LEONID LIBKIN

Hamming Seminar

Leonid Libkin

24 October 2012

HAMMING SEMINAR

PART 1

The traditional part

e What Hamming said in his Bellcore talk:

What are the important problems of your field?
Are you working on them? If not, why?

Do you have a way of approaching them?

What is the time-frame for solutions to emerge?

LEONID LIBKIN HAMMING SEMINAR 2/59

PART 1

The traditional part

e What Hamming said in his Bellcore talk:

What are the important problems of your field?
Are you working on them? If not, why?

Do you have a way of approaching them?

What is the time-frame for solutions to emerge?
e My fields:

e Data management — relational, XML, and graph databases, query
languages, power and complexity, constraints and design, integration
and exchange of data, incomplete information

e Logic in CS (it has been called “the calculus of computer science) —
finite model theory, automata theory, applications in databases,
complexity, verification

LEONID LIBKIN HAMMING SEMINAR 2/59

PART 1

Logic in CS problems

e We use logic mainly as a tool

e So many famous problems can be seen as pure logic problems
e Example:

e |s existential second-order logic strictly more expressive than least
fixed-point logic over finite ordered graphs?

LEONID LIBKIN HAMMING SEMINAR

3/59

PART 1

Logic in CS problems

e We use logic mainly as a tool
e So many famous problems can be seen as pure logic problems
e Example:

e |Is existential second-order logic strictly more expressive than least
fixed-point logic over finite ordered graphs?

e Also known as the P vs NP problem
e Crucial notion: ordering

e addresses the mismatch between machine models and logical
representations

e No chance to handle it for very expressive logics

e So we are crawling before learning how to fly: looking at weaker
logics to get insights

LEONID LIBKIN HAMMING SEMINAR

PART 1

Data management problems: Data models

Early history
e Network
e Hierarchical
e Relational

30 years of relational paradise, then history reverses itself:

e The hierarchical model strikes back: XML
e The network model strikes back: Graph Databases

Applications of graph databases: social networks, RDF and the
Semantic Web, lots of others

Databases tend to be extremely large

Queries mix handling data and topology, cannot be handled well by
relational DBMSs

LEONID LIBKIN HAMMING SEMINAR 4/59

PART 1

Data management problems: Incomplete Data

e It is ubiquitous in modern applications
e Arises every time data is moved between applications
e data integration and exchange

e The most poorly developed part of database theory and practice

e Every database practitioner/seasoned SQL programmer thinks the
following statements are consistent

IX|>|Y|and X =Y =10

e What to do?

e Several attempts to create proper models in the 1980s and the early
1990s: inadequate for what we are dealing with today

LEONID LIBKIN HAMMING SEMINAR 5/59

PART 1

Data management problems: Query answering

What does it mean to answer a query?

In huge databases, getting the answer may be prohibitively high

Solution: try to approximate

e Two approaches: look at the query only, or both query and data

Very different techniques

LEONID LIBKIN HAMMING SEMINAR 6/59

PART 1

Data management problems: Query answering

e What does it mean to answer a query?

e In huge databases, getting the answer may be prohibitively high
e Solution: try to approximate

e Two approaches: look at the query only, or both query and data

e Very different techniques

e |t all fits nicely into EPSRC challenge address the deluge of data
and deliver understanding from information

e And we are working on it

LEONID LIBKIN HAMMING SEMINAR 6/59

PART 1

Data management problems: Query answering

e What does it mean to answer a query?

e In huge databases, getting the answer may be prohibitively high
e Solution: try to approximate

e Two approaches: look at the query only, or both query and data

e Very different techniques

e |t all fits nicely into EPSRC challenge address the deluge of data
and deliver understanding from information

e And we are working on it

e But today | want to talk about something that, by definition, has
nothing to do with £££$$$

LEONID LIBKIN HAMMING SEMINAR 6/59

BeauTy

Real Hamming Seminar

What Hamming didn’t talk about:

Is there a place for beauty in our research?

LEONID LIBKIN HAMMING SEMINAR 7/59

BrauTYy

Transcript of Hamming's talk

Never talks about beauty.

Why is this? Is it not important?

We strive to find beautiful solutions.

But are they necessary to solve problems?

Do they please only their creators/inventors/discoverers?

LEONID LIBKIN HAMMING SEMINAR

8/59

BeauTy

What types of beauty are we talking about?

e Beautiful definition
e Beautiful idea/concept

e Beautiful proof

LEONID LIBKIN HAMMING SEMINAR 9/59

BeauTy

What types of beauty are we talking about?

Beautiful definition

Beautiful idea/concept

Beautiful proof

Do we really care?

e Who are we? Researchers? Users?
e And what is beauty in the first place?

LEONID LIBKIN HAMMING SEMINAR 9/59

BeauTy

What is beauty?

It is universal or individual?

LEONID LIBKIN HAMMING SEMINAR 10/59

BeauTy

What is beauty?

It is universal or individual?

Sometimes it seems to be universal

LEONID LIBKIN HAMMING SEMINAR

10/59

BeauTy

What is beauty?

It is universal or individual?

Sometimes it seems to be universal
This is beautiful:

LEONID LIBKIN HAMMING SEMINAR

10/59

BeauTy

What is beauty?

It is universal or individual?

Sometimes it seems to be universal
This certainly isn't:

LEONID LIBKIN HAMMING SEMINAR 10/59

BeauTy

What is beauty?

It is universal or individual?

But s&metimes it's rather Lndividual:

T

LEONID LIBKIN HAMMING SEMINAR

10/59

BrauTYy

What is beauty?

It is universal or individual?

e Plato's view: universal
e Hume's view: individual

e We are in Scotland, so we ought to subscribe to Hume's view!

