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What Kind of a Future?

THE A0BOTS




What did the Future Look Like in the Past?




What Could Robots be Used For in Future?

IN THE FUTURE ReBeoTsS

Witk STARE AT us M
< LEEP To MAEE SURE
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WE Pen'T
FALL oUT oF

THE BED.

Pub of future will
know your order

Microchips embedded under
the skin will enable drinkers to
order their favourite tipple
before they reach the bar in the
future, a technology specialist
has said.

Ben Hourahaine, a future
trends analyst, claims that in
the 23rd century, cash will be
obsolete because as soon as a
customer walks into a pub, a -
reader above the door will scan
their microchip, note their
order and deduct a payment.

Beer pumps will pour a
perfect pint tailored to each
drinker's requirements.

Mr Hourahaine said:
"Technological innovations will
only enhance the customer's
experience.”




What do People Really want from Robots?

1. Autonomy: Ability to do interesting things, without hand-
holding, in complex environments

2. Robust & Flexible Interaction: Ability to fluidly adapt, to
maintain functionality, despite continual changes in tasks
and environments




TS GONNA |

Where are those robots?!



Some Real Success Stories




Technical Achievement: Dexterity

e OQOver past couple of
decades, due to pioneering S
work by people like Raibert, HEE EEW ENE
we have a rich, multi- e T Cm IS
disciplinary understanding
of locomotion, etc.

* Major insight was that
control and adaptation are
‘easy’ if we have the ‘right’
structure and morphology


http://www.youtube.com/watch?v=cNZPRsrwumQ

Technical Achievement: Uncertainty

* Major advances came from
recognizing that our models
are inadequate without a
description of uncertainty in
sensing and actuation

* Excellent example:
Simultaneous Localization
and Mapping




Technical Achievement: Systems Integration

* Consider one example —
Google Car e — e ——_—

e |t utilizes a vast arsenal of
computing technology:

— Network enabled access to
Maps and Earth scans

— Cloud computing to store
massive volumes of data

— Real time systems of high
data rate sensors



So, Are we Done”?

Consider, apart from cost, the following (truth in advertising):

* Every demo with Asimo happens as per Honda approved
scripts, in approved environments, by approved personnel

* How is the Google Car actually used?
— Engineers collect detailed maps elaborating terrain to within mm/cm
— Google engineer drives ahead just before Google Car is allowed to go

— Google Car utilizes rich sensing, recently collected scans, etc. to
localize itself and follow its stated paths

 Towel folding strategy:

(a) Towels remaining in pile? ja- - —:_131;}1_7 _b;u?_l(_c;l]_];il_e_'l--klia—ﬂ— 1 (e) Detect second corner (k)-(0) Fold and stack towel
No ,f __________ §u_cm,d Missh *Succe{r(l +
Yes Fail | (d) Grasp first corner |- (f) Grasp second corner jllf?j"l (i)-(j) Regrasp short side \".I
| \ Missy *Suc—cced Mis—gmsp\‘ H,Ung side Short side|
(b) Pickup towel from pile = (c) Detect first corner (= - —:_[E(ﬁe_:a,;c_ from one g;,l_lp_])_i_l_ ]:-— (g)-(h) Untwist, check configuration




Robotics Success, Type 1:
Focus on dexterity and motor control;
avoid ‘autonomy’

Q. |s a surgeon using the da Vinci Surgical System operating in "virtual reality"?

A Mo, Although seated at a console a few feet from the patient, the surgeon views an actual image inside the patient's body
while operating in real-time. At no time does the surgeon see avirtual imaage, or program the system to perform any
independent maneuvers outside of the surgeon’s direct, real-time control.

Q. |s this "robotic surgery?”

A Robotic surgical devices are designed to perform entirely independent movements after being programmed by a surgeaon.
The da Vinci Surgical System is a computer-enhanced systemn that introduces a computer interface and 30HD vision system
between the surgeon’s eyes, hands and the tips of micro-instruments. The system mimics the surgeon’s hand movements
in real time. It cannot be programmed, nor can it make decisions on its own to move or perfarm any type of surgical
maneuver. 5o, while the general term “robotic surgery” is often used to refer to our technology, it is not robotic surgery in the
strictest sense of the term.

