
A Knowledge-Based Planner for Processing Unconstrained Underwater Videos

Gayathri Nadarajan, Yun-Heh Chen-Burger, Robert B. Fisher
CISA, School of Informatics, University of Edinburgh, U.K.

gaya.n@ed.ac.uk, {jessicac,rbf}@inf.ed.ac.uk

Abstract
Video data collected continuously are pervasive to-
day but analyzing them in an efficient manner has
proven to be a challenge. This is because raw da-
ta is unlabelled and prone to noise, causing diffi-
culty in extracting knowledge. With the aid of user-
provided domain knowledge and heuristics used by
image processing experts, an automated solution is
implemented. It makes use of formalisms for goal-
directed behavior in the form of hierarchical task
networks (HTNs). These are incorporated within a
novel workflow composition framework that aims
to assist naive users conduct complex video pro-
cessing tasks automatically. An example is illus-
trated for video classification, fish detection and
fish counting in unconstrained underwater videos.

1 Introduction
The Taiwanese Ecogrid project [2006] offers a unique oppor-
tunity for long term ecological monitoring and planning via
the integration of geographically distributed sensors, comput-
ing power and storage resources into a uniform and secure
platform for continuous information gathering. Wireless sen-
sor nets have been installed and managed in several national
parks in Taiwan and the information collected is stored in and
made available through Ecogrid for access. These include
surveillance videos in the entire area of Fu-Shan National
Park for observing natural lives and protecting them from po-
tential poachers, audio recording of rare frog species, under-
sea coral reef and marine life observation stations and more.
Due to the continuous and non-intrusive methods deployed,
such monitoring and recording efforts have already made eco-
logical discoveries of significant importance that traditional
methods otherwise could not have made.

However, there is a great challenge as how this data may
be transformed into useable information for the ecologists in a
timely fashion. For instance, a one minute video clip typically
takes 1500+ frames and is stored in 3–4 MB. This translates
into 200+ MB per minute, 5+ GB per day and 2 TB per year
for one operational camera, and due to the unpredictability of
nature, one may not easily skip frames as they may contain
vital information. It is estimated that one minute’s clip will
cost 15 minutes of manual processing time on average. This

means that one year’s recording of a camera would cost hu-
man experts 15 years’ effort just to perform basic analyzing
and classifying tasks. This is exacerbated with the presence
of three underwater cameras in operation currently. This is
clearly an impractical situation and appropriate automation
methods must be introduced.

In this context, the challenge lies in the fact that there is
a lack of effort in conceptualizing the tasks involved in the
process of video analysis, as the majority of vision develop-
ers focus on improving low-level techniques and algorithms
that perform with extreme accuracy. The traditional approach
used by image processing experts of providing highly spe-
cialized solutions for specific tasks would contribute little to
the problem at hand. Moreover, the goals and constraints are
not restricted, making it more difficult for image processing
experts to come up with generalized solutions.

This work aims to tackle this problem by providing a
planning- and semantics-based workflow system. First, the
system overview is outlined in section 3. Next, the derivation
and usage of HTN plans are described in sections 4 and 5
along with some sample results. Section 6 finally concludes.

2 Related Work
Attempts to solve automatically image processing problems
were conducted within knowledge-based systems such as
OCAPI [Clément and Thonnat, 1993] , MVP [Chien and
Mortensen, 1996] and BORG [Clouard et al., 1999]. How-
ever these systems remain limited to a list of restricted and
well known goals. Therefore a priori knowledge about the
application context (domain-specific concepts such as sen-
sor type, noise, lighting, etc) and about the goal to achieve
were implicitly encoded in the knowledge base. This implicit
knowledge restricts the range of application domains for these
systems and it is one of the reasons for their failure.