LEONID LIBKIN HAMMING SEMINAR 10/59

BrauTYy

Getting closer to science

The most distinct and beautiful statements of any truth must
take at least the mathematical form.

Henry Thoreau (1873)

LEONID LIBKIN HAMMING SEMINAR 11/59

BrauTYy

Getting closer to science

The most distinct and beautiful statements of any truth must
take at least the mathematical form.

Henry Thoreau (1873)

The mathematician’s patterns, like the painter’s or the poet’s
must be beautiful; the ideas, like the colours or the words must
fit together in a harmonious way. Beauty is the first test: there
is no permanent place in this world for ugly mathematics.

G H Hardy (1941)

LEONID LIBKIN HAMMING SEMINAR 11/59

BeauTy

Why do we need it?

e Beautiful definition: crystallize the concept
e Beautiful idea:

e make it manageable
e make it attractive to people

e Beautiful proof:

e opens up new directions
e sometimes simplicity leads to practical benefits

LEONID LIBKIN HAMMING SEMINAR 12/59

DEFINITIONS

First example: relational databases

e Early days: messy models — network, hierarchical
e hard to represent data, hard to query without knowing how it is
organized
e Codd 1969: relational model. A beautiful concept:
e separates logical and physical structure
e logical structure: a fundamental mathematic concept — relations
e querying language: first-order logic (FO)

LEONID LIBKIN HAMMING SEMINAR 13/59

DEFINITIONS

First example: relational databases

e Early days: messy models — network, hierarchical

e hard to represent data, hard to query without knowing how it is
organized

e Codd 1969: relational model. A beautiful concept:

e separates logical and physical structure
e logical structure: a fundamental mathematic concept — relations
e querying language: first-order logic (FO)

e The rest is history. It's a $20 - 10° /year business now.

LEONID LIBKIN HAMMING SEMINAR 13/59

DEFINITIONS

First example: relational databases

Early days: messy models — network, hierarchical
e hard to represent data, hard to query without knowing how it is
organized
Codd 1969: relational model. A beautiful concept:

e separates logical and physical structure
e logical structure: a fundamental mathematic concept — relations
e querying language: first-order logic (FO)

The rest is history. It's a $20 - 10° /year business now.

No one has done more for the employment of logicians

LEONID LIBKIN HAMMING SEMINAR 13/59

DEFINITIONS

After 30 years of paradise

e Return to the hierarchical model: XML
e But this time with a nice definition

e Labeled unranked trees capture structure of documents
e Data trees capture the abstraction of XML documents (including
both structure and data)

e Lessons learned from the relational world:

o Need a clean mathematical abstraction to work with

e Need to separate declarative and procedural languages

e It all needs to be built on top of a solid theory (in this case, formal
languages and automata)

LEONID LIBKIN HAMMING SEMINAR 14/59

DEFINITIONS

Meet the new data model

Same as the old data model

Now we have returned to the original network model

We call it graph databases

A clean definition was already worked out by Alberto Mendelzon and
colleagues in the late 1980s
e Inspired by structures seen in verification (labeled transition systems),
but with different languages

It had to wait 20 years to find its applications
e social networks, RDF, others

LEONID LIBKIN HAMMING SEMINAR 15/59

DEFINITIONS
Writing program specifications

e The story is somewhat similar to that of relational databases
e Pnueli finds a nice clean formalism based on what had earlier been
done by logicians studying the logic of time

e The formalism turns out be:

e very nice and clean
e suitable for writing specifications
e for instance: the program will be never be in a bad state

G—bad

e every request is eventually granted

G(request — F granted)

e Also like Codd's discovery, led to a Turing award

LEONID LIBKIN HAMMING SEMINAR 16/59

DEFINITIONS

Writing program specifications: LTL

Syntax: ¢ = a (€X) | eV | mp | Xe | U¢

LEONID LIBKIN HAMMING SEMINAR 17/59

DEFINITIONS

Writing program specifications: LTL

Syntax: ¢ = a (eX) | oV | = | X | Uy

Semantics:

LEONID LIBKIN HAMMING SEMINAR 17/59

DEFINITIONS

Writing program specifications: LTL

Syntax: ¢ = a (eX) | oV | = | X | Uy

Semantics:

LEONID LIBKIN HAMMING SEMINAR 17/59

DEFINITIONS

Writing program specifications: LTL

Syntax: ¢ = a (eX) | oV | = | X | Uy

Semantics:

e Y Y Y
o0 0 0 0 0 0 0 °

|

pUy

Abbreviations:
e Fy (or ¢ is true in the future) = trueUy
e Gy (or @ is true always/globally) = —F—¢

LEONID LIBKIN HAMMING SEMINAR 17/59

DEFINITIONS

More complex specifications

e For LTL, executions are linear

e What if they can branch? Each state can be the beginning of many
execution paths.

e Another nice and clean idea (Clarke/Emerson): CTL"

(state formulae) ¢ = aleVe || EY
(path formulae) 1 := LTL over state formulae

e Ey: there is a path starting in this state on which ¢ is true

e Lots of fragments heavily used in verification

e Another Turing award

LEONID LIBKIN HAMMING SEMINAR 18/59

DEFINITIONS

Beautiful definitions: summary

Always strive to find one

They may pay off
e Sometimes sooner, sometimes later, sometimes never
e this is research, one never knows

But ugly (just-before-deadline) definitions won't!