[Source: FAQs on Intuitive Surgical’s web site]



Robotics Success, Type 2:
Characterize variability carefully;
keep action selection simple

Ca

(a) Single Teapot (b) Partly Occluded Teapot



Where is the Boundary Between
the Possible and the Impossible, today?

High level of variability + rich endogenous dynamics
+ incompleteness in models of change

“..Sometimes, however, the car has to
be more aggressive. When going
through a four-way intersection, for
example, it yields to other vehicles
based on road rules; but if other cars
don't reciprocate, it advances a bit to
show to the other drivers its intention.
Without programming that kind of
behavior, Urmson said, it would be
impossible for the robot car to drive in
the real world.”

[How Google's Self-Driving Car Works,
Discover News, Oct 18, 2011]




What Does his Mean for Real World Autonomy?

 We have often succeeded
by cleverly avoiding the
unexpected and the
unmodelled — (how) can
we move towards dealing
with it too?

 This is especially key when
we couple systems in novel
ways — when endogenous
dynamics become intricate




An Observation from My Time in Industry

National Instruments vs. HP/Agilent

By complete modularization, enable
a new model of experimentation,
the “Return of Edison”

What makes this possible:

— Diverse and heterogeneous
components, enabled for interaction

— Sophisticated tools for composition
Acknowledge ad hoc nature of
system design

— Zeitgeist in broader technology space!
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Figure 1

The X Series of multifunction data acquisition devices for PCI Exprass and PXI Express Is
comprised of 16 new X Series DAQ devices, which provide enhancements to analog 10,
digital |/0, onboard counters and multidavice synchronization.




An ad hoc Approach to Robotics

e Utilize a diverse, heterogeneous team of moderately capable,
well understood components (Nao, iRobot, Kinect, etc.)

— Acknowledge that even more complex systems are eventually limited,
especially when we bound computation/information/communication

* Continual adaptation of skills among individuals (learning,
app store like tweaks)

— No two modules are identical, in the limit, or static; how should we
represent knowledge in this setting?

* Strategic interaction mechanisms to enable efficient re-
configurability in the face of incomplete models (and
incompatible fragments), coarse specifications, conflicting
preferences and goals, etc.



My Personal View of What to Aspire to

We need more of this!

In addition to, and
while we wait for...




Ad Hoc Human-Robot Teams
in Virtual Worlds?

Sou rCe SERVICES ~ TECHNOLOGY ~ STORY  COMPANY : :

Government
Office for

Science

»*'Foresight

The Future of Computer
Trading in Financial Markets

Working paper

I PAID A BRIBE

uncover the market price of
00000 HITS

Home Tell Us Your Bribe Story Read Bribe Stories Ask Raghu Forum Awards

Bribed? Didn't Bribe? Bribe Analytics The dark side of the construction sector

Victimised? Angry? B e e Dt =
Top 5 Cities (Bribe amount in Rs lakhs) !
REPORT YOUR BRIBE
ANONYMOUSLY +so IR
Tell us your story. Using your stories 170
we'll advocate with the government
for an improved system. el Kolkata |
What is I Paid A Bribe? Detailed analysis of the bribes reported so far ~% R —

Image Courtesy: Teufik-de-planscise, Wikicommens




Problem: Interactive Decision Matinng:

Ability for agents to achieve long-lived autonomy

in interactions with a continually changing environment (partly,
due to the endogenous dynamics of interaction)

with coarse high level goals,
with incomplete information regarding changes at level of
- components (e.g., drift or failure)

- structural issues (e.g., new participant or environment)



Decision Making under Uncertainty

The traditional starting point for rational choice is
maximization of expected utility

Define a set of possible acts and states

Define a preference order over outcomes —utility functions
Choose acts to maximize utility

Table 1. Savagze's example illustrating acts, states, and consequences

Act State

Good Rotten
Break into bowl six-egg omelet no omelet, and five good .

eggs destroyed -<:;)149139}2>

Break into saucer| six-egg omelet, and a five-egg omelet, and a

saucer to wash saucer to wash
Throw away five-egg omelet, and five-egg omelet

one zood egg destroyed




Decision Making Over Time

Variational optimization — experience
. {ze, 06,7}
select best path over time, & %,
given transition dynamics & AN
: e _
Stochastic Control or RS R— ~ QL
o o EM

