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When we write programs that "learn", 
it turns out that we do and they don't.

--Alan Perlis
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Oh, I work on artificial 
intelligence.
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Oh, you’re a lecturer!
What do you do research on?

Oh, I work on artificial 
intelligence.

That’s really cool!
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Oh, you’re a lecturer!
What do you do research on?

Oh, I work on artificial 
intelligence.

That’s really cool!

Do you believe in aliens?

Almost done. I only have a 
few more to mark.

Me

So, are you finished with exams?

Barista

Monday, 12 March 12



Monday, 12 March 12



=
??

Monday, 12 March 12



Sneaking up on AI

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]
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Sneaking up on AI

Spam filtering Recognising
handwritten digits[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]
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Sneaking up on AI

Spam filtering Recognising
handwritten digits[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

I’ll tell you
in a minute

collaborative
filtering

Web search
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Spam filtering Recognising
handwritten digits

Autonomous
driving
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Sneaking up on AI

Spam filtering Recognising
handwritten digits

Autonomous
driving

[Photos: stock photos; NIH; jurvetson (Flickr); Michael Linnenbach]

I’ll tell you
in a minute

collaborative
filtering

Web search

Applications
motivate

new methodology
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Spam filtering Recognising
handwritten digits

Autonomous
driving

I’ll tell you
in a minute

collaborative
filtering

Web search

Tractable 
region

I don’t know how 
to get here

Maybe we can
push this up
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Two Imperatives

• Choose applications carefully

• Approach applications honestly
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Named Entity Recognition
Example Application

October 14, 2002, 4:00 a.m. PT

For years, Microsoft Corporation CEO Bill Gates 
railed against the economic philosophy of open-
source software with Orwellian fervor, 
denouncing its communal licensing as a 
"cancer" that stifled technological innovation.

Today, Microsoft claims to "love" the open-
source concept, by which software code is 
made public to encourage improvement and 
development by outside programmers. Gates 
himself says Microsoft will gladly disclose its 
crown jewels--the coveted code behind the 
Windows operating system--to select 
customers.

"We can be open source. We love the concept of 
shared source," said Bill Veghte, a Microsoft VP. 
"That's a super-important shift for us in terms of 
code access.“

Richard Stallman, founder of the Free Software 
Foundation, countered saying…

Microsoft Corporation
Bill Gates
Microsoft
Gates
Microsoft
Bill Veghte
Microsoft
Richard Stallman
Free Software Foundation

Labels
ORGANIZATION
PERSON

First step in 
information extraction
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Named Entity Recognition
As Classification

The New York

Feature
vectors

Class 
labels

Org OrgOrg

Times reported

Org Other
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Named Entity Recognition
As Classification

The New York

Feature
vectors

Class 
labels

Org OrgOrg

Times reported

Org Other

Problem: Labels are interdependent!
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• Layered on third-party 
libraries and frameworks

• Parallelism is mainstream

• Distributed systems of 
thousands of machines

• Hardware innovation is 
accelerating

Computer System Performance
Another Example Application

Understanding system performance is hard.
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Goal: Understand performance data

Data 

Req1 10:33.10am

Req2 10:33.43am

Req3 10:34.05am

120ms

213ms

175ms

Try 1: Cast as regression

Model 

Workload
(req/s)

Avg Latency
(ms)
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Goal: Understand performance data

Data 

Req1 10:33.10am

Req2 10:33.43am

Req3 10:34.05am

120ms

213ms

175ms

Try 1: Cast as regression

Model 

Workload
(req/s)

Avg Latency
(ms)

Can’t pull apart 
distributed system
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Web servers
DB servers

Internet

Workload

w

Avg Latency
Avg Latency

y1

y2

y3

y4

Req/s
to DB

w2

y5

y6
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Web servers
DB servers

Internet

Workload

w

Avg Latency
Avg Latency

y1

y2

y3

y4

Req/s
to DB

w2

Want an explanation,
not just a prediction

y5

y6
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Web servers
DB servers

Internet

Workload

w

Avg Latency
Avg Latency

y1

y2

y3

y4

Req/s
to DB

w2

y5

y6

Broken?

b6b5
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• Predict many variables that depend on each 
other

• Predict “hidden explanations” that are never 
measured directly

Learning from uncertain, indirect information

Our Desiderata

Solution: Probabilistic models
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Alarm

BurglarEarthquake

Radio

Phone Call

Use conditioning to add new information.