LEONID LIBKIN HAMMING SEMINAR 19/59

CONCEPTS

What's next? A beautiful idea/concept

e Back to Hamming: we have a concept, now we need an attack
e A nice definition is not enough, we need to know how to use it

e In all of the above examples, there was such an attack

LEONID LIBKIN HAMMING SEMINAR 20/59

CONCEPTS

Relational databases

Codd 1969, relational model. Not only a beautiful concept that
separates logical and physical structure.
It comes equipped with

e a new notion: querying becomes declarative
Key language for querying: first-order logic (FO)
Nice math comes to the rescue again with procedural languages that
are implemented by DBMSs

Not out of nowhere (relation algebra as an algebraization of FO)

A key new element: all this happens on finite relations

Most of the logic development before Codd was on infinite
structures of interest in math

LEONID LIBKIN HAMMING SEMINAR 21/59

CONCEPTS

Relational databases and finite model theory

Finite model theory studies the behavior of logics on finite structures

The backbone of relational database theory
e Logics:
e FO (as originally proposed by Codd)

e FO+-counting/aggregates aka SQL
e FO-fixed point aka Datalog

Lots of beautiful tools and results

Also with some practical consequences
e e.g., adding recursion in the SQL3 standard

LEONID LIBKIN HAMMING SEMINAR 22/59

CONCEPTS

XML: concepts

e The model:
e labeled unranked trees (structure)
e data trees (structure+data)
e Tools/concepts:
e Automata on trees (defines schemas)
e Logics on trees (particularly MSO = monadic second order logic,
becomes the yardstick query language)
e Temporal logics become the basis for navigation

LEONID LIBKIN HAMMING SEMINAR 23/59

An

CONCEPTS

XML story: rediscovering beautiful concepts from the
past

XML schema specifications = essentially tree automata
One of the most common schema specifications: DTDs (Document
Type Definition)

e reinvention of extended context-free grammars
A common addition to DTDs: specialization

o allows the same label to behave differently in different contexts
A result rediscovered several times in the XML world: DTDs with
specialization = unranked tree automata

LEONID LIBKIN HAMMING SEMINAR 24/59

CONCEPTS

An XML story: rediscovering beautiful concepts from the
past

e XML schema specifications = essentially tree automata
e One of the most common schema specifications: DTDs (Document
Type Definition)
e reinvention of extended context-free grammars
e A common addition to DTDs: specialization
o allows the same label to behave differently in different contexts

e A result rediscovered several times in the XML world: DTDs with
specialization = unranked tree automata

e This result was proved in 1967, in a nice and beautiful paper by
Thatcher:
e it defined unranked tree automata
e and proved that their languages are projections of derivation trees of
extended context-free grammars
e i.e., documents that conform to DTDs with specialization

LEONID LIBKIN HAMMING SEMINAR 24/59

CONCEPTS

Another XML story: a beautiful definition rediscovered by
a committee

e XPath — navigational language of XML
e When you look at its syntax abstractly, it is exactly CTL*

e without U
e but with F and G

e In fact people later added U
e and called it conditional XPath

LEONID LIBKIN HAMMING SEMINAR 25/59

CONCEPTS

Another XML story: a beautiful definition rediscovered by
a committee

XPath — navigational language of XML

When you look at its syntax abstractly, it is exactly CTL*
e without U
e but with F and G

In fact people later added U
e and called it conditional XPath

Moral: beautiful concepts live for a long time and show up
unexpectedly in different areas

LEONID LIBKIN HAMMING SEMINAR 25/59

CONCEPTS

Graph databases: concepts/problems

e We are still in very early stages of graph db research
e Trying to understand models/languages

e But already discovering nice and neat problems

LEONID LIBKIN HAMMING SEMINAR

26/59

CONCEPTS

Graph databases: concepts/problems

e We are still in very early stages of graph db research

e Trying to understand models/languages

e But already discovering nice and neat problems

e Example: Let R C X* X ¥* be a regular relation on words

e Checking if R has a pair (w, w’) so that w is a prefix of w’ is easily
solvable in linear time

e Checking if R has a pair (w, w’) so that w is a suffix of w' — was
not known!

LEONID LIBKIN HAMMING SEMINAR 26/59

CONCEPTS

Graph databases: concepts/problems

e We are still in very early stages of graph db research

e Trying to understand models/languages

e But already discovering nice and neat problems

e Example: Let R C X* X ¥* be a regular relation on words

e Checking if R has a pair (w, w’) so that w is a prefix of w’ is easily
solvable in linear time

e Checking if R has a pair (w, w’) so that w is a suffix of w' — was
not known!

e turns out to be undecidable

LEONID LIBKIN HAMMING SEMINAR 26/59

CONCEPTS

Beautiful concepts cont'd: an LTL example

e Problem: given a program P and a specification ¢, does P satisfy ¢?
e More interesting: Give me an example where P does not satisfy ¢.
e aka a bug in the program

LEONID LIBKIN HAMMING SEMINAR 27/59

CONCEPTS

Beautiful concepts cont'd: an LTL example

Problem: given a program P and a specification ¢, does P satisfy ©?

e More interesting: Give me an example where P does not satisfy ¢.
e aka a bug in the program

Idea: P is naturally viewed as an automaton Ap (going from state

to state)

So if we turn =y into an automaton A, then bugs are

L(Ap) N L(A-,) = L(Ap x A_,)

Verification becomes non-emptiness problem for automata

LEONID LIBKIN HAMMING SEMINAR 27/59

CONCEPTS

Beautiful concepts cont'd: an LTL example

e Problem: given a program P and a specification ¢, does P satisfy ¢?
e More interesting: Give me an example where P does not satisfy ¢.
e aka a bug in the program
e |dea: P is naturally viewed as an automaton Ap (going from state
to state)

e So if we turn —¢ into an automaton A-, then bugs are

L(Ap) N L(A-,) = L(Ap x A_,)

e Verification becomes non-emptiness problem for automata
e Nice and clean algorithms developed:

e translation into nondeterministic automata (Vardi-Wolper)
e translation into alternating automata (Vardi)
e both beautiful and heavily used