Markov Decision Processes @\ &

. N Y &
MDP: Consider a repeated % &

. ) value/Q-function

version of Savage’s example

!

p(x'|x,a) One Interpretation: Re-cast as

Find a policy: (Bayesian) inference: infer best

assignment to maximize

7 x)=argmax Q(x,u)+ .I}(x') p(x'|u,x)dx'
u I 'J ~ probability of a desired state



Dealing with Partial Observability

Often, we can’t see e —  ——
everything that determines LE é
the dynamics of utilities

Introduce notion of a belief *
state — distributions over 3
possible states of the world :

P
o h.r“ ol la ’!"ﬁ-

Instead of directly working
with p(x'|x,a), introduce
and calculate with b~ p(x)
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Interactive Decisions: Dynamics of beliefs

In an interactive world, we hold beliefs over states; the states
are determined by someone else’s actions

— What are their beliefs; how do they choose actions?

rew I common
AFEC re‘lﬂl’a

One approach:
DEC/I-POMDP



“...instead | looked away. But he understood.
Just as | understood that he had understood.
Just as he understood that | had understood
that he had understood. But all this
understanding only went so far as it can go in
a few seconds.”

[Orhan Pamuk, My Father’s Suitcase,
Nobel Lecture, 7 Dec 2006]



Models of Rational Interaction:
Coordination Games

* Simple classical example is
the Stag Hunt (Rosseau)

— Models cooperation

 Two hunters, each can go
after stag or hare but the
decision must be made

independently

Hunter 1

stag
rabbit

Simple example illustrates:

Multiple Nash equilibria
(payoff/risk dominant)

Notions of ‘trust’

Coordination failure, problem
of equilibrium selection

Hunter 2
stag rabbit

10,10 0,8

8,0 7,7




Learning for Equilibrium Selection, etc.

In a repeated game, we want to learn opponent’s strategy — family
of conditional distributions over future actions. We could learn:

Start with a model of the opponent’s strategy.
Compute and play a best [or almost best] response.
Observe the opponent’s play and update your model.
Goto step 2.

b e

When does Bayesian updating yield posteriors consistent with
actual strategies?

Crucial issue — process generating data is nonstationary (especially
if everyone is learning and is rational!)



A Result of Kalai and Lehrer [1993]

In a finite stage game played infinitely often by Bayesian
rational players, if players’ strategies induce a distribution on
play that is absolutely continuous w.r.t. their induced beliefs
about play, then on almost all play paths every player is a
good predictor, and behavior comes asymptotically close to
equilibrium

Two key assumptions:
1. Beliefs have some accuracy vis-a-vis strategies
2. Strategies are optimal vis-a-vis beliefs



Result, e.g., by H. Peyton Young

... there exist no general, model-based procedures for
multi-agent learning when players are perfectly rational
and they have sufficiently incomplete knowledge of their
opponents’ payoff functions.

Crucial assumptions:
* Unknown payoffs are distributed over some interval

* Ifinstead they were known to lie in a finite set, result fails

— One can tailor forecasting rules to take account of the restricted set of
payoffs that the opponent could be using

* Agents must optimize exactly. If instead agents almost
optimize, the result does not necessarily hold



Subtlety of Real Decision Making Behaviour

Consider Akerlof’s market for lemons:

Seller knows more than the buyer in a used car market (is the
car a ‘lemon’ or not?)

Buyer: | don’t know if it is a lemon, so | offer an adjusted price
Seller: If car isn’t a lemon, | want a good price
The only things that will be traded are lemons!

We don’t care about used cars, but the issue of information
asymmetry exists in all interactions involving humans & robots

What is the “correct” way to act here?



Such Problems have Distinguished Pedigree

W H AT
oy

DOMNT

W E

KNOW?

hen Charles Darwin was

working out his grand theory

on the origin of species, he

was perplexed by the fact that
animals from ants to people form social
groups in which most individuals work for
the common good. This seemed to run
counter to his proposal that individual fitness
was key to surviving over the long term.

