Machine Learning: We Do, and They Don't

Charles Sutton Hamming Seminar University of Edinburgh I5 Feb 2012 When we write programs that "learn", it turns out that we do and they don't. --Alan Perlis

Almost done. I only have a few more to mark.

Almost done. I only have a few more to mark.

Oh, you're a lecturer! What do you do research on?

Almost done. I only have a few more to mark.

Oh, you're a lecturer! What do you do research on?

Oh, I work on artificial intelligence.

Almost done. I only have a few more to mark.

Oh, you're a lecturer! What do you do research on?

Oh, I work on artificial intelligence.

That's really cool!

Barista

So, are you finished with exams?

Almost done. I only have a few more to mark.

Oh, you're a lecturer! What do you do research on?

Oh, I work on artificial intelligence.

That's really cool!

Do you believe in aliens?

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

Monday, 12 March 12

Spam filtering

Recognising handwritten digits

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

Web search

collaborative filtering

l'll tell you in a minute

Spam filtering

Recognising handwritten digits

Autonomous driving

Web search

collaborative filtering

l'll tell you in a minute

Spam filtering

Recognising handwritten digits

Autonomous driving

Web search

collaborative filtering

l'll tell you in a minute

Spam filtering

Recognising handwritten digits

Autonomous driving

collaborative filtering

l'll tell you in a minute

Recognising handwritten digits

Applications motivate new methodology

Web search

Spam filtering

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

Two Imperatives

• Choose applications carefully

Approach applications honestly

Named Entity Recognition

Example Application

October 14, 2002, 4:00 a.m. PT

For years, <u>Microsoft Corporation</u> CEO <u>Bill Gates</u> railed against the economic philosophy of opensource software with Orwellian fervor, denouncing its communal licensing as a "cancer" that stifled technological innovation.

Today, <u>Microsoft</u> claims to "love" the opensource concept, by which software code is made public to encourage improvement and development by outside programmers. <u>Gates</u> himself says <u>Microsoft</u> will gladly disclose its crown jewels--the coveted code behind the Windows operating system--to select customers.

"We can be open source. We love the concept of shared source," said <u>Bill Veghte</u>, a <u>Microsoft</u> VP. "That's a super-important shift for us in terms of code access."

<u>Richard Stallman</u>, founder of the <u>Free Software</u> <u>Foundation</u>, countered saying... Microsoft Corporation Bill Gates Microsoft Gates Microsoft Bill Veghte Microsoft Richard Stallman Free Software Foundation

Labels ORGANIZATION PERSON

First step in information extraction

Named Entity Recognition

As Classification

Named Entity Recognition

As Classification

Problem: Labels are interdependent!

Computer System Performance

Another Example Application

Understanding system performance is hard.

- Layered on third-party libraries and frameworks
- Parallelism is mainstream
- Distributed systems of thousands of machines
- Hardware innovation is accelerating

Goal: Understand performance data

Try I: Cast as regression

Goal: Understand performance data

Try I: Cast as regression

Can't pull apart distributed system

Our Desiderata

- Predict many variables that depend on each other
- Predict "hidden explanations" that are never measured directly

Learning from **uncertain**, **indirect** information

Solution: Probabilistic models

Use conditioning to add new information.

Model is

Measurements are c = 1, r = 1

We wish to infer values b, e, a

Problem: Measurements are noisy, indirect.

Solution: Use posterior distribution $p(b, e, a \mid c = 1, r = 1)$

Inference is the problem of computing marginal distributions.

Probabilistic model how-to

- I. Choose structure of model
- 2. Choose parameters (learn from data)
- 3. Observe values of a subset of variables
- 4. Compute posterior distribution over others using inference
- 5. Use inference results to answer question of interest
Probabilistic model how-to

I. Choose structure of model

2. Choose parameters (learn from data)

- 3. Observe values of a subset of variables
- 4. Compute posterior distribution over others using inference
- 5. Use inference results to answer question of interest

Combines prior knowledge and data

Probabilistic model how-to

- I. Choose structure of model
- 2. Choose parameters (learn from data)
- 3. Observe values of a subset of variables
- 4. Compute posterior distribution over others using inference
- 5. Use inference results to answer question of interest

Model forward, Reason backward

Variables that depend on each other

Variables that depend on each other

Variables that depend on each other

The Probabilistic Modelling Viewpoint

What we want

- Learn from **uncertain**, **indirect** information
- Predict many variables that depend on each other
- Predict "hidden explanations" that are never measured directly

How we get it

- Model forward from explanations to effects (using prior knowledge)
- Refine model by matching it to data
- Reason backward to explanations

So what are the main open problems in machine learning?

