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» Understand monitoring data from a jet engine in terms of
faults, etc

» Frey and Jojic video

» “We are drowning in information, but starving for
knowledge!” (Naisbett, 1982)

» These are also some of the problems faced by the brain
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1. Probabilistic graphical models

» Probabilistic graphical models are a tool for modelling
complex networks of relationships which are
non-deterministic

» In a directed graphical model G (aka Bayesian network)
the joint probability is defined as

p(Xt, ..., Xn|G) = ] [ p(Xi[parents;, G)
i

» It is the missing edges that describe conditional
independences

» Model is comprised of structure and parameters

» Bayesian networks represent conditional (in)dependence
relations: not necessarily causal interactions
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Example: Does my car start?

P(b=bad) = 0.02 P(f=empty) = 0.05

Fuel

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10

P(g=empty|b=bad, f=empty) = 0.99
\ '
P(t=nojb=good) = 0.03

P(t=nolb=bad) = 0.98
P(s=nolt=yes, f=not empty) = 0.01

P(s=nolt=yes, f=empty) = 0.92

Heckerman (1995) P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

p(b,f,g,t,5) = p(b)p(f)p(glb, f)p(t|b)p(s|t, f)
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Undirected graphical models

» For undirected graphs, locality depends on the notion of
cliques

» Joint probability distribution is given as a product of local
functions defined on the maximal cliques of the graph

px) = 2 T vxs(xc)

cec

Z=> ] ¢x(xc)

X CeC

» Each ¢, (Xc) is a strictly positive, real-valued function,
otherwise arbitrary

» Z is called the partition function

with
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’
P(x) = Z¥(x1, X) (%1, X3 )1h (X3, X6 )9 (X, X5, X6 )¢ (X, Xa)
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2. Models with one layer of hidden variables

directed undirected

» The directed model is the most common formulation, but

we will see the undirected model used later for “deep
learning”

» Hidden and visible variables can be continuous, discrete
etc

» Examples: clustering, factor analysis, topic models (LDA),
sparse coding, multiple cause vector quantization (MCVQ)
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What are latent variables?

>

>

We have an observed data vector x

We assume that the inter-relationships between the
observed (or manifest) variables in x can be explained in
terms of some latent (or hidden) variables z

p(x) = / [Tr(xi2)p(z) dz

Reasons for being hidden: latent variables may be
theoretical concepts, or real physical variables that are
simply unobserved (e.g. the location of an object in a
scene)

Caveat: inference of causality is a hard problem. Generally
needs experiments (actions) as well as observational data
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Clustering/Mixture Models

» z has a one-on-in-k coding

» Examples: Clustering of documents; discovery of new
classes of infra-red stars in the IRAS Low Resolution
Spectral catalogue (Goebel et al, 1989)

» Clustering is limited, we want multiple causes
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Factor analysis

» Factorized Gaussian
model for z variables

» Example: Data for each
frame is (x, y) locations of
many markers on a face

concatenated into a vector LN LN

» Model rigid and non-rigid e, e
motion in terms of a small j
number of modes of .

—

deformation w;
s, S

X:ZZ,- W; + noise )

I

» Tim Cootes’ animations
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Sparse Coding

Olshausen and Field (1996, 1997)

» Model patches of natural images x as a superposition of
basis functions w; with strengths z;

X = Z ZjW; + noise

i

» Model is overcomplete, so there are more basis functions
than pixels

» Sparsity prior so that z's are mostly near zero and only
occasionally large
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Overcomplete: 200 basis functions from 12 x 12 patches
[Figure: Olshausen, 2005]
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Topic Modelling

Blei et al (2003)
» Bag-of-words representation for each document (ignore
word order)

Each document is regarded as being generated from a
weighted set of topics

Each topic is a probability distribution over words
0<z<1foralliand};z =1

Learn topics and estimate per-document topic weightings
AP corpus, 16,333 articles with 23,075 unique terms

v
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Learning Latent Variable Models

» Use the Expectation-Maximization algorithm (Dempster,
Laird and Rubin, 1977)

» Goal is to find parameters 6 that maximize the log
likelihood

n n
L= logp(xilf) = log} p(x;z|0)
i=1 z;

i=1

» Do this by iterating E- and M-steps
» E step: Compute p(z;|x;) for all data points i =1,...,n
» M-step: Adjust the parameters to maximize (or at least
increase) the expected complete data log likelihood

» This can be shown to converge to a local maximum of L
» In some cases approximations may be needed
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Handling Non-linearity

L e, ®

z () y

» Generative Topographic Mapping (Bishop, Svensen and
Williams, 1997/8)

» Difficulty with parameterizing the non-linear mapping;
curse of dimensionality wrt the latent space dimension

» Gaussian Process Latent Variable Model (Lawrence 2005)
» More specific structure of the non-linearity
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Williams and Titsias (2004)

Data Results

1 2 3 Mask Mask

4 5 Mask * Foreground Mask * Foreground

11T

» Uses greedy learning to extract one object at a time
» The latent variable for each object is its location
» Masks and depth ordering determine how layers combine
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Multiple Cause Vector Quantization

Ross and Zemel (2006)
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» Factorial face image generator
» The components are combined using a mask
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3. Modelling sequences

» A compressed representation of the one-layer latent
variable model

» The figure shows T independent draws from the model

564

27/48



» Clustering — Hidden Markov model (HMM)
» Factor analysis — Kalman filter
» MCVQ — Factorial Hidden Markov model (FHMM)
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Factorial Switching Kalman Filter

Artifactual factors

Physiological factors

Physiological state

Artifactual state

Observations
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Neonatal Condition Monitoring
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4. Beyond the single hidden layer: Hierarchy

» Hierarchy is a recurring theme in many areas of Al
» Many types of hierarchical structure, e.g.

