } x \in B\}$, e.g. $\{1, 2\} \cup \{2, 3\} = \{1, 2, 3\}$.
- $A \cap B$ is intersection of sets, $A \cap B = x | x \in A$ and $x \in B$, e.g. $\{1, 2\} \cap \{2, 3\} = \{2\}$.
- A B (or $A \setminus B$) is shorthand notation for the set $\{x \in A | x \notin B\}$.
- $A \times B$ is the Cartesian product (or cross-product) of two sets, $A \times B = \{(a, b) | a \in A, b \in B\}$, for example $\{1, 2\} \times \{2, 3\} = \{(1, 2), (1, 3), (2, 2), (2, 3)\}$. We write

$$A^n = \underbrace{A \times \ldots \times A}_{n \text{ times}}$$

for the n-fold cross-product of a set with itself.

- To obtain arbitrary-length ordered lists of objects over a set (which we normally write as $\langle a_1, \ldots, a_n \rangle$, $a_i \in S$), we construct the infinite union $A^* = \bigcup_{i=0}^{\infty} A^i$ (to exclude the empty sequence, we write $A^+ = A^* \setminus \langle \rangle$).
- A relation is a subset of a cross-product over sets, e.g. $R \subseteq A \times B$ for a binary relation, or $R \subseteq A^n$ for an *n*-ary (reflexive) relation.
- A function is a relation $R \subseteq A \times B$ where every element of A is only associated with one element of B, i.e. $\forall a \in A . |\{b \in B | (a, b) \in R\}| = 1.$
- If R is a function, we often write $R : A \to B$, and R(a) = b or $a \mapsto b$ to specify which element a is mapped to in B.