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Game Theory and Nash Equilibrium

e Game theory is used in economics and other disciplines to explain
and predict behaviour in situations where agents interact.

e Examples include
— Pricing decisions by competing firms.
— Cooperation in social situations (prisoner’s dilemma, ultima-
tum and trust games).
— Animal behaviour in zoology.

— Choice of route in systems where congestion is a factor (roads,
internet)



Nash Equilibrium and its Problems

e The main tool of game theory is Nash equilibrium (NE), first
proposed by John Nash (1951).

e The standard approach is to calculate the NE and use that as a
prediction for behaviour.

e Well-known major problems with NE:

— Difficult to compute for professionals - what hope for real world
agents?
— Involves a great deal of coordination

— Multiple answers: often many equilibria.



Learning in (Games
e One possible answer is to assume that players learn using simple
adjustment rules.

e These rules assume little or no knowledge of the structure of the
game that is being played.

e In effect, the problem of calculating equilibrium is distributed
amongst the different players.

e Rules/algorithms chosen on the basis of simplicity and realism
not optimality:.

e Nonetheless, theory shows that adaptive learning can often lead
players to NE.

e Further, these learning processes reject some NE so reduces the
effective number of equilibria to consider.



Today’s Talk

e Outline shortcomings of Nash equilibrium.

e Show how learning theory potentially offers solutions to these
problems in a reasonably realistic context.

e | offer two examples that involve both theory and laboratory
experiments
— In the first, learning supports Nash equilibrium.
— In the second, learning generates behaviour that is entirely
distinct from Nash.

e Highlight an important problem: How closely do existing models
of learning really fit actual human behaviour? Is it close enough?



First Example: Congestion Problems

e These problems are well known in many disciplines.

e In economics, road pricing. Addressed in terms of learning dy-
namics by Bill Sandholm (2002, 2007).

e Investigated in many experiments (with human subjects) under
the name of the “market entry game”.

e Brian Arthur’s “Santa Fe/El Farol Bar problem”.

e In computer science, routing problems, for example, Roughgar-
den and Tardos (2003).



The Simplest Congestion Problem

e N players must make a choice between two routes (or resources
or locations or markets)

e The payoff to all players to choosing the second route is constant
T =1 >0

e The payoft to the first route decreases with the number of players
choosing it, in the simplest case
T =vV+Cc—1MmMm
where m is the number of players choosing the second route

e That is, c is the “capacity” of the first route: if more than c
players use it, the payoff is worse than to choosing the 2nd route.
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The Simplest Congestion Problem - Coordination

e Without a central planner, agents must decide independently
which route to take.

e A classic example of strategic uncertainty: what is the best route
depends on what others do. How do I predict behaviour of others,
given they may be in turn trying to predict my behaviour?

e Possibility of failure of coordination, with too many or too few
using route 1.

e But what will people actually do in such a situation?

e Does Nash equilibrium help us to predict?



The Simplest Congestion Problem - Nash Equilibrium

e Even this simple problem has very many Nash equilibria (NE).
e Assume c is not an integer (this makes it simpler!).

e Then there is a set of NE where exactly ¢ (largest integer smaller
than c) players choose 1, N — ¢ choose 1.

e There is a NE where all players randomise with the same proba-
bility over choice of 1 and 2.

e There are NE where j players choose 1, £ choose 2, and the
remaining N — 73 — k players randomise. The number j can be
anywhere between 1 and c.

e All NE involve a phenomenal amount of coordination.



The Problem with Nash Equilibrium

e It is true that in all NE, expected number choosing 1 is between
c and c — 1, giving equalisation of returns to different routes.

e However, clearly different NE have very different variability, with
NE where people randomise leading to the possibility of extreme
outcomes.

e None of the NE are efficient (only ¢/2 should use route 1 to
maximise total welfare).

e But to address this inefficiency (with e.g. congestion pricing),
one first has to understand behaviour.

e Can people coordinate on a NE and, if so, which type?



