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Motivations

I What lies beneath?

I The surface structure of the data can be best explained in
terms of some underlying, hidden variables

I Learning a representation of the data; facilitates
subsequent tasks

I Spearman (1904): Children’s scores on a set of exams
(e.g. Classics, French, English) might be explained by an
underlying notion of general intelligence ’g’

I Understand monitoring data from a jet engine in terms of
faults, etc

I Frey and Jojic video
I “We are drowning in information, but starving for

knowledge!” (Naisbett, 1982)
I These are also some of the problems faced by the brain
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Outline

1. A crash course in graphical models
2. Models with one layer of hidden variables
3. Modelling sequences
4. Going deep
5. Discussion
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1. Probabilistic graphical models

I Probabilistic graphical models are a tool for modelling
complex networks of relationships which are
non-deterministic

I In a directed graphical model G (aka Bayesian network)
the joint probability is defined as

p(X1, . . . ,Xm|G) =
∏

i

p(Xi |parentsi ,G)

I It is the missing edges that describe conditional
independences

I Model is comprised of structure and parameters
I Bayesian networks represent conditional (in)dependence

relations: not necessarily causal interactions

11 / 48



Example: Does my car start?

Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

p(b, f ,g, t , s) = p(b)p(f )p(g|b, f )p(t |b)p(s|t , f )
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Undirected graphical models

I For undirected graphs, locality depends on the notion of
cliques

I Joint probability distribution is given as a product of local
functions defined on the maximal cliques of the graph

p(x) =
1
Z

∏
C∈C

ψXC (xc)

with
Z =

∑
x

∏
C∈C

ψXC (xc)

I Each ψXC (xC) is a strictly positive, real-valued function,
otherwise arbitrary

I Z is called the partition function
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p(x) =
1
Z
ψ(x1, x2)ψ(x1, x3)ψ(x3, x5)ψ(x2, x5, x6)ψ(x2, x4)
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2. Models with one layer of hidden variables

. . .

. . . . . .

. . .

undirecteddirected

x

z

I The directed model is the most common formulation, but
we will see the undirected model used later for “deep
learning”

I Hidden and visible variables can be continuous, discrete
etc

I Examples: clustering, factor analysis, topic models (LDA),
sparse coding, multiple cause vector quantization (MCVQ)
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What are latent variables?

I We have an observed data vector x
I We assume that the inter-relationships between the

observed (or manifest) variables in x can be explained in
terms of some latent (or hidden) variables z

p(x) =

∫
z

∏
i

p(xi |z)p(z) dz

I Reasons for being hidden: latent variables may be
theoretical concepts, or real physical variables that are
simply unobserved (e.g. the location of an object in a
scene)

I Caveat: inference of causality is a hard problem. Generally
needs experiments (actions) as well as observational data
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Clustering/Mixture Models

I z has a one-on-in-k coding
I Examples: Clustering of documents; discovery of new

classes of infra-red stars in the IRAS Low Resolution
Spectral catalogue (Goebel et al, 1989)

I Clustering is limited, we want multiple causes
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Factor analysis

I Factorized Gaussian
model for z variables

I Example: Data for each
frame is (x , y) locations of
many markers on a face
concatenated into a vector

I Model rigid and non-rigid
motion in terms of a small
number of modes of
deformation wi

x =
∑

i

zi wi + noise

I Tim Cootes’ animations
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Sparse Coding

Olshausen and Field (1996, 1997)

I Model patches of natural images x as a superposition of
basis functions wi with strengths zi

x =
∑

i

ziwi + noise

I Model is overcomplete, so there are more basis functions
than pixels

I Sparsity prior so that z ’s are mostly near zero and only
occasionally large
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Overcomplete: 200 basis functions from 12× 12 patches
[Figure: Olshausen, 2005]
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Topic Modelling

Blei et al (2003)

I Bag-of-words representation for each document (ignore
word order)

I Each document is regarded as being generated from a
weighted set of topics

I Each topic is a probability distribution over words
I 0 ≤ zi ≤ 1 for all i and

∑
i zi = 1

I Learn topics and estimate per-document topic weightings
I AP corpus, 16,333 articles with 23,075 unique terms
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Learning Latent Variable Models

I Use the Expectation-Maximization algorithm (Dempster,
Laird and Rubin, 1977)

I Goal is to find parameters θ that maximize the log
likelihood

L =
n∑

i=1

log p(xi |θ) =
n∑

i=1

log
∑

zi

p(xi , zi |θ)

I Do this by iterating E- and M-steps
I E step: Compute p(zi |xi) for all data points i = 1, . . . ,n
I M-step: Adjust the parameters to maximize (or at least

increase) the expected complete data log likelihood
I This can be shown to converge to a local maximum of L
I In some cases approximations may be needed
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Handling Non-linearity

..
.

.

. .
...

z

z

x

x

x1
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φ

I Generative Topographic Mapping (Bishop, Svensen and
Williams, 1997/8)

I Difficulty with parameterizing the non-linear mapping;
curse of dimensionality wrt the latent space dimension

I Gaussian Process Latent Variable Model (Lawrence 2005)
I More specific structure of the non-linearity
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Williams and Titsias (2004)

I Uses greedy learning to extract one object at a time
I The latent variable for each object is its location
I Masks and depth ordering determine how layers combine
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Multiple Cause Vector Quantization

Ross and Zemel (2006)

I Factorial face image generator
I The components are combined using a mask
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3. Modelling sequences

I A compressed representation of the one-layer latent
variable model

I The figure shows T independent draws from the model

. . .