LEONID LIBKIN HAMMING SEMINAR 27/59

CONCEPTS

A database concurrency example

e Each DMBS runs transactions
e buying an airline ticket
e withdrawing money from a bank, etc etc
e They need to run concurrently without causing conflicts
e you don't want to have 2 people with the same seat on a plane
e or wrong amount of money to disappear from your account
e Scheduling problems: schedules must be “equivalent” to serial ones
(with no concurrency at all)

LEONID LIBKIN HAMMING SEMINAR 28/59

CONCEPTS

A database concurrency example

Each DMBS runs transactions

e buying an airline ticket
e withdrawing money from a bank, etc etc

They need to run concurrently without causing conflicts

e you don't want to have 2 people with the same seat on a plane
e or wrong amount of money to disappear from your account

Scheduling problems: schedules must be “equivalent” to serial ones

(with no concurrency at all)

LEONID LIBKIN

First attempt at the equivalence definition for schedules S;, S»:

1.
2.

Si and S> have the same transactions in the same order.

If transaction T; reads the initial value of object A in S, it must also read
the initial value of A in S,.

If T; reads a value A written by T; in S1, it must also read the value of A
written by T; in S,.

. For each data object A, the transaction (if any) that performs the final

write on A in S; must also perform the final write on A in S».

HAMMING SEMINAR 28/59

CONCEPTS

A database concurrency example

Each DMBS runs transactions

e buying an airline ticket
e withdrawing money from a bank, etc etc

They need to run concurrently without causing conflicts

e you don't want to have 2 people with the same seat on a plane
e or wrong amount of money to disappear from your account

Scheduling problems: schedules must be “equivalent” to serial ones

(with no concurrency at all)

First attempt at the equivalence definition for schedules S;, S»:

1.
2.

Si and S> have the same transactions in the same order.

If transaction T; reads the initial value of object A in S, it must also read
the initial value of A in S,.

If T; reads a value A written by T; in S1, it must also read the value of A
written by T; in S,.

. For each data object A, the transaction (if any) that performs the final

write on A in S; must also perform the final write on A in S».

e Disgusting! Not only that, it's also NP-complete to test for.

LEONID LIBKIN

HAMMING SEMINAR 28/59

CONCEPTS

Concurrency example: a beautiful notion

Schedules 51 and S, are equivalent if one can be transformed into
the other by swapping non-conflicting operations:

e on different items

e or reading the same item

A schedule equivalent to a serial one is called conflict-serializable

Immediately works. Testing is linear-time.
Found its way into SQL standard:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE
e in fact this is the default

LEONID LIBKIN HAMMING SEMINAR 29/59

PRrOOFs

Beautiful proofs

“Beauty is the first test: there is no permanent place in this world
for ugly mathematics.” (G H Hardy)

We want a nice and clean argument
Often we are not satisfied with hitting it with all the hammers we've
got until it works
e although the deadline-driven “culture” makes us do precisely that too
often...
The notion of what is beautiful here may be more controversial and
dependent on one's background.

A couple of examples now.

LEONID LIBKIN HAMMING SEMINAR 30/59

Chess problem: a cute short (and overused) proof

It is well known that a knight can cover the entire chessboard without
visiting the same square twice.

N LN LRSS
ENE D)
8 \NLD
/NN
AN/
RGN
IS8

LEONID LIBKIN HAMMING SEMINAR 31/59

PRrOOFs

Chess problem: a cute short (and overused) proof

But what if we remove two squares in opposite corners?

LEONID LIBKIN HAMMING SEMINAR 31/59

PRrOOFs

Chess problem: a cute short (and overused) proof

But what if we remove two squares in opposite corners?

Solution: remember colors of squares

Opposite corners have the same color.

A knight move changes color — so no chance!

LEONID LIBKIN HAMMING SEMINAR

31/59

PRrOOFs

More controversial: there are infinitely many primes

1. Euler's product formula:
=1 72
lipz-2%-%
p prime n=1

2. If there were finitely many primes, the product would be a rational
number, and hence 7 would be algebraic

3. But 7 is transcendental, so there are infinitely many primes.

LEONID LIBKIN HAMMING SEMINAR 32/59

PRrOOFs

A side remark

Thinking as a mathematician doesn't always help in CS
What comes next? 1,2,4,8,16,7
If you are a computer scientist, you say 32 without thinking.

But why? because we have a function f so that
f(0)=1, f(1)=2, ...,f(4) = 16 and we are looking for (5)

LEONID LIBKIN HAMMING SEMINAR 33/59

PRrOOFs

A side remark

e Thinking as a mathematician doesn't always help in CS

e What comes next? 1,2,4,8,16,7

e If you are a computer scientist, you say 32 without thinking.

e But why? because we have a function f so that
f(0)=1, f(1)=2, ...,f(4) = 16 and we are looking for (5)

e No mathematician would ever approximate by an exponential
function — instead they use the lowest degree polynomial

e The unique polynomial of degree 4 agreeing with f is

F(x) = =

=5 ((x — 1)* = 6(x — 1)* +23(x — 1) — 18x + 42)

And the value of 7(5) is

LEONID LIBKIN HAMMING SEMINAR 33/59

PRrOOFs

A side remark

e Thinking as a mathematician doesn't always help in CS

e What comes next? 1,2,4,8,16,7

e If you are a computer scientist, you say 32 without thinking.

e But why? because we have a function f so that
f(0)=1, f(1)=2, ...,f(4) = 16 and we are looking for (5)

e No mathematician would ever approximate by an exponential
function — instead they use the lowest degree polynomial

e The unique polynomial of degree 4 agreeing with f is

F(x) = =

=5 ((x — 1)* = 6(x — 1)* +23(x — 1) — 18x + 42)

And the value of 7(5) is

.31

LEONID LIBKIN HAMMING SEMINAR 33/59

PRrOOFs

Three proofs that changed things

e 0-1 law for first-order logic

e A short proof of Biichi Theorem (MSO = automata) using
composition

e Two-phase locking guarantees serializability

LEONID LIBKIN HAMMING SEMINAR 34/59

PRrOOFs

0-1 law

e Most of the things you want to know are really boring (at least at
infinity)

e First-order logic and many database query languages are such

LEONID LIBKIN HAMMING SEMINAR 35/59

PRrOOFs

0-1 law

e Most of the things you want to know are really boring (at least at
infinity)
e First-order logic and many database query languages are such

e Pick a database “at random”.
e Check if it satisfies a property P.
e What's the probability of that?

o If P is expressed in FO (or relational calculus/algebra), it is 0 or 1:
0-1 law.

