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Computers in Mathematics

• Numerical Simulations

• Computer Algebra

• Widely used (> 50%?)
• Just a fancy calculator
• My own experience...

• Experimental Mathematics

• Rise in specialised systems: eg Macaulay.
• Facilitates experimentation with complex mathematical

objects.
• Hailed as a revolution in how mathematics is defined.
• It’s not new.

• Automated Theorem Provers/Proof Assistants

• Hardly used. (< 0.5%?)
• Difficult to use (interface, legibility of results,...)
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Meta-AM

• The Platonic World of Mathematics

• Cited as an excuse to deny the existence Artificial
Mathematics.

• Occam’s razor =⇒ doesn’t exist.

• Infinity

• This does exists: Dedekind’s argument.
• So human cognition is infinitary

: recursive cognition.
• Mathematics is infinitary with infinite variety.
• It has “layers”.
• Our conceptualisation of infinity may be subconscious.

• The Human Mathematician

• Limited ability to do numerical
computation

• Astonishingly good at logic
• Have a feel for what’s right
• Are finitary
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Rigour

• Temporal aspects.

• What was considered a proof ages ago is often regarded as
either over the top or slipshod.

• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.

• What was considered a proof ages ago is often regarded as
either over the top or slipshod.

• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.

• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.

• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain

• Standards of “proof” are perceived to vary across subject
areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain
• Standards of “proof” are perceived to vary across subject

areas.

• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain
• Standards of “proof” are perceived to vary across subject

areas.
• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain
• Standards of “proof” are perceived to vary across subject

areas.
• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof

• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain
• Standards of “proof” are perceived to vary across subject

areas.
• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof
• Understanding not helped by dense logic

• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

Rigour

• Temporal aspects.
• What was considered a proof ages ago is often regarded as

either over the top or slipshod.
• Changes in Philosophy.
• Changes in foundational frameworks.

• Domain
• Standards of “proof” are perceived to vary across subject

areas.
• “It’s trivial isn’t it?”

• Rigour 6= syntactic proof
• Understanding not helped by dense logic
• Lack of interest:

“99% of all mathematicians don’t know
the rules of even one of these formal
systems, but still manage to give correct
proofs” [Kreisel]



Computer use in Mathematics Meta-AM Rigour and Truth Some Solutions Conclusions

• Rigour 6= semantic proof

• Use of intuition (eg geometric)
• Visualisation.
• Often mis-use semantic proof: “it’s obvious that ...” or

“trivially ...”

• “Proof by argument”

• to convince others.
• to gain insight.
• to derive satisfaction −→ aesthetics.
• provides motivation
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Truth

• Validity:

is it right?

• Doesn’t Mathematics consists of a collection of irrefutable
truths? Actually no.

• Soundness in logic =⇒ relative truth.
• Absolute truth? Axiom of choice and it’s variants.

• Belief: what do we believe is true and why?

• Intuitionism/constructivism
• “I trust my proof but I don’t trust yours”.
• Proofs/dialogues are accepted when they reach a suitable level

of acceptability.
• It’s somewhere between plausibility and formal deduction.

• Errors.

• Mistakes happen.
• Computers are less likely to be wrong than a human.
• Modern error checking and software design methodology helps.
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