» PART-OF

» AND-OR

> IS-A

» spatial, temporal scale
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Hierarchical Structure in Scene Analysis

» Scene type e.g. indoor, outdoor rural, outdoor urban

» Objects occurring (and co-occurring) depend on scene
type

» Inter-relationships between the pose of objects

» Objects can be composed of parts, e.g. car wheels, body,
roof, with variable shape and appearance

Other factors
» Depth, occlusions

» |llumination, shadows
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Hierarchical Structure in Data Streams

» Consider cooking by following a recipe: there are a number
of tasks, each of which may have sub-components

» The tasks will have some dependencies, but there can be
inter-leaving of multiple tasks

» Animal behaviour modelling, e.g. a pair of Drosophila. High
level states (anxiety, arousal, aggression) affect lower-level
primitives, e.g. wing extension, walking, pirouetting,
orienting, singing

» Analysing sports action

» Hierarchical HMMs (Fine, Singer & Tishby, 1998)
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Hierarchical HMM as a Finite State Automaton

FOP-0 DOOO

HFSA for a(xy) " b|c(xy) " d Figure credit: Kevin Murphy (2002)
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» Phylogenetic trees (Wright, 1921)

» Example: Harmeling and Williams (2010): building trees
bottom up from data

» Grammars

35/48



Dynamic Trees

Storkey and Williams (2003)
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» Model builds a “parse tree” corresponding to each input
image

» Parent-child relationships encoded were very simple in this
model

» “Tower of jelly” problem
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Beyond Trees

» Hierarchical Structure and Multiple Causes

(O
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Beyond Trees

» Hierarchical Structure and Multiple Causes

» “anything you can do, | can do meta”
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Greedy Learning

» Start by learning a one-hidden-layer model

» The model’s “independent causes” turn out to not really be
independent (and we can see this by looking at the
aggregated posterior over examples)

» Add another layer of units to model these correlations
(needs to be non-linear)

» Possibly adjust the parameters in the lower layers once the
higher layers have been learned

» Examples: Hyvarinen et al (2000, 2001), Karklin and
Lewicki (2003, 2005); models of image patches
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Deep Belief Networks

» Hinton (circa 2006) argues that greedy learning by stacking
directed graphical models is problematic

» The parameters learned by the first layer model are such
that the latent variables z should be independent

» But as this is not possible he argues this leads to a bad
compromise, and that the aggregated posterior distribution
(p(z|x))p(xy May be no easier to model than p(x)

» He argues that using an undirected model (aka a

Restricted Boltzmann Machine, RBM) as the basic
learning module should be more effective

» Inference in an RBM is easy; each hidden unit can be
sampled independently given the input. Cf explaining away
in directed models
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undirected

To draw samples from this model we can use a Markov chain
Monte Carlo methods based on block Gibbs sampling

S s R
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» (a), (b) and (c) are equivalent
» (d) is more powerful as W5 can better model the
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Example: DBN learning on natural image patches

Lee, Ekanadham and Ng (2008)




» A second layer unit responds to a combination of a few first
layer units; see examples above

» Properties of “V2” units can be compared to neural data

» Comparison between methods can be based on e.g.
» Visualization of learned weights

» Evaluation of log likelihood under the model (technically
difficult)

» Use of the learned features for prediction tasks
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Example: Acoustic modelling using DBNs

Mohammed, Dahl, Hinton (2010)

» In speech recognition, a Gaussian mixture model for mel
frequency cepstral coefficients (MFCCs) is the standard
acoustic modelling framework

» Mohammed et al show that they can obtain better
performance on the TIMIT corpus by training a multi-layer
DBN, and then translating this into a feedforward classifier
network.

» This system outperforms previous methods on the TIMIT
corpus

46/48



5. Discussion

Summary

v

One-hidden-layer models have proved useful
They can be readily extended through time

v

v

Factors can interact in complex ways to create
observations, e.g. via masks and occlusion

Data generators can have rich hierarchical structure
Greedy learning and DBNs are one way to attack this

v

v
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Issues

» Such generic strategies might be insufficient; goal is to
discover representations of the data that compactly
describe regularities in it.

» Handling invariances
» Forms of factor interaction (e.g. gating); higher-order units

» Relationship between the factors and the data may be
complicated and non-linear, but not noisy

» Variable architecture to provide explicit grouping/ownership
of chunks of the data

» Technical challenges: inference, learning, model
comparison

» Problems waiting to be solved!
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