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Abstract— An efficient planning algorithm for the hexago-
nal metamorphic self-reconfiguring system (SRS) is presented.
Empirically, the algorithm achieves an time complexity of
O(n) averaged over random problem instances. The planning
algorithm is capable of solving approximately 97% of planning
tasks in the general state space of configurations containing less
than 20,000 units.

The state space is divided into two classes according to
planning efficiency. The configurations belonging to the first
class permit an Euler tour to be wrapped around the robotic
aggregate. The existence of the Euler tour implies units are
free to move around the perimeter of the SRS. Planning
between configurations in this class can be performed in O(n)
using a specialized planning algorithm. The set of Euler tour
configurations span a large volume of the general state space
of the hexagonal SRS.

A second specialized planning algorithm plans from a general
configuration to a nearby Euler tour configuration. While
planning in the general configuration state space is compu-
tationally harder, the distance required to plan is short. Thus,
the combination of both algorithms allows us to efficiently plan
for a large proportion of possible reconfiguration tasks for the
hexagonal metamorphic robot.

I. INTRODUCTION

We wish to build self-reconfiguring systems (SRSs) in

order to overcome the limitations of monolithic robotic

platforms. SRSs are comprised of numerous modular robotic

subunits capable of actively altering their connectivity to

their spatial neighbors. Through cooperation between sub-

units, the SRS aggregate is able to change morphology. The

advantages of this approach include non-fixed workspace,

flexible locomotion, economies of scale, scalable strength

and scalable accuracy[18], [14]. However, in order for us

to realize practical SRSs, two broad categories of technical

issues need to be addressed, namely construction and control.

This work focuses on the issue of controlling the aggregate

to reconfigure; determining a set of moves for the sub-units

to execute in order to change from a current configuration

into a desired configuration. Clearly the planning problem is

dependent on the motion constraints of the particular robotic

system. The algorithm developed here is for the hexag-

onal metamorphic robot. This abstraction of the problem

constrains the SRS to reside on a discrete lattice. This is

in contrast to other SRSs whose state contains continuous

variables. While planning for a discrete SRS appears to be

easier than for other types, as yet, there is no satisfactory

solution that scales well with the number of units in the

configuration.

Reconfiguration planning is a motion planning problem.

While our specific motivation is to improve SRS technology,

this particular motion planning problem is interesting to a

broad community because of the combination of an expo-

nential state space and non-trivial, yet exploitable, structure.

Convincingly solving this problem may provide broader

insights into the nature of difficult state spaces.

II. PREVIOUS WORK

The original model of the hexagonal metamorphic robot

was defined by Chirikjian[3]. Early planning work for this

model used simulated annealing as a search technique,

guided by a heuristic[16]. The plans formed by this method-

ology only permitted a single hexagonal unit to move per

iteration of time (single-move planning), and the system was

not scaled up to plan for configurations with more than 50

units.

Ghrist et al. [1], [8], [7] analyzed the problem using tools

from topology and developed an alternative set of motion

constrains for the hexagonal metamorphic system. The move-

ment catalog was more constrained than Chirikjian’s. Ghrist’s

definition excluded moves that could change the global

topology of the system, such as introduction of enclosed

space. These changes had non-trivial consequences on the

reconfiguration space, and allowed Ghrist to show that the

new reconfiguration space was of non-positive curvature. An

immediate practical result that followed was the discovery of

a plan optimization algorithm that was capable of changing

a single-move plan into an optimal multi-move plan in the

same homotopy class[8].

Rus and Vona advanced planning for a different class of

SRSs, those that are comprised of unit compressible modules.

In their work, units were assigned into small groups of virtual

elements that lay on a coarse embedding lattice space[17].