A Simple Argument for Minimal Coordination using
Adaptive Learning

e If players use any form of learning rule that tries different actions
and adjusts frequencies in response to relative payofis, this should
lead to a minimal level of coordination in the simple congestion
problem we consider.

e Simply, if the number choosing 1 is greater than c, its capacity,
the return to switching to 2 is greater than staying with 1. If less
than c choose 1, then there is an advantage to switching from 2.

e Simple adjustment should lead the number choosing 1 to ap-
proach c.



Adaptive Adjustment in a Congestion Problem
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Can We Go Further Than This Simple Prediction?

e Even if the numbers choosing route 1 approach c, this does not
imply that players are actually in Nash equilibrium.

e Can a more detailed learning model show convergence to Nash
equilibrium?

e In fact, learning theory gives a surprisingly precise prediction
about outcomes.



Summary of Duffy and Hopkins
Games and Economic Behavior, 2005

e | show that two types of adaptive learning (fictitious play, re-
inforcement learning) will converge to a pure Nash equilibrium
where exactly ¢ players choose route 1.

e That is, there is “sorting”. Some players learn always to choose
route 1, others always to use route 2.

e We ran experiments (with human subjects) and find that, if com-
plete information is provided, indeed people do sort themselves
between the two options.

e With lower levels of information, for example only one’s own
payoff is revealed, movement toward sorting can be seen in the
data but is not complete by the end of the experiment.



Two Learning Rules

e The two most commonly considered forms of learning (in eco-
nomics at least) have been reinforcement learning and fic-
titious play.

e They differ considerably in the level of sophistication assumed
and the information that they use.

e Fictitious play (FP) assumes that players know they are playing a
game, keep track of payofls accruing to all strategies and optimise
given this information.

e Reinforcement learning (RL) assumes that the probability a strat-
egy is chosen is proportional to past payofls from this strategy.

e NB “reinforcement learning” appears in many contexts and has
many forms.



Modelling Learning Rules with Propensities

e It is possible, nonetheless, to model both using a similar mathe-
matical framework.

e Assume each player has a “propensity” for each possible action,
here route 1 or 2. Relative size of propensities determine the
probability of taking each action.

e Under FP, in each period propensities for both routes are updated
with the realised payofis to each route whichever route was cho-

sen. If route 2 was chosen, requires construction of hypothetical
- what would I have got if I had chosen 17

e Under RL, propensities only updated with payoft to action actu-
ally chosen. No hypothetical reasoning.



Updating Rules

.Player 1 has a propensity in period n for route 1 q%n and for 2 qén.
0., = 1 if player ¢ chooses 1 in period n, zero otherwise.

Simple Reinforcement

A1 = Ap + On(v+c—my), ¢9peq = @5, + (1 — 030,

where m,, is the actual number of entrants in period n.

Hypothetical Reinforcement

qrinJrl — q%n tUv+Cc—mp— <1 _ 5%)7 q%nJrl — q%n + V.



Choice Rules for FP and RL

yfl is a player’s probability of choosing route 1 in period n.
e The reinforcement rule: randomise proportionally

T q%n
In = 0 i
1n + 9on

° ’I‘raditional FP rule: choose the best.
If g1, > @5, then y,, =1,
if ¢7,, < q5,,, then y;, = 0.



Sorting Results

e For both fictitious play and reinforcement learning, we have a
sorting result.

e Under either process, eventually players will play a pure Nash
equilibrium where exactly ¢ choose route 1 and N — ¢ choose
route 2.

e Thus, in the long run, there can be exact coordination on a Nash
equilibrium, even with minimal information or sophistication on
the part of players.



