◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Artificial Mathematics A Mathematician's Perspective

Antony Maciocia

January 24, 2007

Rigour and Truth

Some Solution

Conclusions

Computer use in Mathematics

・ ロ ト ・ 国 ト ・ 国 ト ・ 国 ・ の へ ()

Conclusions

Computer use in Mathematics

Rigour and Truth

Some Solution

Conclusions

Computer use in Mathematics

Meta-AM

Rigour and Truth

Rigour and Truth

Some Solution

Conclusions

Computer use in Mathematics

Meta-AM

Rigour and Truth

Some Solutions

Conclusions

Computers in Mathematics

• Numerical Simulations

- Numerical Simulations
- Computer Algebra

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.
 - Hailed as a revolution in how mathematics is defined.

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.
 - Hailed as a revolution in how mathematics is defined.
 - It's not new.

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.
 - Hailed as a revolution in how mathematics is defined.
 - It's not new.
- Automated Theorem Provers/Proof Assistants

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.
 - Hailed as a revolution in how mathematics is defined.
 - It's not new.
- Automated Theorem Provers/Proof Assistants
 - Hardly used. (< 0.5%?)

- Numerical Simulations
- Computer Algebra
 - Widely used (> 50%?)
 - Just a fancy calculator
 - My own experience...
- Experimental Mathematics
 - Rise in specialised systems: eg Macaulay.
 - Facilitates experimentation with complex mathematical objects.
 - Hailed as a revolution in how mathematics is defined.
 - It's not new.
- Automated Theorem Provers/Proof Assistants
 - Hardly used. (< 0.5%?)
 - Difficult to use (interface, legibility of results,...)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Meta-AM

• The Platonic World of Mathematics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

Meta-AM

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

• The Human Mathematician

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

- The Human Mathematician
 - Limited ability to do numerical computation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

- The Human Mathematician
 - Limited ability to do numerical computation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Astonishingly good at logic

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

- The Human Mathematician
 - Limited ability to do numerical computation

- Astonishingly good at logic
- Have a feel for what's right

- The Platonic World of Mathematics
 - Cited as an excuse to deny the existence Artificial Mathematics.
 - Occam's razor \implies doesn't exist.
- Infinity
 - This does exists: Dedekind's argument.
 - So human cognition is infinitary: recursive cognition.
 - Mathematics is infinitary with infinite variety.
 - It has "layers".
 - Our conceptualisation of infinity may be subconscious.

- The Human Mathematician
 - Limited ability to do numerical computation

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- Astonishingly good at logic
- Have a feel for what's right
- Are finitary

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions
Rigour				

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Temporal aspects.

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain
 - Standards of "proof" are perceived to vary across subject areas.

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain
 - Standards of "proof" are perceived to vary across subject areas.
 - "It's trivial isn't it?"

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain
 - Standards of "proof" are perceived to vary across subject areas.
 - "It's trivial isn't it?"
- Rigour \neq syntactic proof

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain
 - Standards of "proof" are perceived to vary across subject areas.
 - "It's trivial isn't it?"
- Rigour \neq syntactic proof
 - Understanding not helped by dense logic

Rigour

- Temporal aspects.
 - What was considered a proof ages ago is often regarded as either over the top or slipshod.
 - Changes in Philosophy.
 - Changes in foundational frameworks.
- Domain
 - Standards of "proof" are perceived to vary across subject areas.
 - "It's trivial isn't it?"
- Rigour \neq syntactic proof
 - Understanding not helped by dense logic
 - Lack of interest:

"99% of all mathematicians don't know the rules of even one of these formal systems, but still manage to give correct proofs" [Kreisel]

Computer ι	ise in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

• Rigour \neq semantic proof

C	Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

• "Proof by argument"

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

- "Proof by argument"
 - to convince others.

Со	mputer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

- "Proof by argument"
 - to convince others.
 - to gain insight.

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

- "Proof by argument"
 - to convince others.
 - to gain insight.
 - to derive satisfaction \longrightarrow aesthetics.

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions

- Rigour \neq semantic proof
 - Use of intuition (eg geometric)
 - Visualisation.
 - Often mis-use semantic proof: "it's obvious that ..." or "trivially ..."