A dictionary of moves was developed operating on the the

coarser abstraction and planning was simplified. The overall

time complexity for their planning algorithm was O(n2).
Constraining units to lie upon a coarse lattice undesirably

reduces the permissible tasks that can be planned for from

the total set of realizable configurations. Later work by

Fitch, Butler and Rus relaxed the necessity for units to

remain members of a fixed virtual group and applied the

results to a SRS model that closely resembles the hexagonal

metamorphic model[5]. The lack of mobility of units was

overcome using a procedure called TunnelSort. A high

level planner would request units to move between arbitrary

locations, and the TunnelSort sub-procedure would find a

path through the SRS’s volume and determine the local coor-

dination of nearby units required to realize the move. Whilst

the run-time of the algorithm was of the same complexity

as before, O(n2), spatial resolution was not lost through



coarsening. The state-of-the-art of their continued work is

a planning algorithm that also permits dense obstacles in

the environment, and a degree of heterogeneity within the

SRS[6], with a time complexity of O(n2).
Recent work by Aloupis et al.[2] created a planning

algorithm for a unit-compressible SRS. They acheived linear

time complexity in a distributed implementation, and the

multi-move plans scaled linearly with the number of units.

However, only configurations that lay on a coarse lattice

could be planned for and, historically, compressible SRSs

have been easier to plan for than SRSs whose modules can

only move on the surface of the configuration.

There is an unfulfilled need for a reconfiguration algorithm

that is sub-quadratic in time complexity, and capable of being

applied to a large subset of configurations. This is the focus

of our work.

III. PRELIMINARIES

Let P denote the set of positions on a hexagonal lattice.

d : P × P 7→ Z is defined as the hex distance (see [3] for

details). We say two locations, x1 ∈ P and x2 ∈ P are

adjacent as isAdj(x1, x2)⇔ d(x1, x2) = 1. The undirected

connectivity graph, Gconn, of a set of locations, V ∈ P(P), is

the graph constructed from G(V, {(e1, e2)|isAdj(e1, e2)}).
In all models of the hexagonal metamorphic system de-

scribed here, the configuration space, Σ∗ is a set of robotic

unit locations, and a set of anchor locations, Σ∗ = P(P) ×
P(P), where P denotes the power set function. Access to the

sets is through the overloaded unary function _.R : Σ∗ 7→
set of P for robotic units, and _.A : Σ∗ 7→ set of P for the

anchor set. Often we will refer to the units of a configuration

as _.U : Σ∗ 7→ set of P where c.U , c.R∪c.A. The unnocu-

pied space immediatly adjacent to units in a configuration is

denoted c.Adj = {p|p /∈ c.U ∧ ∃q.q ∈ c.U ∧ isAdj(q, p)}
A move is an ordered pair of positions. If the positions

are unrestricted we say it is a long move, ML = P × P.

Moves from a catalog are always short moves, MS =
{x|x ∈ ML ∧ isAdj(x1, x2)}. A multi-move represents

several moves taken in parallel, MM = P(Ms).

IV. MODELS

Our motivation is to computationally efficiently form plans

for Chirikjian’s definition of the metamorphic robot. The

model, however, suffers from computational issues arising

from its motion constraints. Ghrist’s redefined motion con-

straints, however, do not suffer from the same set of issues

and so we make gains in planning efficiency by using the

Ghrist’s move catalog wherever possible.

In this work we propose a new model, the unconstrained

surface model (henceforth abbreviated to surface model),

which adds further motion constraints to enable even more

efficient planning. So we have a hierarchy of models,

Chirikjian, Ghrist and surface. Each successive model is

further constrained than the previous, so a plan executable

by the surface model of reconfiguration can be executed by

the Chirikjian model of reconfiguration. By planning for the

most constrained model wherever possible, we can achieve a

Fig. 1. Ghrist’s diagrammatic notation for representing motion catalogs[8].
The trace of the move is shown in grey. The trace is where a single robotic
unit is free to move between (shown by an arrow). The support set, the
remaining labeled locations, denote what the local context must be in order
for the move to be valid; blue for robotic units, and white for empty space.
Catalog elements are matched to the embedding space with a rigid body
translation. Left, the Chirikjian motion catalog[8], in addition, the moving
robot must not be a cut vertex of Gconn(c.U). Middle, the Ghrist model’s
motion catalog[8]. Right, and example of a move that may be permitted
by the Chirikjian catalog, but not Ghrist’s. Ghrist’s motion catalog implies
gross topological changes in the robot morphology cannot occur.

massive reduction in planning time. Each model is described

in detail below.