Within the workflow community, major systems such as
Pegasus [Deelman et al., 2004], Taverna [Oinn et al., 2004]
and Kepler [Ludäscher et al., 2005] are composed manually.
Thus the user, who is usually a domain expert (e.g. bioin-
formaticians using Taverna), is responsible for constructing
the workflow based on their goals. Only Pegasus has the ad-
ditional capability of automatic workflow composition in the
form of mapping abstract non-executable workflows to their
concrete executable forms. Pegasus utilizes deferred plan-
ning to generate partial executable workflows based on al-



Figure 1: Hybrid Workflow Composition Framework for Video Processing.

ready executed tasks and the currently available resources by
a partitioner. This allows for dynamic scheduling that would
prevent workflows from failing to execute should any of the
resources fail. Although this is a step towards performance
optimization and reliability, Pegasus is still limited in that it
does not support looping which is essential for the modeling
of iterative processes such as image processing.

Currently there is no easy way to provide image process-
ing solutions when there is no clear understanding of the
application domain or the object(s) within the images that
need to be manipulated with. To address this issue, we use
a knowledge-based approach to provide a rich and flexible
mechanism that would allow automatic process selection and
dynamic workflow composition that can provide suitable im-
age processing solutions in a problem domain that is not well-
understood. This is an ambitious aim, as a starting point we
limit our scope to uncontrolled underwater marine life ob-
servations by using the domain knowledge to address the in-
herent ambiguities and to derive useful structure. In the past
only image processing experts had access to the software li-
braries and could improve the quality of the solutions by trial
and error cycles based on past experiences. Now, by under-
standing the background and domain knowledge, non-image
processing experts can also have access to the tools and can
conduct experiments themselves. Planning, combined with
semantics-based technologies such as ontologies could prove
useful in generating automatic solutions for pervasive prob-
lem domains such as video processing. A framework that
incorporates these features is outlined next.

3 Overview of Design and Implementation
In order to tackle multiple user objectives and to capitalize on
the strengths of various image processing tools and the capa-
bility of planning systems, a robust architecture is required to
derive good enough answers for users. This can be achieved
by incorporating all these components within an integrated
framework. Figure 1 illustrates the proposed framework that
aims to provide automation for the video processing applica-
tion domain [Nadarajan et al., 2006]. It distinguishes three
levels of abstraction through the design, workflow and pro-

cessing layers, that capture knowledge of varying structural
complexity.

3.1 Design Layer
At the top-most layer, high level concepts are provided by
the user which are used for the goal formulation. The design
layer contains components that describe the domain, goals,
capabilities and processes to be carried out in the system.
These are represented by three ontologies and two libraries.
The goal ontology contains the classes of tasks (e.g. Detec-
tion, Classification, Segmentation) with the constraint quali-
fiers for the goal (e.g. Performance Criteria, Accuracy, Oc-
currence, Quality Criteria). The domain ontology describes
the videos whereby qualitative concepts such as “blur” and
“clear” for image clearness and “low”, “medium” and “high”
for brightness level, among others, are included. The capabil-
ity ontology contains the classes of video and image process-
ing tools according to their functions. It also contains the per-
formance level of the tools according to domain description
and/or constraints based on experimental findings by image
processing experts. A modeler is able to manipulate the com-
ponents of the design layer, for example populate the libraries
and modify the ontologies.

3.2 Workflow Layer
The workflow layer acts as the main interface between the
design and processing layers. This layer ensures the smooth
interaction between the components, access to various re-
sources such as raw data, image and video processing tool
set, interface to user, as well as the provision of the final out-
put. This is provided by a workflow enactor, that acts as the
interpreter of the events that occur within the system. Section
3.4 describes the workings of this layer in more detail.

3.3 Processing Layer
The processing layer consists of a set of image and video
processing tools that act on the data. The functions of these
tools are represented in the capability ontology in the design
layer. Once a workflow is composed, these tools may work on
the videos directly. It should be noted that for each capabil-
ity, there could be more than one tool available. Depending



on the quality of the video and the task at hand, each tool
may perform with a different level of accuracy. Thus, having
the user provide feedback on the performance of a particular
combination of tools would be beneficial to the system’s fu-
ture improvement. The central idea of this architecture is that
users who do not possess image processing expertise can con-
duct complex video processing tasks with the help of an auto-
mated system and their domain expertise. This is realized via
a planning- and ontology-based workflow enactor that acts as
the main interface between the high-level user requests and
the low-level application components.

