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Richard Hamming

• Hamming Numbers 2x3y5z (Manhattan Project)

• Hamming Distance (Manhattan Distance)

• Hamming Problems

– What are the really important problems in your field?

– What are you working on?

– Why are you looking for your keys under the streetlight when you know

you dropped them at the Dark End of the Street?
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A Brief History of Problems

• Until the mid-sixties, Computational Linguistics was greatly focused on finite

state methods and the problem of Machine Translation. The machines were

tiny, slow, and expensive.

• The Georgetown Experiment 1956-1966.

• Cyclic Translation demo: English Russian English

Time flies like an arrow⇒ Time flies enjoy arrows
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A Brief History of Problems

• In the aftermath of the ALPAC report (1966), there was widespread
agreement that the important problems were essentially linguistic. The
emphasis was on full syntactic analysis, and the need for semantically-based
“understanding” to resolve the huge degree of ambiguity that the earlier work
had revealed. Entire research groups were running on a single 10KHz
processor and 1Mb of RAM (or less)

• By the mid ’80s (by which time Moore’s Law had put several times that
computing power on every desktop), it was clear that the grammars and
parsing techniques developed in the previous decade were not going to scale
to wide-coverage.

– The grammars were too big to manage and mainly consisted of exceptions.

– The degree of ambiguity was too great for exhaustive search.

– Linguistic semantics compounded the problem of ambiguity and failed to
support inference and understanding.

6



Where we are now

• Meanwhile, some novel algorithms for statistical model estimation had been
discovered. It became clear that finite-state methods scaled much better than
more powerful methods, and that the most practical solutionto the problem of
syntactic ambiguity was to combine standard parsing algorithms with
probabilistic or information-theoretic models of their yield, derived from
counts of their components in human-labeled corpora or tree-banks—i.e.
“supervised” machine learning.

• A major boost to this method came from the discovery that specific
word-dependencies, as between a verb and the noun heading its subject, were
particularly informative. Interestingly, such head-worddependency models
can be seen as approximating a model of semantic predicate-argument
relations.

• As an unexpected bonus, it turned out to be easier to derive large grammars
automatically from treebanks than to engineer them by hand.
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Where we are now

• In the present state of natural language processing research, statistical models

are ubiquitous. Together with the exponential increase in computing power

under Moore’s Law, they have driven the remarkable progressof the last 40

years in automatic speech recognition (ASR), information retrieval (IR), and

statistical machine translation (SMT).

• The most successful methods useSupervised Learningfrom data labeled by

humans.

– For parsers, the data are sets of sentences laboriously annotated with

syntactic trees or dependency graphs, the largest of which are currently

around 1M words in size.

– For SMT systems, the training data are parallel text produced by human

translators, of which the largest set available is around 200M words.

– For ASR it seems to be a few thousand hours of transcribed human speech.

8



The State of the Art: Arabic-English SMT

9



The State of the Art: Arabic-English SMT

• From Al Jazeera: Arabic human translation of Reuters newswire in English:

10



The State of the Art: Arabic-English SMT

• From Al Jazeera: Arabic human translation of Reuters newswire in English:

•

.
..

.
11



The State of the Art: Arabic-English SMT

12



The State of the Art: Arabic-English SMT

• The German Franz Ouch which leads efforts Google translation computer

feeds hundreds of millions of words of parallel texts such asArabic, English,

using documents of the United Nations and the European Unionkey sources.

13



The State of the Art: Arabic-English SMT

• The German Franz Ouch which leads efforts Google translation computer

feeds hundreds of millions of words of parallel texts such asArabic, English,

using documents of the United Nations and the European Unionkey sources.

• And how a new translation Ouch said that although the qualitywould not be

complete That was a good in the previous translation mechanism, and that the

correct translation mostly might be good enough for some tasks. He stated

that more data be fed by the results were better.

14



The State of the Art: Arabic-English SMT

• “The German Franz Ouch which leads efforts Google translation computer

feeds hundreds of millions of words of parallel texts such asArabic, English,

using documents of the United Nations and the European Unionkey sources.

• And how a new translation Ouch said that although the qualitywould not be

complete That was a good in the previous translation mechanism, and that the

correct translation mostly might be good enough for some tasks. He stated

that more data be fed by the results were better.