By the time he
wrote The Descent of
Man, however, he
had come up with a
few explanations. He
suggested that natu-
ral selection could
encourage altruistic
behavior among kin
so as to improve the
reproductive poten-
tial of the “family.”
He also introduced
the idea of reciproc-
ity: thatunrelated but
familiar individuals
would help each
other out if both were
altruistic. A century
of work with dozens
of social species has borne out his ideas to
some degree, but the details of how and why

helped humans become Earth’s dominant
vertebrate: The ability to work together pro-
vided our early ancestors more food, better
protection, and better childcare, which in
turn improved reproductive success.
However, the degree of cooperation varies.
“Cheaters” can gain a leg up on the rest of
humankind, at least in the short term. But
cooperation prevails among many species,
suggesting that this
behavior is a better
survival strategy, over
the long run, despite
all the strife among
ethnic, political, reli-
gious, even family
groups now rampant
within our species.

Evolutionary biologists and animal
behavior researchers are searching out the

WHAT DoN'T WE

KNow?

ilar studies have shown that even when two
people meet just once, they tend to be fair
to each other. Those actions are hard to
explain, as they don’t seem to follow the
basic tenet that cooperation is really based
on self-interest.

The models developed through these
games are still imperfect. They do not ade-
quately consider, for example, the effect of
emotions on cooperation. Nonetheless, with
game theory’s increasing sophistication,
researchers hope to gain a clearer sense of
the rules that govern complex societies.

Together, these efforts are helping social
scientists and others puild on Darwin’s
observations about cooperation. As Darwin
predicted, reciprocity is a powerful fitness
tactic. But it is not a pervasive one.

How Did
Cooperative
Behavior Evolve

Modern researchers have discovered that
a good memory is a prerequisite: It seems

£
Ie
L4
0
Q
"
5
(]
@
-
)

Tentative answers in game theory — in consideration of equilibrium selection,
evolutionary theory of organizations/norms, etc., but how to implement?




The slice of e Question | Warnt 1o Address,

When, why and how might computationally/
informationally bounded agents be able to solve these
apparently intractable problems efficiently?

Might there be structural principles that guide our search
for appropriately ‘simple’ strategies?



Tlree Worked Examples,
to llustrate the molion o

Yple srategy”



Warm-up Example #1: Control of Cart-Pole

« Two subsystems — pendulum,
cart on finite track; only one
actuator — cart

- We seek global asymptotic
stability of 4-dim system

« Very popular example in robot
learning

My main concern:
Is there a principled explanation for the
simplest intuitive strategy...?

S. Ramamoorthy, B.J. Kuipers, Qualitative heterogeneous control, HSCC ’02 & 03



Reactive Behaviour
- Global Structure

Stabilize at hyperbolic
fixed point

E=E*
(Stay on Separatrix)

Adversary could push

system anywhere,
e.g., here \

E<E*
(Libration - Pump)

Sliding Mode

Rotation Orbits Callb dCSOYf/bC
. global strategy
. as a qualitative
e transition graph
Larger disturbances ):"‘"" arap

could truly change ) 9
quantitative details, !
e.g., any number of

rotations around origin

We want to reach and

The uncontrolled system
stay here

converges to this point



Example #2:
Shape Reconfiguration in Modular Robotics

Robot is defined by
morphology & connectivity
(shape problems)

Many practical realizations
—e.g., Xerox PARC, Intel,
CMU, MIT, Cornell




Hexagonal Metamorphic Robot Models
- Catalog defines Local Constraints

@ C@ ’(Chirikjian, 1994)
C%% Cﬁ Q(Kirby et al., 2007)

i (Abrams & Ghrist, 2004)

Feasible cell
to add module

Rtz
8
ki

Robot



Inefficiency of Sampling Based
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An Alternative

Subspace with
nice properties

SmS\

T. Larkworthy, S. Ramamoorthy, A characterization of the reconfiguration space of self-reconfiguring robotic systems,

Robotica (2011)




A Greedy Planner

A

P = Placed

C = Contract

G = Growth

G+ = Unviolating G

while(curr '= goal)
if (!improve()) error
updatelabels()

try move(C to G+)
try move(C to G)




The Surface Model: Local Constraints

Generators:

E.2

E.4

Not allowed to contain kink or dual path
violations on a Hamiltonian Path around the
perimeter

i

S to S Planning is, empirically, linear time — Why?