3.4 User-System Interaction
The workflow engine is implemented based on the framework
proposed in Figure 1. Using a declarative approach, the work-
flow engine and planner are developed using SICStus Prolog
3.12.5. The user-system interaction is given by Figure 2 and
further explained below.

Figure 2: Overview of interaction between the user, workflow
and other components in the system.

The system first prompts the user for the goal (leftmost in
Figure 2). Then, the constraints and initial domain descrip-
tion are obtained via a Preliminary Analysis stage. These
are provided by the user, otherwise, generated automatically.
Once the goal, constraints and initial domain information are
formulated, they are checked against the goal and domain
ontologies for consistency. The workflow then consults the
planner, process library and capability ontology for the set
of actions required to achieve the goal. The result of that
is the invocation of the image processing executables corre-
sponding to these actions on the input video. The result of the
image processing task is displayed to the user for evaluation.
Based on the user’s assessment, the system will re-process (or
replan) parts where necessary. In this way, the overall perfor-
mance of the system can be improved incrementally.

Example Task: Classify Video, Detect Fish, Count Fish
Suppose the user wants a video clip to be classified based
on brightness (luminosity), clearness (smoothness), level of
green tone (to detect the presence of algae on the camera
lens), occurrence of fish and count of fish. Thus, given an
input video clip, the output is a new clip identical to the orig-
inal one with annotated values for the criteria given above.
Figure 3 provides a few example results for this task [Spamp-
inato et al., 2008]. The user specifies the goal, constraints
and domain description based on valid inputs presented by
the system. Otherwise the constraints and domain description

will be generated automatically using default values recom-
mended by image processing experts. The terms representing
the goal and constraints given by the user are checked with
the concepts in the goal ontology.

Figure 3: Three sample annotated video captures for the task
video classification, fish detection and fish counting.

Each term in the list of goals provided by the user should
match with an instance in the goal ontology and the class of
this goal instance should be a subclass of the class “Goal”.
The constraints provided by the user are checked with the
instances of the classes “Performance Criteria”, “Quality
Criteria”, “Accuracy” and “Occurrence” respectively. Due
to space limitation, a partial representation of the goal on-
tology with relevant instances in bold and their immediate
classes highlighted is given by Figure 4. Nadarajan and Re-
nouf [2007] describe the three ontologies in further detail and
illustrate their usage in the image processing problem formu-
lation. These are then formulated as Prolog predicates and
checked against the goal and domain ontologies, represented
in a first order logic-based data language, FBPML-DL [Chen-
Burger and Stader, 2003]. This formalism was chosen be-
cause a logical language for planning, process modeling and
workflow composition in one integrated system was required.
The recommended ontology language, OWL [McGuinness
and van Harmelen, 2004] does not provide direct reasoning
support for programming languages, hence it was not se-
lected. A sample set of values for the goal and constraints
is given below:

Goal: [classify video, detect presence fish, count fish]
Constraints: [Occurrences = all, Performance Criteria =
processing time, Quality Criteria = best compromise,

Accuracy = prefer miss than false alarm]

The Prolog representation to describe the goal (including
constraints) is given by the caption and predicate below:

% goal(Goal list, Ordering, Constraints, Solution).
goal([classify video(Filename), detect presence fish(all),
count fish(all)], [], [processing time, best compromise, pre-
fer miss than false alarm, all], Solution).

Filename refers to the input video in MPEG format.
Ordering is explicitly stated if one of the tasks must be
executed before another. Solution is the list of all the steps
returned by the planner eventually. A preliminary analysis is
then conducted to obtain the initial domain description. This
can be done manually (given by the user) or automatically.
The initial domain description is also checked for consistency
with the domain ontology as with the goal and constraints. A
sample domain description is as follows:



Figure 4: Goal ontology with relevant classes and instances for the task “classify video, detect fish and count fish”.