. . .

x x x

z z z
1

1 2

2 T

T
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x x

z z
1

1 2

2
. . .

. . .

z
T

x
T

I Clustering→ Hidden Markov model (HMM)
I Factor analysis→ Kalman filter
I MCVQ→ Factorial Hidden Markov model (FHMM)
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Factorial Switching Kalman Filter

Artifactual state

Physiological state

Observations

Physiological factors 

Artifactual factors
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Neonatal Condition Monitoring

I Quinn, Williams and
McIntosh (2009)

I Factors typically
combine by overwriting
(occlusion)
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4. Beyond the single hidden layer: Hierarchy

I Hierarchy is a recurring theme in many areas of AI
I Many types of hierarchical structure, e.g.

I PART-OF
I AND-OR
I IS-A
I spatial, temporal scale
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Hierarchical Structure in Scene Analysis

I Scene type e.g. indoor, outdoor rural, outdoor urban
I Objects occurring (and co-occurring) depend on scene

type
I Inter-relationships between the pose of objects
I Objects can be composed of parts, e.g. car wheels, body,

roof, with variable shape and appearance
Other factors

I Depth, occlusions
I Illumination, shadows
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Hierarchical Structure in Data Streams

I Consider cooking by following a recipe: there are a number
of tasks, each of which may have sub-components

I The tasks will have some dependencies, but there can be
inter-leaving of multiple tasks

I Animal behaviour modelling, e.g. a pair of Drosophila. High
level states (anxiety, arousal, aggression) affect lower-level
primitives, e.g. wing extension, walking, pirouetting,
orienting, singing

I Analysing sports action
I Hierarchical HMMs (Fine, Singer & Tishby, 1998)
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Hierarchical HMM as a Finite State Automaton

HFSA for a(xy)+b|c(xy)+d Figure credit: Kevin Murphy (2002)
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Trees

aidscancer

disease

doctor

health insurance

medicine

patients

studies125 130

135

156

171 173

191

192

I Phylogenetic trees (Wright, 1921)
I Example: Harmeling and Williams (2010): building trees

bottom up from data
I Grammars
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Dynamic Trees

Storkey and Williams (2003)
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I Model builds a “parse tree” corresponding to each input
image

I Parent-child relationships encoded were very simple in this
model

I “Tower of jelly” problem
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Beyond Trees

I Hierarchical Structure and Multiple Causes

. . .

. . .

. . .
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Greedy Learning

I Start by learning a one-hidden-layer model
I The model’s “independent causes” turn out to not really be

independent (and we can see this by looking at the
aggregated posterior over examples)

I Add another layer of units to model these correlations
(needs to be non-linear)

I Possibly adjust the parameters in the lower layers once the
higher layers have been learned

I Examples: Hyvärinen et al (2000, 2001), Karklin and
Lewicki (2003, 2005); models of image patches
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Deep Belief Networks

I Hinton (circa 2006) argues that greedy learning by stacking
directed graphical models is problematic

I The parameters learned by the first layer model are such
that the latent variables z should be independent

I But as this is not possible he argues this leads to a bad
compromise, and that the aggregated posterior distribution
〈p(z|x)〉p(x) may be no easier to model than p(x)

I He argues that using an undirected model (aka a
Restricted Boltzmann Machine, RBM) as the basic
learning module should be more effective

I Inference in an RBM is easy; each hidden unit can be
sampled independently given the input. Cf explaining away
in directed models
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undirected

x

z

To draw samples from this model we can use a Markov chain
Monte Carlo methods based on block Gibbs sampling

. . .
x

z z z

x x x
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(c)(b)(a) (d)

I (a), (b) and (c) are equivalent
I (d) is more powerful as W2 can better model the

correlations in the first hidden layer
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Example: DBN learning on natural image patches

Lee, Ekanadham and Ng (2008)
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I A second layer unit responds to a combination of a few first
layer units; see examples above

I Properties of “V2” units can be compared to neural data

I Comparison between methods can be based on e.g.
I Visualization of learned weights
I Evaluation of log likelihood under the model (technically

difficult)
I Use of the learned features for prediction tasks
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Example: Acoustic modelling using DBNs

Mohammed, Dahl, Hinton (2010)

I In speech recognition, a Gaussian mixture model for mel
frequency cepstral coefficients (MFCCs) is the standard
acoustic modelling framework

I Mohammed et al show that they can obtain better
performance on the TIMIT corpus by training a multi-layer
DBN, and then translating this into a feedforward classifier
network.

I This system outperforms previous methods on the TIMIT
corpus
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5. Discussion

Summary

I One-hidden-layer models have proved useful
I They can be readily extended through time
I Factors can interact in complex ways to create

observations, e.g. via masks and occlusion
I Data generators can have rich hierarchical structure
I Greedy learning and DBNs are one way to attack this
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Issues

I Such generic strategies might be insufficient; goal is to
discover representations of the data that compactly
describe regularities in it.

I Handling invariances
I Forms of factor interaction (e.g. gating); higher-order units
I Relationship between the factors and the data may be

complicated and non-linear, but not noisy
I Variable architecture to provide explicit grouping/ownership

of chunks of the data
I Technical challenges: inference, learning, model

comparison
I Problems waiting to be solved!
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