Model is
p(b, e, a, r, c)

or, for burglary,

Infer hidden 
variables using

p(b, e, a|r = 1, c = 1)

p(b|r = 1, c = 1)

= p(c|a)p(r|e)p(a|e, b)p(b)p(a)
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Alarm

BurglarEarthquake

Radio

Phone Call

Measurements are

We wish to infer values

Problem: Measurements are noisy, indirect.

c = 1, r = 1

b, e, a

Solution: Use posterior distribution
p(b, e, a | c = 1, r = 1)
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Inference is the problem of 
computing marginal distributions.

p(b|r = 1, c = 1) =
p(b|r = 1, c = 1)

p(r = 1, c = 1)

=
X

a,e

p(a, b, e, r = 1, c = 1)

Example

Exponential time in worst case
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Probabilistic model how-to

1. Choose structure of model

2. Choose parameters (learn from data)

3. Observe values of a subset of variables

4. Compute posterior distribution over others using 
inference

5. Use inference results to answer question of 
interest
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Probabilistic model how-to

1. Choose structure of model

2. Choose parameters (learn from data)

3. Observe values of a subset of variables

4. Compute posterior distribution over others using 
inference

5. Use inference results to answer question of 
interest

Combines prior knowledge 
and data

Monday, 12 March 12



Probabilistic model how-to

1. Choose structure of model

2. Choose parameters (learn from data)

3. Observe values of a subset of variables

4. Compute posterior distribution over 
others using inference

5. Use inference results to answer question 
of interest

Model forward,
Reason backward
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Variables that depend on each other

Variables that depend on each other

The New York

Org OrgOrg

Times reported

Org Other

x1 x2 x3 x4 x5 Features 

Labels y2 y3 y4 y5y1
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Variables that depend on each other

The New York

Org OrgOrg

Times reported

Org Other

x1 x2 x3 x4 x5 Features 

Labels y2 y3 y4 y5y1

Monday, 12 March 12



Variables that depend on each other

Variables that depend on each other

The New York

Org OrgOrg

Times reported

Org Other

x1 x2 x3 x4 x5 Features 

Labels y2 y3 y4 y5

“Hidden explanations”

Workload

w

Avg Latency
Avg Latencyy1

y2

y3

y4

Req/s
to DB

w2

y5

y6

Broken?

b6b5

y1
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The Probabilistic Modelling Viewpoint

• Learn from uncertain, indirect information 

• Predict many variables that depend on each other

• Predict “hidden explanations” that are never measured 
directly

What we want

How we get it

• Model forward from explanations to effects (using prior 
knowledge)

• Refine model by matching it to data

• Reason backward to explanations
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So what are the main open problems 
in machine learning?

Monday, 12 March 12



Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Our Insidious Inability to Divide and Conquer
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Scale

Why hard? Consider classification

[Agarwal, Chappelle, Dudik, Langford, 2012]

Much modern data is streaming

Blog data (e.g., Twitter), online advertising, AI

(New, Org)

(York, Org)

(Times, Org)

(reported, Other)

x         y

Progress: 500 Mfeatures/s on 1000 machines
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Machine A

Machine B
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Machine A

Machine B

Scale

Why hard? Consider classification

[Agarwal, Chappelle, Dudik, Langford, 2012]

Much modern data is streaming

Blog data (e.g., Twitter), online advertising, AI

(New, Org)

(York, Org)

(Times, Org)

(reported, Other)

x         y
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A

Classifier
B

Progress: 500 Mfeatures/s on 1000 machines
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Machine A

Machine B

Scale

Why hard? Consider classification

[Agarwal, Chappelle, Dudik, Langford, 2012]

Much modern data is streaming
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Classifier
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Combine
& retrain

Progress: 500 Mfeatures/s on 1000 machines
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Machine A
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Why hard? Consider classification
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Much modern data is streaming

Blog data (e.g., Twitter), online advertising, AI
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Machine A

Machine B

Scale

Why hard? Consider classification

[Agarwal, Chappelle, Dudik, Langford, 2012]

Much modern data is streaming

Blog data (e.g., Twitter), online advertising, AI

(New, Org)

(York, Org)

(Times, Org)

(reported, Other)

x         y

Classifier
A

Classifier
B

Combine
& retrain

Bottleneck.
Destroys scalability

Progress: 500 Mfeatures/s on 1000 machines

Probabilistic inference doesn’t scale this well!
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State
migration

Objects (Tags)

Inference

Query Processing

RFID readings
(tag, reader, time)

Global Proc.