Figure 5: Top-level plan for goal “Classify Video, Detect Fish and Count Fish”.

Initial Domain: [Brightness = medium, Smoothness = clear,
Percentage Background Object = low]

The Prolog predicate to represent this initial description
is asserted into the knowledge base.

start state([brightness(medium), smoothness(clear), percentage bg
object(low)]).

Other prominent domain information that are not shown
above but will be discussed in the next section include initial
speed of object movement, texture features and type of noise.
The goal, constraints and initial domain description are
fed into the planner that selects a sequence of steps using
hierarchical decomposition. This will be described further in
the following section.

4 Deriving HTN Plans from Domain Experts
and Image Processing Heuristics

Generating solutions for video processing tasks can be
defined as a planning problem where the goals are high-level
user requirements, such as “Detection”, “Classification”,
“Segmentation” and so on. Nadarajan [2007] provided
groundwork for our planning component which has since
been used to generate plans for more complex tasks. The
constraints provided by the user or generated automatically
will be used as preconditions for operator selection. The
operators are the image processing tools (or capabilities) that
are involved in achieving these goals. Close examination of
image processing programs has unveiled how the developers
go about solving video processing problems and the heuris-
tics that they use for the selection of actions. Essentially a
high level task is broken down into a sequence of one or more
subtasks until primitive processes are encountered. This
can be demonstrated better with an example. For the goal

“Classify Video”, “Detect Fish” and “Count Fish” described
in the previous section, the high level process breakdown is
given by Figure 5. Using the conventions provided by Nau,
Ghallab, & Traverso [2004], this could be described using
HTN method as follows:

top-level(file, frame no, curr frame img, bg model, img with blobs,
texture features)
task: classify video-detect fish-count fish(file, frame no, curr
frame img, bg model, img with blobs, texture features)
subtasks:
u1 = preprocessing initialization(file),
u2 = compute predominant colours(frame no, curr frame img),
u3 = compute main texture features(frame no, curr frame img),
u4 = perform detection(frame no, curr frame img, bg model),
u5 = perform tracking(frame no, curr frame img, img with blobs),
u6 = perform video classification(file, texture features)
constr: u1 ≺ u2, u2 ≺ u3, u3 ≺ u4, u4 ≺ u5, u5 ≺ u6

Each of the subtasks is further decomposable to other
primitive and non-primitive subtasks. Initially, using a
top-down approach, the operators were represented by the
primitive tasks in an image processing program. A primitive
task is one that is not further decomposable, for instance
a function call within a vision library, or an arithmetic,
logical or assignment operation. This was done based on
the fact that each function call within the image processing
library could represent a suitable executable component
that requires precondition(s) and results in postcondition(s).
Each primitive task may take in one or more input values
and return one or more output values. Experimentation has
shown that a typical program written using a standard vision
library such as OpenCV1 for a task of average complexity
contains approximately 1000 lines of code that correspond to

1Available as http://sourceforge.net/projects/opencvlibrary/



Figure 6: Process Model for “Perform Detection”, a subtask within the goal “Classify Video, Detect Fish, Count Fish”.

Background Domain Constraint
Model Criteria Value Criteria Value
Gaussian Clearness High

Speed of Movement Low
% Background Object Low
Noise Type Gaussian

Gaussian Mixture Texture Features Variance, 4th moment Accuracy Prefer miss than false alarm
Speed of Movement High
% Background Object Medium
Noise Type Gaussian

Moving Average Speed of Movement Accuracy Prefer false alarm than miss
(for computing alpha) Performance Processing time

Intra-Frame % Background Object High
Noise Type Gaussian

W4 Texture Features Mean, 3rd moment
% Background Object High
Noise Type Salt & Pepper

Poisson Texture Features Mean, Variance
Adaptive Poisson Texture Features Histogram, Mean

Variance

Table 1: Description of Domain Information and Constraints in Background Model Creation

thousands of operator invocations over multiple frames in a
video. For example, a sample run for the video classification,
fish detection and counting task using this level of granularity
has yielded 85 unique operators (function calls) and a total
of 11511 steps in 1.16 seconds for a video of 50 frames.
However, this would result in scalability issues when the
video size is larger. A three-minute video clip containing
5400 frames would cause a tenfold increase in the number of
execution steps and processing time, thus a coarser level of
granularity would be more appropriate.

