About Face

Vicki Bruce

Why faces are interesting

- Biological significance and universality of the face
- Range of social signals mood, attention, speech, attractiveness
- Identity general (age, sex, race) and specific (Vicki Bruce)

Computational influences

- Applications domains
- Methodological innovations
- Theoretical precision

Applications

- Method and theory driven by applications context:
- Security (computers to recognise you, smart cards to verify your identity)
- Forensics building up ID from witness memories or CCTV.
 - Better computer aids to this process...PRO-fit +; EvoFIT
- Cosmetics/prosthetics (3D modelling to simulate effects of surgery)
- Games and leisure (animation and simulation for games, stunt work, special effects)
- Robotics....androids

Methodological innovations

Methods

- Possible to make subtle changes in appearance for experiments.
 - Decomposing spatial frequency components
 - Morphing particularly influential in face perception field
- Possible to analyse the structures and properties of large data-bases of images, faces, of their 3D structures, of their movements

© Philippe G. Schyns & Aude Oliva, 1997.

Caricaturing

Caricature by Lee & Perrett

Recent application of morphing

- Bruce et al (2002) Four heads are better than one... Journal of Applied Psychology
 - Witnesses find composite production very difficult
 - No reason to suppose their errors are correlated
 - Morph together independently produced composites

Improvements in composite systems

Typical composite from memory

Experiment 1

- (From Bruce, Ness, Hancock, Newman & Rarity, 2002, *Journal of Applied Psychology*, 87, 894-902)
- 'Proof of concept' no great ecological validity
- Four famous, four unfamiliar male targets
- Four composites made of each
 - with photo present

- or from memory (30 secs view or 5 secs fam)

Four individual composites

4-Morph - Who am I?

Who am I? (4-morph present)

What's his name

Typical composite from memory

Mean likeness ratings (/10)

6-alt FC for famous targets

New dimensions for Pro-Fit

Theory

- General area of visual perception Marr's influence on computational theory and modelling approaches
- Modelling Bruce & Young...IAC...PCA.
 IAC combines the conceptual transparency of a 'paper' model with the rigour of testable predictions
- Other faces, other minds and androids

Computational red herring

- Marr's stages of visual representation
- Primal sketch, 2.5D sketch, 3D model
- Face as 3D surface rather than flat pattern.....

Faces are 3d objects

Laser scanner by Alf Linney

Finding correspondence

Superimposing surface on skull

Final reconstruction

Texture and shape: Hill, Bruce & Akamatsu (Proc Roy Soc B 1995)

Surface texture & shape

Surface representations of faces

- Clearly important for some things we do with faces
- No evidence that these play a role in recognising individual faces
 - E.g. Difficulty in coping with viewpoint transformation of unfamiliar face
- Much stronger evidence that brain uses a rather low-level image description of faces
 - E.g. Difficulties of recognising unfamiliar face across subtle changes of lighting/camera
 - E.g. Biederman & Kolocsai's work on comp s.f. components

- Complements -->

Different People

Models of face recognition

- Family of 'functional' models of face perception/recognition in 1980's
- Though underspecified, these did make testable predictions
- But implementation of core stages in connectionist model allowed much better way of testing and developing key assumptions

Burton, Bruce & Hancock, Cognitive Science 1999

- Brain decomposes patterns in ways that are not obvious.
- Eyes + nose + mouth not the way the brain sees faces.
- 'Configural' holistic processing
- Acutely sensitive to spatial frequency range
- Principal Components Analysis of underlying image space – eigenfaces – does reasonable job of suggesting how we code unfamiliar faces
- Familiar faces may be represented as simple averages of past encounters

Separate ('Exemplar')

2

1

mean pixel intensity Averaged ('Prototype')

3

Just average

• From Burton, Jenkins, Hancock & White, *Cognitive Psychology, 2005*.

Blair image shape

(Tony Blair Images)

Average of

average Blair texture

average Blair shape

average Blair texture

average Blair shape

average Blair texture and shape

Face Recognition Units?

Issues for the future

- Facial expressions and face gaze inform us about 'other minds'
- Importance of face for interacting with computers or robots
- Most animations and reconstructions get details and timings of facial actions wrong...