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Introduction

Humans and machines equipped with multiple sensor modali-
ties need to combine information from various senses to obtain
an accurate, unified perception of the world. Previous research
has addressed statistically optimal fusion of multisensory obser-
vations of a given object[2,3]. However, in most real world situ-
ations any given pair of observations are unlikely to have origi-
nated from the same latent source. A more general problem in
multi-sensor perception is therefore to infer the association be-
tween observations and any latent states of interest as well as
any fusion (integration) or fission (segregation) that may be nec-
essary. In some domains, these causal, association variables may
also have critical independent meaning.

Example To fully understand a meeting, two sets of latent object
states (who was there & what was said) and the data association
(who said what) must be inferred.

Multisensory Structure Inference

These perceptual problems are formalized in a probabilistic gen-
erative modelling framework[1] with the following advantages:

•Multisensory integration and segregation are optimal.

• Bayesian structure inference or model selection is used to infer the
optimal data association p(M |x1, x2) without heuristics.

– Bayesian Occam’s Razor provides automatic and optimal
complexity control.
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Figure 1: Graphical models for variable structure multisensory perception.

Data Association in Multiple Modalities
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Figure 2: Inference in data association vs Pure fusion models.
Left Column: Input: Prior + two observations of unknown association.

The unknown structure and state problem is illustrated by the
graphical model in Fig 1a for a single object observable with two
unreliable/occludeable sensors. For the illustration in Fig. 2, we
use 1D linear gaussian prior and observation likelihoods.

Pure Fusion models assume all sensors always observe the
source. This can result in incorrect inference (Fig 2, box)

Data Association models infer the model structure as well as
source state, obtaining the correct posteriors. (Fig 2a-d)

• But how to choose the prior distribution?

– Use temporal context!

Introducing Temporal Dependencies

In the real world, we also expect objects’ states and observability
to be correlated in time. We should take advantage of this im-
portant prior knowledge. Extended to take into account tempo-
ral dependency, our generative model has the form of a f actored
hidden Markov model (FHMM) as illustrated in Fig 3a.
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Figure 3: Toy Markov model and inference results

To illustrate, consider tracking a source through time in 1-D using
two one dimensional linear Gaussian observations (Fig 3b).

Pure Fusion: Model fails with sensor failure/occlusion (Fig 3c).

IID Data Association: Model “knows” something is wrong dur-
ing sensor failure/occlusion as the sensors do not agree with
each other. But without temporal context, it does not know
which, if any, sensor to believe (Fig3d).

FHMM Data Association: Model “knows” when source is visible
with each sensor (Fig 3g), and hence, is able to base inference
on the non-occluded sensor or, if both fail, on temporal history
alone. Smoothing (Fig 3e) or filtering (Fig 3f) are possible.

Data Association with Multiple Objects

Figure 4: Inferring multiple objects with multiple sensors

Another way of generating multiple observations is for each to
be generated by a different object of interest. An example of this
paradigm occurs during humans psychophysics experiments[2],
where the subject must decide if two slightly discrepant multi-
modal observations (e.g., flashes and beeps) are generated by one
or two sources. This is formalized as a one or two source model
selection problem (Fig 1b,c).

• The two source model is more complex. Additional degrees of
freedom allow it to fit any data better than the one source model.

• The maximum likelihood estimate of the number of objects is
therefore always the more complex two source explanation.

• In contrast, in our method, the automatic complexity control of
Bayesian Occam’s Razor provides the optimal solution – it opti-
mally weights the explanatory power of the two object model
against its increased complexity (Fig 4a,b).

•Human behaviour is explained only by the Bayesian solution.

Typical tracking techniques require number of targets to be pre-
specified or determined heuristically. We can infer the number of
targets and track them all within the same framework.

Audio-Visual Tracking Application

We illustrate the application of these ideas to a real, large scale
machine perception problem by considering an unsupervised
learning, inference and tracking task with audio-visual input[1].
A more complex generative model is needed to describe the high
dimensional data (shown in Fig 5). The basic framework is that
of the Transformed Mixtures of Gaussians [3], which describes the
video as a translated template and multi-microphone audio as
phase-offset signals. Position (l) and AV visibility structure (W,Z)
are correlated in time as in Fig 3a.

Figure 5: Graphical model for audio-visual data i

Inference & Learning

The posterior over hidden variables H = {W,Z, l, t,a,v}
given data D = {x1,x2,y} is inferred. The filtered posterior
p(W t, Zt, lt|D1:t) is computed for tracking. Computations are
tractable as the a and v integrals are solved analytically, and the
others are expressible as FFTs. The likelihood of a frame is

p(D|w, z, l) ∝

∫
v

p(y,v|l, z)
∑

t

∫
a

p(x1,x2,a, t|l, w)

∝ N (y|µy|l, νy|l)
∑

t

p(t|l,D)exp(µT
a|t,xνaµa|t,x)

p(D|w, z) ∝ p(x|w)p(y|z) = N (x1|0, σ1I)N (x2|0, σ2I)N (y|γ1, ǫI)

EM is used for unsupervised learning of all the parameters θ:
θ = {λ1,2, ν1,2, η, α, β, ω, πl, µ, φ, Ψ, Γ, Θ, Ω, πw, πz, γ, ǫ, σ1,2}
Selected examples of parameter updates look like:

µ←
∑
j,l

q(lj, zj|D)µj
v|y,l/

∑
j

q(zj|D) σ−1

i ←
∑

j

q(wj|D)(xj
i )

Tx
j
i/Nf

∑
j

q(wj|D)

Results

Using audio visual data (e.g. Fig 6a,b) we wish to learn and track
the user through visual and auditory occlusion[1].

Pure Fusion: Inappropriately assuming all data is associated, the
location inference is incorrect during visual occlusion (Fig 6c).

IID Association: When audio is available during video occlusion
tracking continues, but fails when neither are available (Fig 6d)

FHMM Association: Temporal context allows continuous track-
ing through audio and visual occlusion (Fig 6e). Structure in-
ference (p(W,Z|D), Fig 6f) allows the labelling of the relational
content in the data (AV speaker detection & verification) as is
annotated on the images in Fig 6a.

Learning: From a random initialization, the model learns the ob-
ject (video template and audio spectrum) to be tracked based
on sensor correlation only (Fig 6g-i)

Figure 6: AV Learning, Tracking, Data Association

Discussion

Features and novel contributions include

• Principled formulation of multisensor perception and tracking
using Bayesian model selection.

•Automatic learning of all parameters from data.

• Real-time (50fps) inference of structure and state performs si-
multaneous user detection, tracking and multisensory verifica-
tion (that detected sound comes from the user).

Outlook: Using sophisticated probabilistic techniques such as
those described here, future probabilistic modelling research
in machine learning and neuroscience will increasingly be able
to deal with higher level existential and relational concepts in
data.

Future plans include

•Development of approximate inference techniques to allow ex-
tension of audio-visual model to multiple users and more com-
plex relational scenarios.

• Experimental testing of whether human optimal sensor fu-
sion[2] extends to optimal multisensor association.

•Closing the sensorimotor loop. Investigating Bayesian models
of active learning & perception.
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