LEONID LIBKIN HAMMING SEMINAR 35/59

PRrOOFs

0-1 law

e Most of the things you want to know are really boring (at least at
infinity)

e First-order logic and many database query languages are such

e Pick a database “at random”.

e Check if it satisfies a property P.

e What's the probability of that?

o If P is expressed in FO (or relational calculus/algebra), it is 0 or 1:
0-1 law.

e Pick a graph at random:

e throw n vertices

o for each pair of vertices toss a coin to see if they are connected

e compute the probability for each n and see how it behaves as
n—; o0

LEONID LIBKIN HAMMING SEMINAR 35/59

PRrOOFs

The 0-1 law for FO story

e First proved by 4 Russians (Glebskii, Kogan, Liogonki, and Talanov)
in 1969

e The proof was very proletarian

e emphasis on heavy tools, weight rather than technique

e English translations appeared in the early 1970s, but were very hard
to follow.

e Ron Fagin could not follow them, and came up with a beautiful
proof.

e Sounds like a recipe. Take:

e a bit of probability
e a bit of combinatorics
e a bit of logic

e mix them quickly and get the result.

LEONID LIBKIN HAMMING SEMINAR 36/59

PRrOOFs

Fagin's proof

e The probability bit. Look at the statement EA,

for any disjoint sets X and Y with n and m nodes in a
graph, there is a node v connected to everything in X and
to nothing in Y

e with probability 1 all such statements are true
e The combinatorial bit (that goes infinite). There is exactly one
countable graph G that satisfies all the EA, ;s.

e The logic bit. A first-order sentence is true with probability 1 iff it is
true in G (traditional proof via compactness).

e Since in a concrete structure (like G) every sentence is either true or
false, the result follows.

e Magic!

LEONID LIBKIN HAMMING SEMINAR 37/59

PRrOOFs

0-1 laws: what happened later

e Fagin’s proof gave a methodology for proving 0-1 laws.
e We now have them for many logics (e.g., fixed-point logics)

e We also have them for complex probability distributions

LEONID LIBKIN HAMMING SEMINAR 38/59

PRrOOFs

0-1 laws: what happened later

e Fagin’s proof gave a methodology for proving 0-1 laws.
e We now have them for many logics (e.g., fixed-point logics)
e We also have them for complex probability distributions

e For instance, with n vertices we can put edges with probabilities n%
for 0 < a < 1.

e An amazing result by Spencer-Shelah: FO has the 0-1 law iff « is
irrational.

e There are lots of papers and books on the subject.

LEONID LIBKIN HAMMING SEMINAR 38/59

PRrOOFs

A beautiful proof found useful after 30 years

For words/trees and similar structures, there are many results saying

MSO = Automata

e Monadic Second Order Logic — adds quantification over sets to FO:
AXiVXo ... o(Xq, Xa, . ..) where ¢ is FO.

We shall deal with words for simplicity

LEONID LIBKIN HAMMING SEMINAR 39/59

A word w over = {ay,.
E('7 ')7 Ll(')7 s Lm()

PRrOOFs

Words as structures/databases

..,am} is a database with relations

e £ is the ordering of positions;

e [;'s define labelings.

W = aiapadiar:

positions 0, 1, 2, 3; positions 0,2,3 labeled a;; position 1 labeled a»

01
112
2|3
E_O2
113
03

LEONID LIBKIN

L, =

N

L = 1]

HAMMING SEMINAR 40/59

PRrOOFs

MSO over words
Each MSO sentence ¢ defines a language

Llp) = {fweX [w=g}

Theorem (Biichi, Elgot, Trakhtenbrot 1960)

MSO-definability = Regular languages

A similar result holds for trees as well — both binary and unranked.

Original proof: induction on formulae. Nothing pretty, a bit tedious, and
it works

LEONID LIBKIN HAMMING SEMINAR 41/59

PRrOOFs

MSO over words

Each MSO sentence ¢ defines a language

Llp) = {fweX [w=g}

Theorem (Biichi, Elgot, Trakhtenbrot 1960)

MSO-definability = Regular languages

A similar result holds for trees as well — both binary and unranked.

Original proof: induction on formulae. Nothing pretty, a bit tedious, and
it works

But there is a very short and beautiful proof of MSO C automata. We
present it for FO to make things simpler.

LEONID LIBKIN HAMMING SEMINAR 41/59

PRrOOFs

Types

Each FO sentence is a disjunction of types.

e Rank-k type tp,(D): set of all sentences of quantifier depth up to k
true in a structure D.

e Types are finite objects, definable in the logic: finitely many distinct
FO sentences of quantifier rank k, up to logical equivalence.

LEONID LIBKIN HAMMING SEMINAR 42/59

PRrOOFs

Types

Each FO sentence is a disjunction of types.

e Rank-k type tp,(D): set of all sentences of quantifier depth up to k
true in a structure D.

e Types are finite objects, definable in the logic: finitely many distinct
FO sentences of quantifier rank k, up to logical equivalence.

tpx(D) = tpi(D)
i

A player has a win in a specific k-round game on D and D'.