Algebraic Connectivity of C-Space

Consider unweighted graph G = (V, E) generated as follows:

— Generate random configuration by uniformly selecting action starting
from random initial start points
* By action, we mean a full “move” not one atomic module movement
» Effectively, an initial point is allowed to ‘diffuse’ in c-space

By defining the cost of a cut in terms of number of edges,
define the Cheeger constant as,

h : cut(S)
¢ = min
N S min{vol(S),vol(V — S)}

Computing this for various points in c-space characterizes it

AN
XIp o>
XN

XD

.‘0‘.




Approximating Algebraic Connectivity

Directly computing Cheeger constant for large module
numbers (e.g., 20000) may be infeasible

Instead, define a Laplacian, L, with elements,

.

1 ifi=janddeg(v;) # 0

EL : = L 1 !-: a £ 4 ﬂ-ﬂ-d ;s 'iS ﬂd'rﬂ.fﬂﬂ_f to .
! \r.f#dfglb‘f\ldﬂg{vj] f 7 J 1 4] j

0 otherwise
\

: A
Its eigenvalue bounds the Cheeger constant, /2, >he > 7



Experiment with Algebraic Connectivity

Estimated distribution of ikz for Surface Model

* On arandomly chosen set =
of configurations, expand
neighbors to fixed depth ===
and estimate Cheeger B ]

constant (via eigenvalues of
Laplacian): For comparison:

Estimated distribution l:lsz fior Ghrist Model

; _ cut(S)
¢ = min -
G s min{vol(S),vol(V — 5)}

0.3

This is suggestive, but there is an even better reason.



Graph Minors

Definition

H is a minor of G, written H < G, if there exists a sequence of
edge contractions and edge/vertex deletions that transform G into

H




Implications of Graph Minor Property

If H< G then H’s graph genus is less than or equal to G
Many properties preserved under minor (tree width)
Cheeger constant of H is less than G

Gives an indication of which graph is more complicated (if
either)

genus 0 genus 1 genus 2 genus 3



What Happens as Modules are Added?




Local Structure and Graph Minors:
When is an Action Set ‘Difficult’?

A path planin S, existsinS,,;:
suggests recursive solution strategy
- Not so for Ghrist’s catalog



Example #3:
Low-Complexity Coordination Strategies

How to coordinate to an equilibrium even though the
agents are not rational, and do not learn about the
system as a whole or even about each other?

H.P. Young’s Interactive Trial and Error Learning model:
— Adjust behavior only in response to own realized payoff
— No knowledge of the overall structure of game
— Cannot observe actions or payoffs of most other players
— Occasionally tremble and make mistakes

Examples: driving in a big city, packet routing in networks



Essence of the ITE Algorithm

 Agent has a ‘mood’: {content, discontent, hopeful, watchful}
* Player state = {mood, benchmark action, benchmark payoff}

What do the profiles mean?

e Content: Experiment with small probability; If experiment results in
a higher payoff, adopt the new action & payoff as benchmarks

* |If payoff increases without experimenting, become hopeful but
don’t change benchmark action right away

* If payoff stays up become content again with new higher payoff as
benchmark

* |If payoff decreases below benchmark without experimenting,
become watchful but don’t change benchmark action right away



If payoff stays below benchmark become discontent
If payoff goes back above benchmark become hopeful

Discontent: Flail around; try a new action at random and with
probability O < p < 1 stay discontent

With probability 1 — p spontaneously become content with
the current action and payoff as new benchmarks



Result

Theorem

If all players use interactive trial and error learning and the
experimentation rate € > 0 is sufficiently small, then for almost
all n-person games on finite action space that possess at least
one pure Nash equilibrium, a Nash equilibrium is played at
least 1 - € of the time.

Why (in a nutshell)?

* Every recurrence class (potential minimizer) contains at least
one all-content state in which the action benchmarks
constitute a pure Nash equilibrium

» Stochastically stable states are all of this form



How to Build on Such Examples?

* In each case, | have shown you a ‘hack’ backed by Theorem(s).
* (Can these then be obtained by special kinds of

— Unsupervised/developmental/life-long learning?

— Mathematical discovery?!

For this to be possible at all, we need:

1. More empirical examples of principles extracted from such
problems: understand the phenomenon of decision making

2. A ‘description language’ for capturing all this in a unified way



Why Focus on Specific Problems?
Maybe We Need Better General Algorithms?