Adopting a bottom-up approach next, sets of primitive
tasks were grouped or “chunked” under meaningful headings
as executables. Repeated discussions with image processing
experts resulted in the refinement of the processes and the
modification of the process library and ontologies with re-
spect to these changes. The advantage of this bottom-up re-
finement approach has allowed us to identify modules that
could be reused for most video processing tasks. A combined
systematic approach of top-down and bottom-up refinements
has resulted in the specification of 31 executables that repre-
sent the independent components or operators in the process
library (see Appendix A). This setting is not just easier to
manage, the independent components also represent mean-
ingful subtasks that could be reused for various other image
processing tasks. The derived executables are defined accord-
ing to their input, output, pre-conditions and post-conditions

in agreement with image processing experts.
This provided a more efficient way of generating image

processing solutions by reusing existing executables than
having an application-specific image processing program de-
veloped from scratch each time a video processing task needs
to be done. A re-run of the workflow engine using this new
level of granularity on the same 50-framed video for the same
task has resulted in 1456 steps in 0.44 seconds, almost eight
times fewer steps and 62% faster than the initial outcome.
Methods are in place to reduce this number of steps further,
for instance further refinement of the executables and elimi-
nation of loops with known number of iterations from within
the planner, where possible. An example for background
model creation will be illustrated in the next section.

5 Example: Background Model Creation
An important component of the video processing task de-
scribed in the previous section is “Perform Detection”. The
process model for this subtask is given by Figure 6. As can
be seen a decision is made whether to create a background
model or update a background model (depicted by the XOR
construct), depending on the current frame number. The
background model is created if the current frame is the
first frame, otherwise it is updated in accordance to the
existing background model. The creation of the background



model is a suitable example to illustrate this as it provides
a spectrum of cases where different background models
could be created based on these features. Seven types of
background model have been identified and of these only one
will be selected for a particular video depending on domain
description and/or constraints. Table 1 outlines the domain
and constraint descriptions for all the background model
types. To demonstrate a few variations, the HTN methods for
creating the Gaussian mixture model and the moving average
model are given below.

bg-model2(curr frame img, dir, frame no, high, medium, gaussian,
prefer miss than false alarm)

task: create-gaussian-mixture-model(curr frame img,
frame no, dir, high, medium, gaussian, prefer miss
than false alarm)

subtasks: u1 = create gmm model(curr frame img, dir)
constr: before({u1}, frame no(1), init speed(high),

percentage bg obj(medium), noise type(gaussian),
accuracy(prefer miss than false alarm))

bg-model3(curr frame img, dir, frame no, learning speed,
prefer false alarm than miss, processing time)

task: create-moving-average-model(curr frame img, dir,
frame no, learning speed, prefer false alarm than
miss, processing time)

subtasks: u1 = create ma model(curr frame img, dir)
constr: before({u1}, frame no(1), init speed(high),

accuracy(prefer false alarm than miss),
performance(processing time))

In the first method, for the task create-gaussian-
mixture-model, the preconditions that must be met are
the initial speed of movement is high, the percentage of the
background object is medium the noise type is Gaussian
and the accuracy value is prefer miss than false alarm. For
the second method, the moving average model is the most
preferred model when the initial speed of movement is high,
the accuracy value is prefer false alarm than miss and the
performance criterion is processing time. Note also that the
parameter learning speed that is passed into this method is
determined using the initial speed of movement. Some of
this information is provided by the user at the initial stage
after specifying the goal. In the capability ontology these
conditions are incorporated as criteria with performance
measures that are tied to the operators that may perform
the respective background model creation tasks. Thus the
best tool to perform a task may be determined using the
information derived from the capability ontology.