Local Proc.

Object events 
(tag, loc, cont, ...)

Site 2

Site 1 Site 3

Sensor 
readings

State
migration

Figure 3: A distributed RFID data management system.

the best possible likelihood if there is no change point. Alterna-
tively, suppose there is a change point at some time t0. Then let
C0:t0 and Ct0:T be the best containment relations that allow object
o to change locations at time t0. Maximizing over possible change
points, the best possible likelihood if there is any change point for o
is maxt0 L(C0:t0) + L(Ct0:T ). We perform change point detection
using the difference of these two log likelihoods, that is,

�o(T ) = L(C0:T )� max

t02[0,T ]
[L(C0:t0) + L(Ct0:T )] (6)

Essentially, this measures how much better we can explain the data
if we use two different sets of containment relationships instead of
one. This is a type of generalized likelihood ratio statistic, which
is a fundamental tool in statistics. The change point detection pro-
cedure will signal that there has been a change point whenever the
value of �o(T ) is greater than a threshold �.

Intuitively, to choose the threshold we would like to know what
values of �o(T ) would be typical if there were no change point.
Fortunately, we can obtain as much of this data as we want, simply
by sampling hypothetical observation sequences from the model,
exactly as described in Section 3.1. Since none of the hypothetical
sequences actually contain a change point, if our procedure signals
a change point on one of them, it must be a false positive. In prac-
tice, all of the hypothetical �o(T ) values are quite small, so we
choose � to be their maximum. Furthermore, all of this compu-
tation can be done in advance before any RFID data is observed.
The details of the change point detection procedure are given in
Appendix A.2.

4. DISTRIBUTED PROCESSING
As object tracking and monitoring systems grow into many geo-

graphically separate sites and millions of objects, the sheer volume
of data poses a scalability challenge. A centralized approach, like
centralized warehousing, requires all the data to be transferred to a
single location for processing. This approach incurs both delay of
answering queries and high communication costs.

In this work, we propose a distributed approach natural for ob-
ject tracking and monitoring, which performs “querying where an
object (and data) is located”. The architecture of such a distributed
system is illustrated in Figure 3. As can be seen, each site performs
inference and query processing on local RFID streams as objects
are observed. Inference runs on raw RFID streams and produces an
object event stream describing the location and container of each
object. Query processing runs continuously on the object event
stream and other sensor streams to return all answers. Inference
and query processing, however, often require information from the
previous sites that an object has passed. To solve this problem, we
perform state migration, which transfers the state of inference and
query processing for an object when it moves across sites.
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(b) Point evidence

Figure 4: Evidence of co-location of three candidate containers.

State migration can be realized in several ways: (i) When an ob-
ject is scanned at the exit of a site, if domain knowledge about its
next location is available, its inference and query processing state
can be transferred directly to that site. (ii) Alternatively, when an
object reaches a new site, the server there can locate the object’s
previous place using the Object Naming Service (ONS) and re-
trieves its state from that place. (iii) Finally, it is desirable to write
the object’s state to the local storage of the RFID tag (once the tech-
nology of writable tags matures for large deployments), while leav-
ing a copy of the state at the current site as backup. This method
will enable querying instantly when a tag is in sight, with minimum
delay of answering queries and minimum communication costs.

To reduce communication costs or cope with limited local tag
storage, it is important to minimize inference and query processing
state while ensuring accuracy of query answers. We address this
issue in both inference and query processing as described below.