A. Chirikjian

A configuration, c, belongs to the Chirikjian class of

configurations, C ⊂ Σ∗, if the units form a connected graph:-

c ∈ C⇔ isConnected(Gconn(c.U))
Robotic units pivot around a neighbor in order to move.

There must be space for the robotic unit to pivot into1 (Figure

1), and the moving unit must not be a cut vertex with respect

to the connectivity graph. Anchor nodes behave like normal

units from the perspective of constraint checking, but are not

themselves permitted to move.

Pattern matching the catalog to a specific locale can be

done in constant time. Checking a unit is a cut vertex,

however, is a global constraint. Testing this constraint for all

modules in a configuration, c, can be achieved in one pass by

calculating the biconnected components of the connectivity

graph, Gconn(c.U) at a time cost of O(n)[9].

B. Ghrist

The Ghrist version of the hexagonal metamorphic robot

has more constraints to movement than the Chirikjian def-

inition. For notational convenience we shall denote the

permissible space of configurations as G, albeit it is the same

as C. The difference between models lies only in their motion

catalogs (Figure 1). The Ghrist catalog of moves ensures

there is no possibility for the global topology of the robot

to change. So if the aggregate is in a shape with no holes, it

will remain so regardless of what moves are executed. Thus,

the total reconfiguration state space of the Ghrist model is

disconnected.

Ghrist showed the additional restrictions implied non-

positive curvature of the reconfiguration state space. He

then described how a single move planning solution can be

changed to a multi move version at a time cost of O(p2)[8],

where p represents the path length.

The different move catalog also has useful computational

benefits. The costly connectivity check that the Chirikjian

1Actually, the original definition did not require pivot space. However, the
problem is harder and more interesting with it. The Claytronics hardware
platform is an instantiation of these exact motion constraints[12].



Fig. 2. The Euler tour, ET, around the surface for an example configuration.
Robotic units are shaded blue. The two possible surface violations are
shown. A kink is denoted K, and a dual path is shown as Dp.

model catalog requires is not necessary for the Ghrist model.

Thus the set of applicable moves for a configuration can be

updated after a move is taken dynamically at constant time

cost.

C. Surface

Our third model is a further constrained version of the

Ghrist model. The space is denoted by S ⊂ G. In order

to define this space we require an additional data structure.

An Euler tour (ET) around the adjacent external space is

maintained using a spatially indexed linked list data structure.

This data structure is represented by surface elements stored

in a tree indexed by hex coordinates. A surface element is

comprised of three pairs of directional pointers (Figure 2).

The first element of each pair of direction pointers repre-

sents the incoming direction of a Euler traversal visitation,

and the second element represents the outgoing direction.

The ET is represented using indirect directional pointers,

rather than absolute references to adjacent surface elements.

This permits part of the tour to be rewritten without having

to update all pointers. Therefore, the ET can be updated after

a single-move at constant cost.

In addition to the tour, several other statistics about the

tour are maintained; a set of kink violations, and a set of

dual path violations. A kink violation is the location of where

a Euler tour visitations enters and leaves through the same

edge. A dual path violation is a location that is visited more

than once on the tour. Access to the set of kink violations is

denoted by the function _.K : Σ∗ 7→ set of P and the dual

paths by _.D : Σ∗ 7→ set of P

A configuration c is said to be a member of the un-

constrained surface state space when there are no kink or

surface violations i.e. |c.K| = 0 ∧ |c.D| = 0 ⇔ c ∈ S.

The motivation for this definition is to permit unconstrained

motion for mobile units around the surface. If unit can

move, then by definition from the Ghrist catalog it is on

the surface of the robotic volume. Prevention of a move by

lack of pivoting space is impossible because no dual path

violations implies there is always space around the surface.

A change in global topology cannot occur because no kinks

exist with which a mobile unit could bridge. Thus, for the

surface model, it is unnecessary to check the intermediate

states when moving a unit from a location on the surface to

another location on the surface.

For convenience we define a function LongMove which

moves a robotic component on a configuration to anywhere,

updating the ET as it does so (Algorithm 1). There is no

Algorithm 1 LongMove moves a long distance, and updates

the Euler tour in constant time.