Experimental Procedures

e V = 6. That is, groups of six subjects played the market entry
game repeatedly for 100 rounds over a computer network.

e Inexperienced subjects.
e Actions labelled "Action X" and "Action Y".

e Capacity ¢ = 2.1, payofls were

No. choosing X 1 2 3| 4] 5| 6
Payoft to X 10.20|8.2016.2014.20|2.20|0.20
Payoft to Y 8.00 {8.00]8.00|8.00|8.00|8.00

e Every 25 rounds, one round drawn at random to count as the
payoff round.




Experimental Treatments

1. Limited Information
2. Aggregate Information

3. Full Information

After making a choice, what information do subjects receive?

Own payoff | Aggregate info | Individual info
Limited v X X
Aggoregate v v X
Full v v v

Agoregate: e.g. 2 players chose X, 4 chose Y
Individual: player 1 chose X, player 2 chose Y etc.



Sorting Depends on Information

Limited Information Session #1 Aggregate Information Session # 1

6 6

5 5

Number Choosing to Enter
[ %] L8]
.§/

Mumber Choosing to Enter
PJ L

2 4 6 8 10
10 Round Period Number

10 Round Period Number

MNumber Choosing to Enter

Full Information Session # 1

6

5

1 3 5 7 9
2 4 6 8 10

10 Round Period Number



MSD

0.35
0.3
0.25
0.2
0.15
0.1
0.05

Sorting under Complete Information

10-Round Mean Squared Deviations From the Three Types of Equilibria
Averages over all 3 Full Information Sessions

10-Round Period
== Pure =¢= Asym Mixed == Sym Mixed




MsD

Sorting under Limited Information

10-Round Mean Squared Deviations From the Three Types of Equilibria
Averages over all 3 Limited Information Sessions

0.35
0.3
0.25
0.2
0.15
0.1
0.05

10-Round Period
=@ Pure <%= Asym Mixed =t Sym Mixed



Evaluation of Experiments

e Sorting happens only when players can see the pattern of play of
others.

e This particular use of information is not included in current mod-
els of learning.

e Without this information, there is movement towards, but not
complete sorting.

e In the short run, there is only the broad outline of Nash equilib-
rium: rough equalisation of return to the two options.

e Both NE and learning approximate human behaviour, but do not
capture its finer points.



Second Example: Failure of Convergence to Mixed
(Random) Nash Equilibrium

e A support for Nash equilibrium is that learning theory shows that
simple adjustment rules can lead players to coordinate.

e However, there are negative as well as positive results: games in
which the only Nash equilibrium is unstable under learning. Play
should diverge not converge.

e S0, in many games, some of significant economic importance, we
seem to have no prediction about how people might play:.

e Benaim, Hofbauer and Hopkins (2006) fill in this gap with a
precise prediction about what happens when there is divergence
from equilibrium.



Experiments to Test the New Theory
(Joint Work with Tim Cason and Dan Friedman)

e We report experiments designed to test between Nash equilibria
that are stable and unstable under learning.

e Drawing on recent theoretical results, we have a new, simpler way
to test between stable and unstable play.

e We use two games each with a unique mixed Nash equilibrium,
one stable and one is unstable.

e Subjects randomly matched in pairs to play one of the games.

e In our experiments there is a difference between the stable and
unstable treatments which supports the new theory of non-equilibrium
behaviour, but much remains unexplained.



Some Theory in a Random Matching Framework

e Single large population of players
e Time periodsn =1,2,3,....

e In each period, players randomly matched into pairs to play a 2
player normal form game

e Approximates random matching protocol in experiments



RPS Games

Two examples of the generalized Rock-Paper-Scissors game

P | S R| P | S
. Rock 10,0/|-1, 23, -1 n_ Rock 10,0(-3,1/1,-3
Paper 2,-1/0,0/-1, 3 Paper |1,-3|0,0 -2, 1
Scissors|-1, 3|3, -1/ 0, 0 Scissors|-3, 1|1,-2/ 0, 0

e Unique mixed Nash equilibrium (NE) for both games
e NE is stable under most forms of learning in game A

e NE is unstable in game B, under fictitious play, reinforcement
learning, the replicator dynamics etc.