Consider set of all structurally distinct strictly ordinal 2x2 (no)-
conflict games [Rapoport & Guyer ‘66]; five major categories
of multi-agent learning algorithms

Exhaustive evaluation in ad hoc team setting yields:

Agent Conv. Fexp. | Welfare Fairness NE PO WO FO
JAL 1 3.9866 7.9720 15.9063 1 0.9920 0.9920 0.9920
CJAL 1 3.9831 7.9663 15.8874 1 0.9897 0.9897 0.9897
WOLF-PHC | 0.9996 3.9449 7.8908 15.6426 1 0.9638 0.9638 0.9638
RegMat 0.9990 3.9107 7.8170 15.3906 0.9954 0.9457 0.9457 0.9457
Nash(Q) 0.9987  3.9840 7.9733 15.9144 0.9954 0.9939 0.9939 0.9939

Table 1: Results for no-conflict games.

Agent Conv. Fexp. | Welfare Fairness NE PO WO FO
JAL 0.8901 3.0140 6.0592 8.9997 0.8982 0.7781 0.7021 0.6164
CJAL 0.9456  3.0326 6.0978 9.0900 0.8470 0.8050 0.7184 0.6250

WOLF-PHC | 0.9430 3.0392 6.0620 9.0517 0.9047 0.7636 0.6992 0.6142

RegMat 0.8673 3.0313 6.0368 8.9610 0.8946 0.7662 0.7000 0.6109

Nash(Q) 0.9990  3.0446 6.0667 9.0755 0.8722 0.7767 0.6946 0.6097

Table 2: Results for conflict games.

[S. Albrecht, S.R., subm. AAMAS 2012]



Two Domains of Interest

* Robot football
— RoboCup: world champion robots vs. humans, by 2050
— Many different leagues: Standard platform, Simulation
— Connections to human football, sports sciences, etc.?

* Agents in Electronic Markets
— Penn-Lehman Automated Trading (PLAT) Project
* Also other related domains, e.g., Trading Agent Competition
— My vision of a new ‘Market Analysis and Design” Competition
— Connections to economics, especially behavioral finance/econ.?



Cornrvent Reseancl Theme #1:
Control of Interactive Decisions

How does one shape a partially controllable interaction
to achieve outcomes defined jointly by oneself, other
agents and an external world ?

[A. Valtazanos, A. Robinson]/



Interaction with Limited Authority

e Lead the ‘world’ from an
initial to a final state

* The state itself has many

components:
— Controllable
o | . (h2) — Uncontrollable
® - oo AL — Jointly Manipulable
@ o °

Initial State Target State

- Al: Controlling agent
- A2: Adversarial agent (to be controlled)
- External objects



Interaction Control: Model

e The state of the art in this area is to maximize a reward in the
I-POMDP model

— Use particle filter over beliefs (nest to 1 or 2 levels, if needed)

* This often works but we aren’t really ‘controlling’ the other
player explicitly — is that possible?

Our approach, Hierarchical Interaction Control Process:

* |dentify interaction predicates (e.g., | can see the ball,
opponent can’t) that can be locally sensed and acted upon

* Learn local policies to enforce these predicates to some level
* Define global policy as a sequence of such local games



Experiment — Strategic Interaction

POMDP Striker HICP Striker




Preliminary Experiment: HICP vs. (I)POMDP

Cumulative scores
SDD T T T T

HICP
IPOMDP
— POMDP

Table below shows statistics
of sequences of consecutive
successes (S) & consecutive
failures (F) of striker

— Gives an indication of how
reliably limits of the heuristic

Goals scored
— ]
= =

—_

=

=
T

S0+

goa| keeper are exp|oited U & im m0 2w zé_n A0 E0 400 #0500
Trial
Kick type | max(S) | max(F) | u(S) n(F) | 6°(S) | o°(F)
Hicp 9 7 2.27b | 1.8902 1 3.2146 | 1.9014
IroMDP 5 11 1.77h | 22118 | 0.9361 | 3.3356
PowumbDP 4 9 1.8b17 | 2.2326 | D.7153 | 2.2041




Where to next, on this front?