LongMove : Σ ∗ ×(ML) 7→ Σ∗
LongMove(cs, (ms,me)), ce

ce ← ((cs.R− {me}) ∪ {ms}, cs.A)
ce.ET ←UpdateEulerTour(cs.ET,ms,me)

validity checking in this function, but this is done elsewhere

in the algorithms presented later.

Plans executable in the Chirikjian reconfiguration state

space can reach configurations belonging to the surface state

space because S ⊆ G ⊆ C ⊂ Σ∗. As moves are reversible

(Figure 1), i.e. move(cs,m) = ce |= move(ce,m
−1) = cs,

a path from c ∈ C to s ∈ S can be reversed to find a path

from s to c.

V. PLANNING

Our target is to determine a plan between two arbitrary

Chirikjian configurations. In this section we describe how

surface-to-surface reconfiguration tasks can be solved effi-

ciently. We then show how Chirikjian configurations can

be converted to surface configurations. The two forms of

previous plans can be combined into one single-move plan.

Finally, we describe how the single-move plan is converted

to a multi-move plan.

As some of our algorithmic claims are empirically de-

rived, we describe our empirical experiments here, with the

relevant data interleaved with the algorithmic descriptions

later. The data from first set of experiments was used to

test the most efficient sub-planning stages. A 100 random

configurations belonging to C containing 1000x units were

generated for x = 1 . . . 20. For the second set of experiments,

100 configurations were generated containing 100x units for

x = 1 . . . 35.

Random configurations were generated iteratively starting

with a single anchor node. Mobile robotic nodes were added

by uniform randomly selecting a component, then uniformly

randomly selecting an empty neighbor (if one existed) and

placing a unit there until the desired number of units were

placed. While our results would be more representative

of average case behavior if configurations were sampled

directly from the state space of C, this itself is an open and

challenging problem[15]. We do not believe that potential

suboptimality in this random sampling affects the average

case complexity in a qualitative way.

A. Surface-to-Surface

Surface-to-surface planning determines a set of moves that

change from one surface adhering configuration to another.

Surface-to-surface planning does not need to consider inter-

mediate single-move motions.

The planning algorithm incrementally improves a current

configuration c towards a goal configuration g. Locations in

the embedding space are labelled from L = {PLACED,

GROW , GROW+, CONTRACT, ∅}(Figure 3).

A location labeled PLACED denotes a robotic location

that no longer needs to be considered in order to improve

c. The anchors are considered PLACED on initialization,



Algorithm 2 Updating the labeling for PLACED and

GROW is initiated at a location, loc. If the loc label changes

to PLACED, the function recurs.

updateInc : P× S× S× (P 7→ L) 7→ (P 7→ L)
updateInc(loc, ccurr, cgoal, labels) , labels

if(loc ∈ ccurr.U ∧ loc ∈ cgoal.U )

labels(loc)← PLACED
for(∀q.isAdj(q, loc))

updateInc(q, ccurr, cgoal, labels)
if(loc /∈ ccurr.R ∧ loc ∈ cgoal.R)

if((ccurr.R ∪ {loc}, ccurr.A) ∈ S)

labels(loc)← GROW+

else labels(loc)← GROW

Algorithm 3 Updating the contraction labels is performed in

patches of radius 2 around the location, loc. The canMove
function tests whether a given location on a configuration

can move according to the Ghrist catalog.

updateArea : P× S× S× (P 7→ L) 7→ (P 7→ L)
updateArea(loc, ccurr, cgoal, labels) , labels

for(∀q.d(q, loc) ≤ 2)

if(canMove(q, ccurr) ∧ q /∈ cgoal.R)

labels(loc)← CONTRACT

and robotic units adjacent to placed units that are also found

in the goal configuration are considered placed too. As the

StoS planner never moves PLACED units, the number of

placed locations only grows. As placed units are adjacent to

already placed units, the labeling of placed units are updated

incrementally in the function updateInc (Algorithm 2).