Based on the experimental findings and domain under-
standing provided by the video observations, planning using
HTNs is a suitable approach for automatically generating so-
lutions for video processing tasks. This is because there are
many ways to achieve a vision task, depending on the qual-
ity of the video, the tools available to perform the task, and
the constraints on the goal. HTN planning would allow dif-
ferent methods for solving the same task to be incorporated
into the inference engine. Thus, by capturing some of the
best-practices used by image processing experts to solve vi-
sion problems, we have gained some invaluable insight into
the processes involved in solving such complex tasks.

6 Conclusion
Observations acquired from unconstrained underwater videos
have assisted in the modeling of plans through the under-
standing of the application domain and the relevant processes
involved to solve some of the known problems pertaining to
the application. This has resulted in the derivation of for-
malisms for goal-directed behavior in the form of ontologies
and HTNs. These enabled the rapid generation of a prototype
of an approximate image processing system that produced
sub-optimal but sufficiently accurate answers for naive users.

Acknowledgments
The authors would like to acknowledge Concetto Spampinato
from University of Catania, Italy for collaboration on the im-
plementation of the image processing executables. Access
to research image data was sponsored by the Royal Society
of Edinburgh, U.K., National Center for High Performance
Computing (NCHC) and Academia Sinica, Taiwan.

A List of Independent Components

A.1 Pre-processing and Initialization
1. View Video

This component takes a video file, determines its frame
rate, number of frames, compression algorithm and fi-
nally displays the video to the screen. A conservative fil-
tering is also applied to remove noise. This component
will create a directory and store candidate background
images in it.

2. Preliminary Analysis
This module is responsible for capturing the initial do-
main description of the video. Taking in the video file, it
retrieves the initial brightness, clearness, speed of move-
ment, date and initial texture features. These features are
contained in the domain ontology. A small motion de-
tection system is also performed to identify background
movement, e.g. plants.

3. Grab Frame Image
This component takes in a video file and a frame number,
retrieves the image for that frame and stores it for further
processing. This component is necessary as each frame
of the video is processed using its image representation.

A.2 Compute Pre-dominant Colours

4. Extract RGB Colours
This component extracts the red, green, blue and yellow
channels of a frame.

A.3 Compute Main Texture Features

5. Compute Histogram
This component takes in a frame image, computes its
histogram value and image representation. User may se-
lect to view the histogram representation.



6. Compute Main Statistical Moments
This module determines main statistical moments such
as mean, variance, third and fourth moment, entropy,
uniformity and smoothness given a set of histogram val-
ues (e.g. obtained from component 5).

7. Compute Gabor Filter
This component applies a Gabor filter onto a complex
image made up of a real and an imaginary part. The
absolute value of the complex image is computed, fol-
lowed by the mean and variance, which are texture fea-
tures. For 4 angles and 3 scales, this will yield 12 mean-
variance values, so for each image 24 values will be ex-
tracted. These features could be used for the detection
of coral reef, for instance.

A.4 Perform Detection
8. Create Gaussian Background Model

Given a frame image, this module creates a background
model represented by 2 images; foreground and back-
ground. It stores the background model in a direc-
tory given as input. This background model works well
for videos where movement of background objects vary
slightly and not suitable for videos with waving trees.

9. Create Gaussian Mixture Model
Similar to component 8 above, the background model
created by this component is represented by 2 images
and stored in a specified directory. In addition, this mod-
ule overcomes the limitation of component 8 and is suit-
able for videos with waving trees.

10. Create Moving Average Model
This module takes in a frame image, a directory to store
the resulting background model and a learning speed
(alpha) and creates an image that represents the back-
ground model. The advantage of this algorithm is that it
does not require a learning phase. Alpha is dependent on
the speed of movement, which could be obtained from
preliminary analysis (component 2).