LEONID LIBKIN HAMMING SEMINAR 42/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D = = = = = = =

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D —_—T

r -

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D —_—T

r —e =

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D —_—T

o —

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D — @

o —

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D — =@ @ @ D

o —

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D — =@ @ @ D

D — = -~ @ > @ -— =~

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

Spoiler and Duplicator play for 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

Spoiler and Duplicator play for 3 rounds.

The duplicator wins in 3 rounds.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

Ehrenfeucht-Fraissé game, played by Spoiler and Duplicator

D

D/

M D.
| |
| |
| |
| |
| |
—@ @

@ e
|
|
|
:
|
O e~

tpx(D) = tpi(D’)
i

Duplicator has a winning strategy in the k-round game on D and D’.

LEONID LIBKIN HAMMING SEMINAR 43/59

PRrOOFs

From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w - a.

If tp,(w) = tpy(w'), then tp,(w - a) = tp,(w' - a): compose games!

LEONID LIBKIN HAMMING SEMINAR 44/59

PRrOOFs

From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w - a.
If tp,(w) = tpy(w'), then tp,(w - a) = tp,(w' - a): compose games!

w

duplicator wins \

[
\
\
\
} in k rounds \
[

LEONID LIBKIN HAMMING SEMINAR 44/59

PRrOOFs

From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w - a.
If tp,(w) = tpy(w'), then tp,(w - a) = tp,(w' - a): compose games!

W a
[]

LEONID LIBKIN HAMMING SEMINAR 44/59

PRrOOFs

From MSO to automata via composition

Rank-k type of w uniquely determines rank-k type of w - a.

If tp,(w) = tpy(w'), then tp,(w - a) = tp,(w' - a): compose games!

w a
| e
\ . o h
 duplicator still wins \

\
| \
1 in k rounds \
\

| ®

w' a

LEONID LIBKIN HAMMING SEMINAR 44/59

PRrOOFs

From MSO to automata: automata compute types

The rank-k type of w uniquely determines the rank-k type of w - a.

Ladner (1977) construction of a Deterministic Automaton for sentence
@:

e States are rank-k types;

e Initial state: the type of the empty word;

e Final states: those types whose disjunction forms .

e Transition 0(7, a): the type of w - a if the type of w is 7.
After reading w, the state of the automaton is tp,(w).

LEONID LIBKIN HAMMING SEMINAR 45/59

PRrOOFs

Languages for information extraction

Ladner’s proof was dismissed as a practical tool: the number of types is
astronomical.

And vyet it turned out useful for information extraction from XML
documents:
e Work by Gottlob, Koch, and colleagues; Lixto system

We demonstrate the idea on words; it works for trees as well.

LEONID LIBKIN HAMMING SEMINAR 46/59

PRrOOFs

Languages for information extraction

Ladner’s proof was dismissed as a practical tool: the number of types is
astronomical.

And vyet it turned out useful for information extraction from XML
documents:
e Work by Gottlob, Koch, and colleagues; Lixto system

We demonstrate the idea on words; it works for trees as well.
Use the composition method:

1) tgzgx):ttppkk((uvy)/) = tpp(w-a-u) =tpe(w'-a-u)

2) tpe(u) =toe(w) = to(w) = tpi(u)

LEONID LIBKIN HAMMING SEMINAR 46/59

PRrOOFs

Language for extracting positions in words

How to express MSO (or FO) ¢(x) over words?

Idea: for w-a-u, compute
1. tpy(w) going forward from the first position;
2. tpe(u~t) going backwards from the last position;

3. These types tell us whether the a position is selected.

Express this in Datalog. Compute tp,(w) going forward — use predicates
U; for types:

Ur,(x) = First(x), La(x); acx
Up(x) = Succ(y,x),La(x),U-(y); a€x, o(r,a) =1

LEONID LIBKIN HAMMING SEMINAR 47/59

PRrOOFs

Datalog program cont'd
e Types going forward:
Ur,(x) = First(x), La(x); aex
Uy (x) = Succ(y,x),Ls(x),U-(y); aeX, o(r,a) =1

e Types going backwards V,: symmetric.
Answer — for all triples (7, a, 7’) saying that a is selected, add:

Answer(x) = U-(y), Succ(y, x), Pa(x), Succ(x, z), V- (z)

We used Monadic Datalog: all idb predicates are monadic.
e Edb predicates: successor, labelings, First and Last.

It captures MSO over words.
Complexity of evaluating program P on w:

O(lIPI[- [wl)

LEONID LIBKIN HAMMING SEMINAR 48/59

PRrOOFs

Composition proof is practical!

Composition technique suggested using monadic datalog:
e captures MSO;
e has very good complexity bounds;

e is in fact a convenient language for the programmer.

The approach works for trees and yields many XML languages:

e Monadic datalog captures MSO for trees, with the same complexity
— one needs to add predicates for the root, leaves, first and last
children of nodes (Gottlob, Koch, '01)

e Led to a practical system and a company!

LEONID LIBKIN HAMMING SEMINAR 49/59

PRrOOFs

A proof with lots of practical implications

e How to ensure good concurrent schedules? Make them serializable.
e Can be tested in linear time. But still impractical:
e cannot recompute each time a new transaction appears.

LEONID LIBKIN HAMMING SEMINAR 50/

PRrOOFs

A proof with lots of practical implications

How to ensure good concurrent schedules? Make them serializable.

Can be tested in linear time. But still impractical:
e cannot recompute each time a new transaction appears.