Fictitious Play in RPS Games

e RPS games have unique interior /mixed equilibrium
e Cycle of best responses that converges or diverges
e NE is stable in game A

e Unstable in B

e If NE unstable, fictitious play approaches a limit cycle, named a
“Shapley Triangle” in honor of Shapley.

e Hence, in B: under fictitious play, no convergence in behavior or
in time average or in beliefs



A Shapley Triangle
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The Shapley triangle for game B with the TASP (T) and the NE (N)



New Theory of the Unstable Case
Benaim, Hofbauer and Hopkins (2006)

Suppose players place weight of p € |0,1) on last period, p? on pre-
vious..., in constructing propensities that are the basis for choices.

Then, in unstable games,

1. Cycle is close to Shapley triangle
2. But speed is constant = time average converges

3.As p — 1, i.e. as greater weight is placed on past experience,
this average approaches time average of a complete circuit of the
Shapley triangle

4. That is, the time average — the TASP: “time average of the
Shapley Polygon” - a new concept



Implications of the TASP

e It gives a point prediction for overall relative frequencies of dif-
ferent strategies even when there is no convergence to NE
— This point can be close to NE as we have just seen
— But in general not identical
— Can be quite different (example to follow)

e It gives a prediction for the dynamics of play: they should follow
a specific cycle.



A Game where Nash Equilibrium and TASP are distinct

RPSDy =
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e RPS with the addition of a 4th strategy D: “Dumb”

e The unique Nash equilibrium is fully mixed and equal to (1, 1, 1, 3) /6.

e However “U” is for unstable, FP will approach a cycle which

places no weight on D!
e The TASP is (1,1,1,0)/3
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A Stable Version of RPSD

RPSDg =

e RPSDyr and RPSDg have the same tully mixed Nash equilib-

rium (1,1, 1, 3)/6.

e However, in RPSDg the NE is an attractor for most learning
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Theoretical Predictions

e S0 learning theory predicts 0 weight on strategy D in RPS Dy,
and a weight of 0.5 on D in RPSDg.

e Nash equilibrium predicts a weight of 0.5 on D in both games.

e S50, the frequency of the strategy D is a ready reckoner for testing
between stability and instability, and between learning theory
and Nash equilibrium.



Experimental Procedures

e Experiments carried out at Purdue and at UCSC
e 2 X 2 design: Stable vs Unstable Game x Hi vs Low Payoffs

— High payoffs: 100 experimental francs (EF) =$5
— Low payoffs: 100 EF =$2, plus showup fee of $10

e 3 sessions per treatment; in each, 12 subjects repeated randomly

matched over computer network for 80 periods to play one game,
matrix known to all subjects.

e Feedback: own action, action of opponent, payoftf earned and
actions of other subjects.
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Experimental Results - Summary

e Basic comparative statics are supported by aggregate frequencies.

e Hi-Unstable treatment is further from Nash than Low-Unstable
treatment

e All treatments show tendency to move toward Nash in the very
long run.

e Movement towards Nash significantly slower in the Hi-Unstable
treatment.



Evaluating these Experiments

e We test the new non-equilibrium concept, the TASP, that pre-
dicts play in games with unstable Nash equilibria.

e We look at a game for which the TASP and the Nash equilibrium
are quite distinct.

e Overall frequencies show that there is a difference between stable
and unstable treatments that cannot be explained by NE.

e However, NE does surprisingly well in the long run.

e Again, learning theory does not capture the full details of behav-
lour.



Conclusions

e Learning theory offers a somewhat more realistic approach to play
in games than simply assuming people play Nash equilibrium.

e Nonetheless, it can offer support to Nash equilibrium, in that it
allows for players to learn to play Nash even without strategic
sophistication or much information.

e But in some cases, it predicts non-equilibrium behaviour quite
distinct from traditional theory.

e Our current learning models have some empirical success but do
not fully capture the variety and sophistication of actual human
behaviour.