4.1 State Migration for Inference
Our inference algorithm presented in the previous section re-

quires the entire history of readings associated with each object
produced from all the sites that this object has passed. When an
object leaves one site for another, the history of this object and the
history of all of its possible containers, collectively called the infer-
ence state of the object, need to be transferred to the new location
for subsequent inference. Evidently, transferring the complete his-
tory of objects and containers would incur both a high communica-
tion cost across sites and a high processing cost at the new location.
Below, we describe two techniques to address these problems.

Truncating History. The goal of history truncation is to sift
out the observations that are most informative about true contain-
ment relationships from history, and retain only those for future
processing. This can be accomplished by monitoring the strength
of co-location computed in our containment inference algorithm
RFINFER. Recall from Eq (5) for the M-step of the RFINFER algo-
rithm, the co-location strength wco for each object o and container
c is a sum over all time steps of a quantity which we call the point
evidence of co-location. We denote this quantity by:

eco(t) =

X

a2R

qtc(a)

X

r2R

log p(ytro|`to = a). (7)

Then the cumulative evidence of co-location can be computed as
Eco(t) =

Pt
t0=1 eco(t

0
).

To see how these quantities are used, suppose that in a warehouse
an object started at the entry door at time 0, was scanned on the con-
veyor belt around time 100, and then placed on a shelf at time 150.
Consider three candidate containers that were co-located with this
object at the entry door: the real container (denoted by R) always
traveled with the object; a second container (NRC) was co-located
at the door and at the shelf, but not at the belt; a third container
(NRNC) was not co-located after the door. Figure 4(a) shows the
cumulative evidence of co-location of three candidate containers
with the object. Around time 100, the belt reader scanned the real
container alone with the object, causing the cumulative evidence of

[Cao, Sutton, Diao, Shenoy, PVLDB 2011]

... ... ... ... ... ...
Time 1 Time 2

Sensors

Object
locations

Containers
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the best possible likelihood if there is no change point. Alterna-
tively, suppose there is a change point at some time t0. Then let
C0:t0 and Ct0:T be the best containment relations that allow object
o to change locations at time t0. Maximizing over possible change
points, the best possible likelihood if there is any change point for o
is maxt0 L(C0:t0) + L(Ct0:T ). We perform change point detection
using the difference of these two log likelihoods, that is,

�o(T ) = L(C0:T )� max

t02[0,T ]
[L(C0:t0) + L(Ct0:T )] (6)

Essentially, this measures how much better we can explain the data
if we use two different sets of containment relationships instead of
one. This is a type of generalized likelihood ratio statistic, which
is a fundamental tool in statistics. The change point detection pro-
cedure will signal that there has been a change point whenever the
value of �o(T ) is greater than a threshold �.

Intuitively, to choose the threshold we would like to know what
values of �o(T ) would be typical if there were no change point.
Fortunately, we can obtain as much of this data as we want, simply
by sampling hypothetical observation sequences from the model,
exactly as described in Section 3.1. Since none of the hypothetical
sequences actually contain a change point, if our procedure signals
a change point on one of them, it must be a false positive. In prac-
tice, all of the hypothetical �o(T ) values are quite small, so we
choose � to be their maximum. Furthermore, all of this compu-
tation can be done in advance before any RFID data is observed.
The details of the change point detection procedure are given in
Appendix A.2.

4. DISTRIBUTED PROCESSING
As object tracking and monitoring systems grow into many geo-

graphically separate sites and millions of objects, the sheer volume
of data poses a scalability challenge. A centralized approach, like
centralized warehousing, requires all the data to be transferred to a
single location for processing. This approach incurs both delay of
answering queries and high communication costs.

In this work, we propose a distributed approach natural for ob-
ject tracking and monitoring, which performs “querying where an
object (and data) is located”. The architecture of such a distributed
system is illustrated in Figure 3. As can be seen, each site performs
inference and query processing on local RFID streams as objects
are observed. Inference runs on raw RFID streams and produces an
object event stream describing the location and container of each
object. Query processing runs continuously on the object event
stream and other sensor streams to return all answers. Inference
and query processing, however, often require information from the
previous sites that an object has passed. To solve this problem, we
perform state migration, which transfers the state of inference and
query processing for an object when it moves across sites.
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Figure 4: Evidence of co-location of three candidate containers.