• . . . He commendedMiles Osborne Professor at the University of Edinburgh,

who died last year at work in the company’s efforts to Google, but he pointed

out that the software will not prevail over people skilled intranslations as they

do in the game of chess and should use software to understand and not to

complete documents.”

15



The State of the Art: Arabic-English SMT

• “The German Franz Ouch which leads efforts Google translation computer
feeds hundreds of millions of words of parallel texts such asArabic, English,
using documents of the United Nations and the European Unionkey sources.

• And how a new translation Ouch said that although the qualitywould not be
complete That was a good in the previous translation mechanism, and that the
correct translation mostly might be good enough for some tasks. He stated
that more data be fed by the results were better.

• . . . He commended Miles Osborne Professor at the University of Edinburgh,
who died last year at work in the company’s efforts to Google,but he pointed
out that the software will not prevail over people skilled intranslations as they
do in the game of chess and should use software to understand and not to
complete documents.”

Z The arabic words for “passed” and “died” are homographs, andthe arabic

news-data model favors the latter
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2007: English-Arabic-English

• T i m e f l i e s l i k e a n a r r o w .��������������������.t i m e� D E F f l i e s� D E F r e s e m b l e a r r o w � D E F" T i m e f l i e s l i k e a r r o w . "

F r u i t f l i e s l i k e a b a n a n a .34567895:;<=>?7@AB.F l i e sC N f r u i t C N r e s e m b l e b a n a n a C N" F r u i t f l i e s l i k e b a n a n a s . "
Z Soon after I published these results in 2007, some of these specific examples

were fixed by Google. However, there are still plenty more like them currently

out there for you to find for yourself.
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Who cares?

• Not surprisingly, SMT is bad at non-subject relatives. So what?

• There are around 1000 object relatives in the Penn Treebank.

• Getting them right isn’t going to significantly affect your global
dependency-recovery rate or Bleu score.

• However, they are semantically crucial

• Genres like Questions have higher rates.

• Moreover, the more of the easy stuff we get right, the more this bad stuff will
matter.

– Q: What do frogs eat?

– A: Herons.

• This is somewhat like what our colleagues in animation call the “uncanny
valley”.
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What to Do?

• Keep on looking under the streetlight:

– Give thanks for Moore’s Law.

– Get more data, and hit it with the latest fashion in statistical models.

• This may not work:

– Accuracy in most areas (WER in ASR, Bleu score in SMT, Eval-b for
parsers) isat best linear in the logarithm of the training data.

– Extrapolation of learning curves suggests impractical data requirements
(Knight and Koehn 2004; Moore 2003; Lamel, Gauvain and Adda 2002).

∗ No-one is going to give us even 10M words of Penn treebank
∗ We can’t wait around for 2BN words of parallel text
∗ The amount of speech data that would be required to bring HMM ASR

up to human standard seems to be about 1M hours.

• Unsupervised learning of such systems from unlabeled data doesn’t seem to
work.
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Interpolating Higher Level Information

• There is every indication that high level information from syntax and

semantics will help with this problem (Hassan, Sima’an and Way 2009; Birch,

Osborne and Koehn 2007).

• This claim is very hard to prove, because for applications like ASR and SMT

the syntax and semantics needs to beincremental for this to work (Roark

2001).

• Most of the available theories, including treebank grammars, lack this

property.

• Nevertheless, even speakers of verb-final languages like Japanese are

convinced that their interpretation is incremental.

31



The Hamming Alternative

• “What are the most important problems in your field?”

Z Breaking the asymptote of approximate approaches to syntaxand

semantics.

Z Building the right kind of grammar at a large enough scale forreliable

parsers to support QA, IR, SMT etc.

Z Building statistical models large enough to drive those parsers.

Z Building a semantics that will support practical inferencebeyond the

sentencefor those purposes.