11. Create Intra-Frame Difference Model
This module only requires a directory where the back-
ground model needs to be stored. The background
model is represented by 2 matrices. This algorithm over-
comes the limitations of Gaussian background model
(component 8) but is problematic for videos with im-
pulsive noise such as salt and pepper noise.

12. Create W4 Background Model
This module also only requires a directory where the
background model is to be stored. The background
model is represented by 3 matrices. This algorithm over-
comes the limitations of components 8 and 11 and is
particularly suitable for videos with low changes in lu-
minosity (e.g. indoor applications).

13. Create Poisson Model
As with 11 and 12 this module takes in a directory where
the background model is to be stored. 2 matrices are cre-
ated to represent the background model. This algorithm

is particularly suitable for videos with uniform back-
ground colour (e.g. blue water, tar road).

14. Create Adaptive Poisson Model
Similar to the previous 3, a directory name is required
to store the background model. The background model
is represented by 2 images; foreground and background.
This algorithm is similar to component 13, additionally
it can manage colour variation with light changes.

15. Update Moving Average Model
This component takes in a frame image and an exisiting
moving average background model to create a new back-
ground model (1 image). It utilizes absolute subtraction
between pixels.

16. Update Background Model
This component works on all background models except
for moving average model. It takes in a frame image and
an existing background model (either images or matri-
ces) and creates a new background model accordingly.
The algorithm checks that a pixel in an image is in a
range of values. It can cater for input of different num-
ber of images, hence it could be used for different back-
ground models.

17. Detect Moving Objects
This module creates an image with identified blobs from
a frame image and a background model (which could be
1, 2 or 3 images). The result is a binary image. The algo-
rithm works by removing occlusion and small objects. It
also utilizes statistical or derivative algorithm based on
the type of the background model.

18. Perform Morphological Operation
This operation is only applicable to some background
models. Given an image with identified blobs (e.g. from
component 17), noisy detected pixels are removed.

A.5 Perform Tracking
19. Extract HSV values

This component extracts the images for the hue, satu-
ration and value channels for a given frame image. A
preprocessing step (e.g. histogram equalization) could
be included to exclude green colour if algae is present.

20. Compute Backprojection
This module depends on component 19 as it takes in a
hue channel to create a histogram of the hue channel,
which is then used to create an image which represents
the backprojection of the hue plane. The hue plane is
used because it gives the most useful colour information
for an image.

21. Compute Connected Components
This module takes in an image with potential blobs (e.g.
from component 18) and returns an image with the cor-
rect blobs and the total number of blobs in that image.

22. Compute Ratio Area Convex Hull over Area Blob
This component calculates the ratio between the area of
the convex hull of a blob and the area of the blob itself.



It is executed over all blobs in an image (e.g. image from
component 21).

23. Compute Camshift
This component predicts what a blob will look like in
the next frame. Given the backprojection of a hue plane,
an image with identified blobs and the current blob num-
ber, this algorithm draws a bounding box of the blob and
returns the center, orientation and size of the blob. It is
executed over all blobs in the image.

24. Compute Closest Blob
This component is reponsible for finding the minimum
Euclidian distance between two blobs. Thus, given the
centers, orientations and sizes of two blobs, this distance
is computed. It is executed in a double loop to compare
a blob with all the blobs in a segment of consecutive
frames (e.g. component 10) to find the closest blob.

25. Count and Write Number of Fish in Frame
This module takes in an array of mininum distances
(computed from component 24 for example), the ratio
between the blob area and frame area and writes the
number of fish (blobs) onto an output frame. It also sets
the blob as being counted.

26. Count and Write Number of Fish in Video
This component takes in an array of boolean values to
represent whether a blob has been counted or not (com-
ponent 25) and writes the number of fish in the video
onto an output frame.

27. Determine Presence of Fish Blocking Screen
Given the area of the blob and the area of the frame,
this module will return a true or false value to inform
if a blob (fish) is blocking the screen. The minimum
threshold for this condition to hold is set to 70%.