State migration can be realized in several ways: (i) When an ob-
ject is scanned at the exit of a site, if domain knowledge about its
next location is available, its inference and query processing state
can be transferred directly to that site. (ii) Alternatively, when an
object reaches a new site, the server there can locate the object’s
previous place using the Object Naming Service (ONS) and re-
trieves its state from that place. (iii) Finally, it is desirable to write
the object’s state to the local storage of the RFID tag (once the tech-
nology of writable tags matures for large deployments), while leav-
ing a copy of the state at the current site as backup. This method
will enable querying instantly when a tag is in sight, with minimum
delay of answering queries and minimum communication costs.

To reduce communication costs or cope with limited local tag
storage, it is important to minimize inference and query processing
state while ensuring accuracy of query answers. We address this
issue in both inference and query processing as described below.

4.1 State Migration for Inference
Our inference algorithm presented in the previous section re-

quires the entire history of readings associated with each object
produced from all the sites that this object has passed. When an
object leaves one site for another, the history of this object and the
history of all of its possible containers, collectively called the infer-
ence state of the object, need to be transferred to the new location
for subsequent inference. Evidently, transferring the complete his-
tory of objects and containers would incur both a high communica-
tion cost across sites and a high processing cost at the new location.
Below, we describe two techniques to address these problems.

Truncating History. The goal of history truncation is to sift
out the observations that are most informative about true contain-
ment relationships from history, and retain only those for future
processing. This can be accomplished by monitoring the strength
of co-location computed in our containment inference algorithm
RFINFER. Recall from Eq (5) for the M-step of the RFINFER algo-
rithm, the co-location strength wco for each object o and container
c is a sum over all time steps of a quantity which we call the point
evidence of co-location. We denote this quantity by:

eco(t) =

X

a2R

qtc(a)

X

r2R

log p(ytro|`to = a). (7)

Then the cumulative evidence of co-location can be computed as
Eco(t) =

Pt
t0=1 eco(t

0
).

To see how these quantities are used, suppose that in a warehouse
an object started at the entry door at time 0, was scanned on the con-
veyor belt around time 100, and then placed on a shelf at time 150.
Consider three candidate containers that were co-located with this
object at the entry door: the real container (denoted by R) always
traveled with the object; a second container (NRC) was co-located
at the door and at the shelf, but not at the belt; a third container
(NRNC) was not co-located after the door. Figure 4(a) shows the
cumulative evidence of co-location of three candidate containers
with the object. Around time 100, the belt reader scanned the real
container alone with the object, causing the cumulative evidence of

[Cao, Sutton, Diao, Shenoy, PVLDB 2011]

... ... ... ... ... ...
Time 1 Time 2

Sensors

Object
locations

Containers

Optimization:
Don’t process uninformative 
observations
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Time 1 Time 2

Sensors

Object
locations

Containers

Question:

A general principled method
for ignoring uninformative data?

... ... ... ... ... ... ... ... ...

Time 3
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Question:

How to combine reflection and reaction for learning?

... ... ... ... ... ...

Real-time version
(Runs at stream speed)

Reflective version
(Takes its time)

... ... ... ... ... ... ... ... ...
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Transfer Learning, Domain Adaption, Lifelong Learning, 
Learning to learn, Multitask Learning

Humans: The more we learn, the more we can learn

Synergy

Machines:

Number of training instances

Accuracy
The more they learn, 
the less they have left
to learn
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Req1 10:33.10am

Req2 10:33.43am

120ms

213ms

Model Customer 1: “Spacebook”

Customer 2: “Big Batch Job”

Customer 3: “Search Start-Up”

????

100% CPU

2 weeks
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Transfer Learning

• Reweight instances

• Reweight features

• Couple parameters

• Shared feature representation

Main ideas out there:

Monday, 12 March 12



Approach 1: Couple parameters

Task 1

Task 2

y1 =
KX

k=1

w

(1)
k xk

y2 =
KX

k=1

w

(2)
k xk

y running time
x features of workload
w parameters of model 
(to learn)
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Approach 1: Couple parameters

Task 1

Task 2

y1 =
KX

k=1

w

(1)
k xk

y2 =
KX

k=1

w

(2)
k xk

y running time
x features of workload
w parameters of model 
(to learn)

Main idea: Choose

good at predicting training data

w(1)
1 . . . w(1)

K , w(2)
1 . . . w(2)

K

and
w(1)

k , w(2)
k

not far apart
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Approach 2: Learn Subtasks

Task 1 Task 2
[Caruana, 1997]

y1 y2

x1 x2 x3 x1 x2 x3
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Synergy

• What other sorts of information can be 
transferred between learning problems?