Z Doing all of this using unlabeled data.
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Problem 1: Fix the Grammars

• Most grammars (Chomskypassim, GPSG, HPSG, LFG) arerule-based:

NP → Det Noun

• but there are alwaysexceptions:

[[Whisky]Noun [galore]Det]NP

Z So lexicalize the grammar (TAG, CCG):

a, the,every := NP/N galore := NP\N

Z Restrict rules toadjacentoperators with as much incrementality as possible

(Steedman 2000)
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Problem 2: Learn from Unlabeled Data

• Pure unsupervised learning is too hard.

• Partially unsupervised learning by generalizing from supervised grammars
may be possible.

– Sentences in which we know everything with high confidence except one
word such as “galore” might allow us to bootstrap a lexical entry for the
unseen word which allows an analysis with high probability (Thomforde
2008).

– Sentences in which we think we know everything but the model says every
parse is low probability might allow us to bootstrap a new lexical entry
such as causative transitive “walk” for seen intransitive “walk”.

– Such methods might be boosted with tiny amounts of language-specific
data (Boonkwan).

Z Estimating the model for new lexical items is the hard part.

34



Problem 3: Get Labeled Data Automatically

• Children learn language with great facility from paired strings and (noisy,

confounded) contextually available meanings, learning a parsing model for

universal grammar in much the same way as a supervised parser

(Kwiatkowksi, Goldwater and Steedman 2009).

• Human operators like travel agents map queries onto database queries and

database returns onto answers. Can we learn from these data (e.g. ATIS

Zettlemoyer and Collins 2007)?

show me information on american airlines from fort worth texas to

philadelphia

λx.airline(x,americanairlines)∧ from(x, fortworth)∧ to(x,philadelphia)

• Kwiatkowksi et al. (2010) shows how to do this using Higher Order

Unification to produce all possible decompositions of the logical form paired

with all possible substrings of the sentence.
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Figure 1: Learning SVO word order from the CHILDES dependency bank of child-

directed utterance using Variational Bayes (Kwiatkowksi,Goldwater and Steedman

2009).
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Problem 4: Fix the Semantics

• Understanding language always involves inference beyond the literal meaning

of what is said.

• Most semantics is expressed in some version of first order logic.

• Such interpretations are often non-isomorphic to syntax, as below, where the

object has scope over the subject:

A silencer must be fitted to every vehicle

• Multiple equivalent interpretations abound: Koller and Thater (2006) note that

in one popular version the following has 3960 distinct interpretations all of

which are equivalent:

For travelers going to Finnmark there is a bus service from Oslo to Alta

through Sweden.
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Problem 5: Fit the Semantics to Shallow Inference

• Logical form should be lexicalized, and projected monotonically by the same

adjacent operations as syntactic category (Lewis).

• As many expressions like “a silencer” as possible should be replaced by in

situ dependent or independent individual descriptions to maintain

isomorphism between logical form.

• Shallow inference on the basis of taxonomies like WordNet isdependent on

polarity, so polarity should be directly represented in thelogical language (cf.

MacCartney 2009):

Emmylou doesn’t keep a dog

� Emmylou doesn’t keep a poodle

2 Emmylou doesn’t keep an animal
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Efficient Representation

• A representative of every company saw a sample

∀y



company′y → saw′(
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λx.representative′x∧of ′yx)





a. ∀y[(company′y∧of ′y sk(y)
representative′) → saw′sk(y)

sample′y]

b. ∀y[(company′y∧of ′y skrepresentative′) → saw′sk(y)
sample′y]

c. ∀y[(company′y∧of ′y sk(y)
representative′) → saw′sksample′y]

d. ∀y[(company′y∧of ′y skrepresentative′) → saw′sksample′y]
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Problem 6: Identify the Universal Language of Thought

• Since a universal semantics must be directly hung onto a universal embodied
animal cognition (to which we have no access), and children can hang any
language directly onto that semantics, we should keep the elements of the
logical language as close to the elements of Universal Grammar as we can.

• Linguists aren’t being as helpful as they might be in tellingus what UG is.

• Could we machine-learn the elements from parallel text in lots of more
analytic languages?

• Say by unsupervised clustering of parts of speech (Christodoulopoulos,
Goldwater and Steedman 2010) and mapping CCG categories from English.

• Soon we should be into a virtuous cycle, where we can use our parser to build
more powerful resources than WordNet automatically, and let it loose to read
the web for us, because all the important problems have been solved.
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