- "Proof by argument"
 - to convince others.
 - to gain insight.
 - to derive satisfaction \longrightarrow aesthetics.
 - provides motivation

Computer use in Mathematics	Meta-AM	Rigour and Truth	Some Solutions	Conclusions
		Truth		

• Validity:

Computer use in Mathematics	

Meta-AM

Rigour and Truth

Some Solution

Conclusions

Truth

• Validity: is it right?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths?

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth?

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.

Truth

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.

• Belief:

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.
 - It's somewhere between plausibility and formal deduction.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.
 - It's somewhere between plausibility and formal deduction.
- Errors.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.
 - It's somewhere between plausibility and formal deduction.
- Errors.
 - Mistakes happen.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.
 - It's somewhere between plausibility and formal deduction.
- Errors.
 - Mistakes happen.
 - Computers are less likely to be wrong than a human.

- Validity: is it right?
 - Doesn't Mathematics consists of a collection of irrefutable truths? Actually no.
 - Soundness in logic \implies relative truth.
 - Absolute truth? Axiom of choice and it's variants.
- Belief: what do we believe is true and why?
 - Intuitionism/constructivism
 - "I trust my proof but I don't trust yours".
 - Proofs/dialogues are accepted when they reach a suitable level of acceptability.
 - It's somewhere between plausibility and formal deduction.
- Errors.
 - Mistakes happen.
 - Computers are less likely to be wrong than a human.
 - Modern error checking and software design methodology helps.

• Taxonomy: lemma, technical lemma, theorem, proposition, fundamental lemma etc.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Cultural norms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Cultural norms. Especially strong in Mathematics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Cultural norms. Especially strong in Mathematics
- \implies Platonism?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Cultural norms. Especially strong in Mathematics
- \implies Platonism?
- Fashion \longrightarrow irrelevance and forgotten results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Cultural norms. Especially strong in Mathematics
- \implies Platonism?
- Fashion \longrightarrow irrelevance and forgotten results
- \longrightarrow lack of absolute truth

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Some Solutions

A wish list:

• Seamless computer algebra integration

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Some Solutions

- Seamless computer algebra integration
- Mathematician friendly interface

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Some Solutions

- Seamless computer algebra integration
- Mathematician friendly interface
- Knowledge management: ability to organise the information

Some Solutions

- Seamless computer algebra integration
- Mathematician friendly interface
- Knowledge management: ability to organise the information
 - By domain, relevance, importance ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Some Solutions

- Seamless computer algebra integration
- Mathematician friendly interface
- Knowledge management: ability to organise the information
 - By domain, relevance, importance ...
 - > 20m main results in the literature, > 1000m results overall.

Some Solutions

- Seamless computer algebra integration
- Mathematician friendly interface
- Knowledge management: ability to organise the information
 - By domain, relevance, importance ...
 - > 20m main results in the literature, > 1000m results overall.
- Ability to assign importance/significance

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Conclusions

• Will there ever be an Artificial Mathematician capable of conjecturing and proving anything?

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Conclusions

• Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains?

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians?

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No!

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.
- Will there ever be a further refinement of the Artificial Mathematician which will also have an appreciation of the importance and beauty of theorems?

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.
- Will there ever be a further refinement of the Artificial Mathematician which will also have an appreciation of the importance and beauty of theorems? Yes!

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.
- Will there ever be a further refinement of the Artificial Mathematician which will also have an appreciation of the importance and beauty of theorems? Yes!
- Will such a machine be used by mathematicians?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.
- Will there ever be a further refinement of the Artificial Mathematician which will also have an appreciation of the importance and beauty of theorems? Yes!
- Will such a machine be used by mathematicians? Maybe.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- Will there ever be an Artificial Mathematician capable of conjecturing and proving anything? No!
- Will there ever be an Artificial Mathematician capable of conjecturing and proving results within contemporaneous domains? Yes!
- Will such a machine be used by mathematicians? No! Well, at least not much.
- Will there ever be a further refinement of the Artificial Mathematician which will also have an appreciation of the importance and beauty of theorems? Yes!
- Will such a machine be used by mathematicians? Maybe.

THE END