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures
- IV. Our Insidious Inability to Divide and Conquer

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

Why hard? Consider classification

x y (New, Org) (York, Org) (Times, Org)

(reported, **Other**)

Progress: 500 Mfeatures/s on 1000 machines

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

Why hard? Consider classification

x y (New, Org) Machine A (York, Org) (Times, Org) Machine B (reported, Other)

Progress: 500 Mfeatures/s on 1000 machines

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

Why hard? Consider classification

Progress: 500 Mfeatures/s on 1000 machines

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

Why hard? Consider classification

Progress: 500 Mfeatures/s on 1000 machines

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

Progress: 500 Mfeatures/s on 1000 machines

[[]Agarwal, Chappelle, Dudik, Langford, 2012]

Much modern data is streaming Blog data (e.g., Twitter), online advertising, Al

[[]Agarwal, Chappelle, Dudik, Langford, 2012]

[Cao, Sutton, Diao, Shenoy, PVLDB 2011]

Time t

Optimization: Don't process uninformative observations

[Cao, Sutton, Diao, Shenoy, PVLDB 2011]

Question:

A general principled method for ignoring uninformative data?

Question:

How to combine reflection and reaction for learning?

Real-time version (Runs at stream speed)

Reflective version (Takes its time)

Transfer Learning, Domain Adaption, Lifelong Learning, Learning to learn, Multitask Learning

Humans: The more we learn, the more we can learn Machines:

Customer I: "Spacebook"

Model

Customer 2: "Big Batch Job"

Customer 3: "Search Start-Up"

????

Transfer Learning

Main ideas out there:

- Reweight instances
- Reweight features
- Couple parameters
- Shared feature representation

Approach I: Couple parameters

Task 1

$$y_1 = \sum_{k=1}^{K} w_k^{(1)} x_k$$

y running time x features of workload w parameters of model (to learn)

Task 2

$$y_2 = \sum_{k=1}^{K} w_k^{(2)} x_k$$

Approach I: Couple parameters

Task 1

Task 2

$$y_{1} = \sum_{k=1}^{K} w_{k}^{(1)} x_{k}$$

$$y_{2} = \sum_{k=1}^{K} w_{k}^{(2)} x_{k}$$

K

y running time x features of workload w parameters of model (to learn)

Main idea: Choose $w_1^{(1)} \dots w_K^{(1)}, w_1^{(2)} \dots w_K^{(2)}$ good at predicting training data and $w_k^{(1)}, w_k^{(2)}$ not far apart

Synergy

Can work with relatively homogenous task Not in general use.

- What other sorts of information can be transferred between learning problems?
- Can this be done at large scale with a diverse set of learning problems?
 - What would it take to have transfer learning usable by dummies? e.g., in Weka?

Divide and Conquer

In complex domains, all parameters interact. Learning does not have a divide-and-conquer principle.

Example:

Any change to **red distribution** affects all three predictions

May need to change **green** to compensate

"Learning" means match $\mathbf{X}_1 \mathbf{X}_2 \mathbf{X}_3$ from training set

Piecewise Training

A First Approach at Divide-and-Conquer

 $p(y_1, y_2, y_3, y_4) = Z^{-1}t(y_1, y_2)t(y_2, y_3)t(y_3, y_4)t(y_4, y_1)$

TRAINING DATA:

[Sutton and McCallum, 2005]

[Sutton and McCallum, 2005]

[Sutton and McCallum, 2005]

Test time

Put model back together, predict via

 $\max_{y_1, y_2, y_3, y_4} p(y_1, y_2, y_3, y_4) = Z^{-1} t(y_1, y_2) t(y_2, y_3) t(y_3, y_4) t(y_4, y_1)$

joint max over y rather than independent

Learning Structure

Parameters on each edge: Learned from data

Structure: You have to pick Keeps learned prediction "sane"

"Skip-chain CRF" [Sutton and McCallum, 2004; Finkel, Grenager, and Manning, 2005] [Rosenberg, Klein, and Taskar, 2007]

Monday, 12 March 12

"Skip-chain CRF" [Sutton and McCallum, 2004; Finkel, Grenager, and Manning, 2005]

[Rosenberg, Klein, and Taskar, 2007]

How to automate this?

Learning Structure Why hard?

Computational

Need to search exponential number of graphs Statistical

Some graphs very complex, will overfit

Others won't

Learning Structure

Possible avenues:

- Adding inductive bias to structure learning?
- Sensible way of structure learning with latent variables?

All active areas of research:

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures
- IV. Divide and Conquer

All active areas of research:

- I. Learning at Scale (intense current interest)
- II.Exploiting Synergy In Learning
- III. Learning Structures
- IV. Divide and Conquer

All active areas of research:

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures (long history, less now)
- IV. Our Insidious Inability to Divide and Conquer

All active areas of research:

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures
- IV. Divide and Conquer

(less work here)

All active areas of research: (this can be bad)

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures
- IV. Divide and Conquer

The three outstanding problems in physics, in a certain sense, were never worked on while I was at Bell Labs...

I. time travel,

- 2. teleportation
- 3. antigravity

They are not important problems because we do not have an attack. It's not the consequence that makes a problem important, it is that you have a reasonable attack.

— Richard Hamming, You and Your Research

ICML 2012

Edinburgh, Scotland June 26 - July 1, 2012 Paper Deadline: 24 Feb 2012 <u>http://icml.cc/</u>

- I. Learning at Scale
- II. Exploiting Synergy In Learning
- III. Learning Structures
- IV. Divide and Conquer