Solution: find a policy so that if each transaction follows it, the
schedule is guaranteed to be serializable.
Policy — two-phase locking:

e each item needs to be locked before it is read, and unlocked after it is

no longer needed
e a transaction cannot request a new lock after it released at least one

LEONID LIBKIN HAMMING SEMINAR 50/59

PRrOOFs

A proof with lots of practical implications

e How to ensure good concurrent schedules? Make them serializable.
e Can be tested in linear time. But still impractical:
e cannot recompute each time a new transaction appears.
e Solution: find a policy so that if each transaction follows it, the
schedule is guaranteed to be serializable.
e Policy — two-phase locking:
e each item needs to be locked before it is read, and unlocked after it is

no longer needed
e a transaction cannot request a new lock after it released at least one

e It does the job, and does so optimally: a very short and elegant
graph-theoretic proof

e The policy is implemented in all big DBMS.
e Another Turing award (Gray)

LEONID LIBKIN HAMMING SEMINAR 50/59

PRrOOFs

Effects of beautiful solutions

Beautiful definitions: long lasting concepts that change fields.

LEONID LIBKIN HAMMING SEMINAR 51/59

PRrOOFs

Effects of beautiful solutions

Beautiful definitions: long lasting concepts that change fields.

Beautiful concepts/ideas: paradigm shifts, they attract people to the
field.

LEONID LIBKIN HAMMING SEMINAR 51/59

PRrOOFs

Effects of beautiful solutions

Beautiful definitions: long lasting concepts that change fields.

Beautiful concepts/ideas: paradigm shifts, they attract people to the
field.

Beautiful proofs: can have both theoretical and practical impacts.

LEONID LIBKIN HAMMING SEMINAR 51/59

PRrOOFs

Effects of beautiful solutions

Beautiful definitions: long lasting concepts that change fields.

Beautiful concepts/ideas: paradigm shifts, they attract people to the
field.

Beautiful proofs: can have both theoretical and practical impacts.

Do all beautiful results have impact? Of course not.

But most definitions/ideas/results that have a big impact are indeed nice
and beautiful.

LEONID LIBKIN HAMMING SEMINAR 51/59

PRrOOFs

Is it really worth it?

e Absolutely!

e To start with, you are not likely to address a really big problem if
you are doing something ugly (back to Hamming).

LEONID LIBKIN HAMMING SEMINAR 52/59

PRrOOFs

Is it really worth it?

e Absolutely!

e To start with, you are not likely to address a really big problem if
you are doing something ugly (back to Hamming).

e Even more importantly, we are researchers.

LEONID LIBKIN HAMMING SEMINAR 52/59

PRrOOFs

Is it really worth it?

Absolutely!

To start with, you are not likely to address a really big problem if
you are doing something ugly (back to Hamming).

Even more importantly, we are researchers.

e We must enjoy what we do!

LEONID LIBKIN HAMMING SEMINAR 52/59

PRrOOFs

Is it really worth it?

Absolutely!

To start with, you are not likely to address a really big problem if
you are doing something ugly (back to Hamming).

Even more importantly, we are researchers.

e We must enjoy what we do!

If we don't, we stop being researchers.

LEONID LIBKIN HAMMING SEMINAR 52/59

PRrOOFs

Is it really worth it?

e Absolutely!

e To start with, you are not likely to address a really big problem if
you are doing something ugly (back to Hamming).

e Even more importantly, we are researchers.
e We must enjoy what we do!
e If we don't, we stop being researchers.

e It's hard to enjoy ugly things — and it is easy to enjoy beautiful ones.

LEONID LIBKIN HAMMING SEMINAR 52/59

EXPERIENCES

Personal experiences

Three examples: | spent a lot of time looking for beautiful solutions

Example 1: First-Order Logic plus Constraints as a query language
e aka embedded finite model theory

Example 2: Normalization of databases and documents

Example 3: Consistency of XML specifications

LEONID LIBKIN HAMMING SEMINAR 53/59

EXPERIENCES

FO + Complex constraints

e Graph nodes: numbers. Query “does a graph lie on a circle?”:

Ir3a3b VxVy E(x,y) = (x — a)% + (y — b)? = 2

e What is the power of such extensions? Can graph connectivity be
expressed?

e Look at queries that talk about proper graph properties (formally,
isomorphism types of graphs).

e The answer depends on the class of numbers and arithmetic
operations.

e More precisely, on deep mathematical properties of the underlying
structure

LEONID LIBKIN HAMMING SEMINAR 54/59

EXPERIENCES

FO + Complex constraints cont'd

Graph connectivity is expressible over N with arithmetic 0,1, 4, X, <
(rather easy)

But it is not expressible over R with arithmetic
This result is much harder

conjecture by Kanellakis in the late 1980s

several wrong “proofs” in the early 90s

A solution for + in 1995

Finally a proof (M. Benedikt) in 1996

uses nonstandard models, model theory of o-minimal structures,
algebraic topology

In 1998: a shorter constructive proof, still relies heavily on
o-minimality
o Citations: a fraction of the 1996 paper

In 2004, a clean 4-page long proof, based on basic principles

LEONID LIBKIN HAMMING SEMINAR 55/59

EXPERIENCES

Normalization: relations and XML

e Normalization: a way of organizing your data

e eliminates redundancies, update anomalies
e one of the earliest and best understood subjects for relational
databases

e Question: How to normalize XML?