* Ability to control coordination and beliefs when the other
person is genuinely being strategic

— Currently, we have adaptation but not recursion of beliefs!

* Ability to incorporate information constraints explicitly, e.g.,
privacy — | want robot to track and interact with my child
without revealing too much to a hacker if compromised!



Cornrent Researncl, Theme #2:
et Dcision Mg

Not knowing what games are coming up, in continually
changing multi-agent environments, how should we
represent Rnowledge and learn strategies?

[M. Hawasly, B. Rosman, A. Robinson]



Life is like a ‘box’ of situations,
vou never know which one you’re gonna get!




What is the Problem?

Over a lifetime, we can learn many skills (dribble, kick, etc.)
while playing in numerous training games

— Each of these can be individually learnt, e.g., using RL

Eventually, you’ll be put in test situations where you decide:
— What game am | supposed to be playing now?
— How best to reuse versions of my learnt knowledge?

You must do this subject to incomplete knowledge of the state
of play — you haven’t seen this opponent before, you are not
yet sure what the relevant attributes are, etc.

Our approach: Keep a structured representation of ‘skills’ and
play incomplete information games, e.g., aspiration learning



Model of Capabilities

* We shift focus to what we
can do and what we may
lose due to opponent -

* Define capabilities as
policies that can preserve a
local predicate w.r.t. a
domain and conditions

C = <DC? e, pmﬁc)
Vx € Dc. J(a1.a2.....an) = mc(x) € AL P(pe(mc 0 x)) > pe



Transition Capability: Switchers

 Decompose problem into
predicates that can be
maintained and transitions
between such sub-problems

u= (D¢ .7y.De,. pu)
Vx € De,, da=my(x) € Az, : P(pa(acx)) = pu



Policy Space in terms of Capabilities

e May think of this as related
to options framework

* A better analogy,
capabilities = ‘local games’

— Policies can be strategies for a
multi-agent game




Space of Predicates

every predicate of a capability is a vertex (0-simplex)

(Dc. e, pc; pe)

D possession

any possible combination of predicates is a simplex
- capturing local constraints

possession possession

contact

openness openness

1-simplex 2-simplex
(Dcl U Deo, Me1c2. Pe1s Pe2s Pet s :Oc2>



The Predicate Complex:
Simplicial Complex formed by Capabilities

5
Suppor i
OﬂE!FIFEESS t
contact mate
receive

Safety: having multiple alternatives at all times

= living on higher dimensional simplices



Topology of Complex Informs
What to Learn/Plan for

poss. &
contact_goal

ossession

tackle

Implications:

* If we can maintain a
suitable topology,
randomized algorithms can
be made efficient

* Knowing which simplices
are ‘active’, we can
structure the use of
aspiration learning and
other low-complexity
learning strategies



Dynamics over Predicate Complex

m /iving on a simplex refers to preserving the simplex predicates
o — 0, Po — Po
m switchers give a stochastic map

> x U — 2

m adversary works to toggle off active vertices

g = {"-"l; V2, "-"'3} e [{Vlr Vz}, {"""15 ""'(3}5 {V2‘- V?*}]



Dynamics over Predicate Complex

task: find a sequence of simplices and actions, online, so that the

goal simplex becomes active under the dynamics:

Lg L
dp — 01 — 02 — ... — Og



2D Robot Soccer

HELIOS2009

VS.

Edinferno 2D




Question:
I'mplicit in our construction is the notion of a ‘tactic
associated to ‘situations’.

Is there structure in the ‘space of strategies'’?
Is there a canonical description of a situation?

[H. Mahmud]



Life as a Sequence of Markov Games

Markov game = <agents, states, dynamics, reward>
World is a sequence of unknown game contexts: ©,

Within each context, a set of local strategies or options are
feasible to use — e.g., policy to dribble around a defender

For all realizations of contexts and Markov games, we can
collect information (over a lifetime) and store that as a
performance history of an option

Renormalize: v curves of option o*




Structure in the Space of Options

We can compare two options in terms of (diffeo)morphisms
between the sets of reward curves, BUT...