A.6 Perform Classification
28. Compute and Write Average Luminosity

This module is responsible for determining if the bright-
ness level of a video is “bright”, “medium” or “dark”
based on its average luminosity value, calculated using
the mean and 3rd moment. The value is written onto the
output frame.

29. Compute and Write Average Clearness
This module is responsible for determining if the
smoothness level of a video is “clear” or “blur” based
on its average clearness value, calculated using the vari-
ance, 4th moment, entropy and uniformity. The value is
written onto the output frame.

30. Compute and Write Presence of Fish
This module is responsible for determining if the video
has “fishes” or “no fishes” based on the number of fish
in the video. The value is written onto the output frame.

31. Compute and Write Presence of Algae
This module is responsible for determining if algae is
present or not in the video, categorized as “green” or
“not green” based on its green channel value. The value
is written onto the output frame.

References
[Chen-Burger and Stader, 2003] Y.-H. Chen-Burger and

J. Stader. Formal Support for Adaptive Workflow Systems
in a Distributed Environment. In Layna Fisher, editor,
Workflow Handbook. Future Strategies Inc., 2003.

[Chien and Mortensen, 1996] S.A. Chien and H.B.
Mortensen. Automating Image Processing for Sci-
entific Data Analysis of a Large Image Database. IEEE
PAMI, 18(8):854–859, August 1996.

[Clément and Thonnat, 1993] V. Clément and M. Thonnat.
A Knowledge-Based Approach to Integration of Image
Procedures Processing. CVGIP: Image Understanding,
57(2):166–184, Mar 1993.

[Clouard et al., 1999] R. Clouard, A. Elmoataz, C. Porquet,
and M. Revenu. Borg : A Knowledge-Based System
for Automatic Generation of Image Processing Programs.
IEEE PAMI, 21(2):128–144, 1999.

[Deelman et al., 2004] E. Deelman, J. Blythe, Y. Gil,
C. Kesselman, G.Mehta, S. Patil, M.H. Su, K. Vahi, and
M.Livny. Pegasus: Mapping Scientific Workflows onto
the Grid. In Across Grids Conference, 2004.

[Ecogrid, 2006] Ecogrid. National Center for High Per-
formance Computing (NCHC), Taiwan, 2006. URL:
http://ecogrid.nchc.org.tw/.

[Ludäscher et al., 2005] B. Ludäscher, I. Altintas,
C. Berkley, D. Higgins, E. Jaeger, M. Jones, E.A.
Lee, J. Tao, and Y. Zhao. Scientific Workflow Man-
agement and the Kepler System. Concurrency and
Computation: Practice & Experience, 2005.

[McGuinness and van Harmelen, 2004] D. McGuinness and
F. van Harmelen. OWL Web Ontology Language. World
Wide Web Consortium (W3C), 2004.

[Nadarajan and Renouf, 2007] G. Nadarajan and A. Renouf.
A Modular Approach for Automating Video Processing.
In CAIP, 2007.

[Nadarajan et al., 2006] G. Nadarajan, Y.-H. Chen-Burger,
and J. Malone. Semantic-Based Workflow Composition
for Video Processing in the Grid. In IEEE/ACM Web In-
telligence, 2006. pp. 161-165.

[Nadarajan, 2007] G. Nadarajan. Planning for Video Pro-
cessing using Ontology-Based Workflow. In ICAPS, 2007.

[Nau et al., 2004] D. Nau, M. Ghallab, and P. Traverso. Au-
tomated Planning: Theory & Practice. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2004.

[Oinn et al., 2004] T. Oinn, M. Addis, J. Ferris, D. Mar-
vin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M.R. Pocock, A. Wipat, and P.Li. Taverna: A Tool for
the Composition and Enactment of Bioinformatics Work-
flows. Bioinformatics, 2004. 20(17):3045–3054.

[Spampinato et al., 2008] C. Spampinato, Y.-H. Chen-
Burger, G. Nadarajan, and R. B. Fisher. Detecting,
Tracking and Counting Fish in Low Quality Uncon-
strained Underwater Videos. In VISAPP, 2008.