LEONID LIBKIN HAMMING SEMINAR 56/59

EXPERIENCES

Normalization: relations and XML

e Normalization: a way of organizing your data
e eliminates redundancies, update anomalies
e one of the earliest and best understood subjects for relational
databases
e Question: How to normalize XML?
e Answer: A normal form XNF proposed in 2002 (Arenas, L.)

e many results proved, lots of nice properties
e but still not clear whether it was the right one

LEONID LIBKIN HAMMING SEMINAR 56/59

EXPERIENCES

Normalization: relations and XML

Normalization: a way of organizing your data

e eliminates redundancies, update anomalies
e one of the earliest and best understood subjects for relational
databases

Question: How to normalize XML?
Answer: A normal form XNF proposed in 2002 (Arenas, L.)

e many results proved, lots of nice properties
e but still not clear whether it was the right one

Justifying normal forms: a new approach based on classical
information theory

Measures expected redundancy in a design, tries to minimize it

Justifies all standard relational normal forms, and the new XML form

LEONID LIBKIN HAMMING SEMINAR 56/59

EXPERIENCES

Normalization: relations and XML

e Normalization: a way of organizing your data

e eliminates redundancies, update anomalies
e one of the earliest and best understood subjects for relational
databases

e Question: How to normalize XML?
e Answer: A normal form XNF proposed in 2002 (Arenas, L.)

e many results proved, lots of nice properties
e but still not clear whether it was the right one

e Justifying normal forms: a new approach based on classical
information theory

e Measures expected redundancy in a design, tries to minimize it

e Justifies all standard relational normal forms, and the new XML form
e Citation checks:

e original big-hammer paper: 400+

e the clean information-theoretic one: 120

LEONID LIBKIN HAMMING SEMINAR 56/59

EXPERIENCES

Consistency of XML specifications

e |n relational databases, we define tables with some basic constraints
o keys and foreign keys

e These specifications are always consistent
* No longer the case for XML. Discovered in (Fan, L., 2001):
e consistency is undecidable

e in the most common case of document nodes carrying a single
attribute, it is NP-complete

e Proletarian upper bound proof: Mao and Stalin would have been
proud

LEONID LIBKIN HAMMING SEMINAR 57/59

EXPERIENCES

Consistency of XML specifications

In relational databases, we define tables with some basic constraints
o keys and foreign keys

These specifications are always consistent
No longer the case for XML. Discovered in (Fan, L., 2001):
e consistency is undecidable
e in the most common case of document nodes carrying a single
attribute, it is NP-complete
e Proletarian upper bound proof: Mao and Stalin would have been
proud

10 years later: a new idea (with David, Tan, L.)

e Turn everything into linear constraints and apply integer linear
programming. A cute one-page proof of a stronger result

LEONID LIBKIN HAMMING SEMINAR 57/59

EXPERIENCES

Consistency of XML specifications

e |n relational databases, we define tables with some basic constraints
o keys and foreign keys

e These specifications are always consistent
* No longer the case for XML. Discovered in (Fan, L., 2001):
e consistency is undecidable
e in the most common case of document nodes carrying a single
attribute, it is NP-complete
e Proletarian upper bound proof: Mao and Stalin would have been
proud

e 10 years later: a new idea (with David, Tan, L.)

e Turn everything into linear constraints and apply integer linear
programming. A cute one-page proof of a stronger result

e Citation checks:

e original proletarian paper from 2001: 300
o the clean and neat 2011 paper: 6

LEONID LIBKIN HAMMING SEMINAR 57/59

EXPERIENCES

Should one stop trying?

Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.

LEONID LIBKIN HAMMING SEMINAR 58/59

EXPERIENCES

Should one stop trying?

Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.

Being a good Russian, | start with Dostoevsky: Beauty will save the world

LEONID LIBKIN HAMMING SEMINAR 58/59

EXPERIENCES

Should one stop trying?
Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.
Being a good Russian, | start with Dostoevsky: Beauty will save the world

And an immediate refutation by another giant: How could that be
possible? When in bloodthirsty history did beauty ever save anyone from
anything? Ennobled, uplifted, yes - but whom has it saved?
(Solzhenitsyn)

LEONID LIBKIN HAMMING SEMINAR 58/59

EXPERIENCES

Should one stop trying?
Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.
Being a good Russian, | start with Dostoevsky: Beauty will save the world

And an immediate refutation by another giant: How could that be
possible? When in bloodthirsty history did beauty ever save anyone from
anything? Ennobled, uplifted, yes - but whom has it saved?
(Solzhenitsyn)

But it has saved — concepts, ideas, fields, results — in science!

LEONID LIBKIN HAMMING SEMINAR 58/59

EXPERIENCES

Should one stop trying?
Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.
Being a good Russian, | start with Dostoevsky: Beauty will save the world

And an immediate refutation by another giant: How could that be
possible? When in bloodthirsty history did beauty ever save anyone from
anything? Ennobled, uplifted, yes - but whom has it saved?
(Solzhenitsyn)

But it has saved — concepts, ideas, fields, results — in science!

Returning to a remote forest in Massachusetts: The eye which can
appreciate the naked and absolute beauty of a scientific truth is far more
rare than that which is attracted by a moral one. (Thoreau)

LEONID LIBKIN HAMMING SEMINAR 58/59

EXPERIENCES

Should one stop trying?
Of course not! Citations don't tell the whole story.
But I'd like to finish citing others nonetheless.
Being a good Russian, | start with Dostoevsky: Beauty will save the world

And an immediate refutation by another giant: How could that be
possible? When in bloodthirsty history did beauty ever save anyone from
anything? Ennobled, uplifted, yes - but whom has it saved?
(Solzhenitsyn)

But it has saved — concepts, ideas, fields, results — in science!

Returning to a remote forest in Massachusetts: The eye which can
appreciate the naked and absolute beauty of a scientific truth is far more
rare than that which is attracted by a moral one. (Thoreau)

If he was right and we belong to that select group, we must keep looking
for beauty in our work.

LEONID LIBKIN HAMMING SEMINAR 58/59

LEONID LIBKIN

Thank you!

Questions?

HAMMING SEMINAR

EXPERIENCES

	Part 1
	Beauty
	Definitions
	Concepts
	Proofs
	Experiences