... we can reduce graph isomorphism to computing this distance

Instead, we look to computational topology for help

Define reduction between sequences of options and from
that define a simplicial complex in the space of options
— Key is to define a boundary: no more simplification possible

Apply reduction until we have a minimal description

Do all of the above — offline, in your dreams — so that online,
make use of simpler model to transfer knowledge and plan



What is Computational Topology Doing?

e Key Idea: The boundary operator 0
e Given: A complexity level k view of a topological object.
e Computes: A complexity level k — 1 view of the topological
object.

.

é




Collective Decision Making

What, when and how can a collective of simple,
bounded agents compute global properties?

[with R, Santhanam T A. Salamon; A. Novik]



Observation: Stylized Facts about Asset Prices

There seems to be no generic statistical model that is able to
capture all stylized facts, such as the following:

Heavy tails: Returns distribution may have pareto-like tails (persists
even after correcting for volatility)

Volatility clustering: Different measures of volatility display positive
autocorrelation over many days

Gain/loss asymmetry: Large drawdowns, few upward jumps

Asymmetry in time scales: Coarse grained measures of volatility
predict fine-scale volatility better than vice versa

Trading volume is correlated with all measures of volatility
Intermittency: Bursts in volatility time series



Further Complications

Where does price come from? Network effects — endogenous
Microstructure dynamics of interaction matters!

Price set by the trade mechanism
— as such, there is no single price
(depends on trading direction,
speed, agent attributes and other

effects) efresh | igland home | disglaime: | help
GET STOCK

) MSFT psFT gol

Symbol Search

LAST MATCH TODAY'S ACTIVITY
Price 240700 Crders 52 983
Time 1457:07.72 Volurme 10,243,212

BUY ORDERS SELL ORDERS
EHBGES MENEGHE ECAEES BENETCE G. Leibon et al., Topological

500 24.0620 500 24.0690 i o

6000 240610 500 24.0680 structures in the equities market
5000 240600 500 240700

100 24 0600 200 240800 network, PNAS 105(52) 2008
1100 240650 18981 240800

100 24 0500 412 240800

5000 240500 3000 240980

200 24.0500 500 241000
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2
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Some Questions

* Econometricians ask how better to model/predict the process
and financial engineers ask how better to optimize and ‘price’

* My interests:

— For bounded agents working with incomplete and
asymmetric information about the full system; are there
low-complexity decentralized strategies for characterizing
the qualitative structure/state of the dynamics?

— Can this work in settings with informational constraints
(e.g., privacy or disclosure restrictions)?



Macroscopes

Global functions that need
to be computed by local
bounded agents

How hard is this?
Communication complexity

New issues to consider:

— How are inputs allocated to
different players?

— What does any player know
about allocation structure or
others’ information?

I




Example Properties of Macroscopes

Consider the simple change detection problem:

* Every k-player single-blind Constancy macroscope on N D-ary
inputs can be solved with cost r(log D) + k, where r is number
of connected components of intersection graph of allotment
structure. This bound is optimal to within a constant factor.

* Every k-player double-blind Constancy macroscope on N D-ary
inputs can be solved with cost kd log(D+1). Moreover, there
are k-player double-blind Constancy macroscopes which
require cost kd log(D).



Where to next, on this front?

* Extend these results to include more sophisticated
communication protocols, meta-information (privacy) and
function types (e.g., ranking)

* Can these results be extended to address endogenous
dynamic properties?!

* Synthesize macroscopes with well understand behaviour, in:
— Networked markets
— Decentralized robots with partial views



Concluding Remarks: Summary

1. Strategically sophisticated inter-dependent decision making
iS @ major open area, of fundamental scientific interest, with
immense application potential and in need of study within CS

2. In particular, we need a good description language and
implementable algorithms for encoding and learning tasks
over a lifetime of different interactions

3. We need efficient mechanisms for composing decentralized,
heterogeneous, individually unreliable resources into ad hoc
teams that can take on a large family of tasks



Concluding Remarks: Open Questions

Typically, future is endogenously created and interactive dynamics
are non-trivial, so much of the data you need is unavailable ahead
of time. What are useful models of learning in this setting?

There is a disconnect between general models such as
POMDP/POSG, typically intractable, and powerful but specialized —
often behavioral — tricks that seem to make humans efficient
under bounded rationality. (How) can we reconcile these?

The world is complex — which is why formal models are elaborate,
requiring depth. How can/should an ad hoc collective support this
depth despite continual change in components and contexts?