• Can this be done at large scale with a diverse 
set of learning problems?

• What would it take to have transfer learning 
usable by dummies? e.g., in Weka?

Can work with relatively homogenous task
Not in general use.
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Divide and Conquer
In complex domains, all parameters interact. 

Learning does not have a divide-and-conquer principle.

Example:
Any change to red distribution 
affects all three predictions 

x1 x2 x3 May need to change green
to compensate

“Learning” means match x1 x2 x3 from training set
Monday, 12 March 12



p(y1, y2, y3, y4) = Z�1t(y1, y2)t(y2, y3)t(y3, y4)t(y4, y1)

TRAINING DATA:

Piecewise Training
A First Approach at Divide-and-Conquer

[Sutton and McCallum, 2005]
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[Sutton and McCallum, 2005]
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[Sutton and McCallum, 2005]

Training time
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max

y1,y2,y3,y4

p(y1, y2, y3, y4) = Z�1t(y1, y2)t(y2, y3)t(y3, y4)t(y4, y1)

[Sutton and McCallum, 2005]

Test time

Put model back together, predict via

joint max over y rather than independent
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Learning Structure

New York

Org OrgOrg

Times reported

Other

x2 x3 x4

y2 y3 y4

x5

y5

Parameters on each edge: Learned from data

Structure: You have to pick

Keeps learned prediction “sane”

Monday, 12 March 12



New York

Org OrgOrg

Times reported

Other

x2 x3 x4

y2 y3 y4

x5

y5

Org

The Times

Other

x100

y100

x101

y101. . . 

. . . 
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New York

Org OrgOrg

Times reported

Other

x2 x3 x4

y2 y3 y4

x5

y5

Org

The Times

Other

x100

y100

x101

y101. . . 

. . . 

“Skip-chain CRF” [Sutton and McCallum, 2004; Finkel, Grenager, and Manning, 2005]

[Rosenberg, Klein, and Taskar, 2007]
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How to automate this?

New York

Org OrgOrg

Times reported

Other

x2 x3 x4

y2 y3 y4

x5

y5

Org

The Times

Other

x100

y100

x101

y101. . . 

. . . 

“Skip-chain CRF” [Sutton and McCallum, 2004; Finkel, Grenager, and Manning, 2005]

[Rosenberg, Klein, and Taskar, 2007]
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Learning Structure
Why hard?

Computational Statistical

Need to search
exponential number of 
graphs

Some graphs very 
complex, will overfit

Others won’t
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• Any sensible way to do structure learning 
with latent variables?

Learning Structure

Possible avenues:

• Adding inductive bias to structure learning?

• Sensible way of structure learning with 
latent variables?
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Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Divide and Conquer

All active areas of research:
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Four Open Areas

I. Learning at Scale

II.Exploiting Synergy In Learning

III.  Learning Structures

IV. Divide and Conquer

All active areas of research:

(intense current interest)

Monday, 12 March 12



Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Our Insidious Inability to Divide and Conquer

All active areas of research:

(long history, less now)
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Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Divide and Conquer

All active areas of research:

(less work here)
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Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Divide and Conquer

All active areas of research: (this can be bad)
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The three outstanding problems in physics, in a certain 
sense, were never worked on while I was at Bell Labs... 

1. time travel, 

2. teleportation

3. antigravity

They are not important problems because we do not 
have an attack. It's not the consequence that makes a 
problem important, it is that you have a reasonable 
attack.

— Richard Hamming, You and Your Research
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ICML 2012
The Venue: University of Edinburgh

but still in the middle of a vibrant city:

Edinburgh, Scotland
June 26 - July 1, 2012

Paper Deadline: 24 Feb 2012
http://icml.cc/
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Four Open Areas

I. Learning at Scale

II. Exploiting Synergy In Learning

III.  Learning Structures

IV. Divide and Conquer
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