GROW /GROW+ locations are where robotic units could

be placed. As such they are: always empty, adjacent to loca-

tions labeled PLACED, and where robotic units are located

in the goal. The GROW labels are updated incrementally

by updateInc (Algorithm 2).

CONTRACT locations denote: locations where robotic

units currently are that can move, and locations which are not

occupied in the goal configuration. CONTRACT locations

provide a supply of units for moving into GROW /GROW+

locations. After a move is applied to the current configura-

tion, some units local to the move’s start and end locations

may become mobile or lose mobility. Thus, updating the

CONTRACT labels is a local operation to be applied

after the configuration changes, at constant time cost by the

function updateArea (Algorithm 3).

The superscript + is appended to the GROW label when

the addition of a robotic unit at that location results in a

valid surface configuration. Movement to GROW locations

only results in a valid configuration if the removal from

the corresponding CONTRACT changes the local context

of the GROW area. Thus, we prioritize consideration of

movements to GROW+ locations because it is likelier that

the move will result in a valid surface configuration; and

reduces the amount of movements considered in improve().
The StoS planning algorithm iterates until all units in the

current configuration are PLACED. It improves the current

configuration by moving units from CONTRACT loca-

Units, n fails trials 95% C.I. of P (fail)

250 264 10000 .0233 .0297

500 7 10000 .0003 .0014

TABLE I

PROBABILITY OF StoS FAILING

Fig. 3. The labeling of PLACED, GROW ,GROW+, CONTRACT
and the Euler Tour for two configurations (A and B) planning toward a goal
(C). B is one possible longMove option improve could suggest given A.

tions to GROW locations (Algorithm 4). As units become

PLACED by an incremental traversal of the connectivity

graph, the total time of all calls to updateInc is O(n).
The time cost of improve depends on how many movement

attempts are rejected because they fail to result in a valid sur-

face configuration. Further, the number of calls to improve
depends on how many times the planning algorithm must it-

erate. Figure 5B, shows that empirically the number of times

the planning algorithm iterates is approximately k
√

n. Figure

5A, shows that the number of GROW–CONTRACT pairs

considered by improve grows very slowly with problem

complexity.

There are, however, cases where no improvements can be

found and an error is generated (see Figure 4). If this occurs,

an random intermediate configuration is generated for cstart

and cgoal to be planned between. Failures become less likely

as the number of units in the configuration increases (Table

I) and presumably become irrelevant w.r.t. time complexity

as n→∞.

The overall wallclock time of planning, including failure

resolution, is shown in figure 5D. Computation time scales

linearly with problem complexity in normal circumstances,

but spikes are apparent where the system failed to find a

solution in one attempt. As discussed, we believe these spikes

to be irrelevant to time complexity, asymptotically.

B. Chirikjian-to-Surface

The Chirikjian configuration state space permits the over-

all morphology to contain holes. These cannot be removed

Fig. 4. Example of an error situation. Moving the unit at the only
CONTRACT location to the only GROW location (thus forming the
configuration in Figure 2) causes a kink violation i.e. the StoS planner is
stuck



Algorithm 4 The Surface-to-Surface planner.

improve : S× (P 7→ L) 7→ S×ML

improve(c, labels) ,

for {s, e|(labels(s) = CONTRACT+

∨labels(s) = CONTRACT )
∧(labels(e) = GROW+

∨labels(e) = GROW )}
ĉ← LongMove(c, (s, e))
if (ĉ ∈ S)

return (ĉ, (s, e))
throw error

StoS: S× S 7→Mk
L × S

k

StoS(cstart, cgoal) , (M,S)
c← cstart

for {a|a ∈ c.A}
labels← updateInc(c, g, labels)

for {x|x ∈ c.R}
labels← updateArea(x, c, g, labels)

while (∃l.l ∈ c.R ∧ labels(l) 6= PLACED)

((s, e), c)← improve(c, labels)
labels← updateInc(e, c, g, labels)
labels← updateArea(s, c, g, labels)
labels← updateArea(e, c, g, labels)
append(M, (s, e))
append(S, c)
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by the Ghrist move catalog, so the aim of the Chirikjian-to-

surface conversion step is to plan a set of moves that removes

any holes from the initial and goal configurations. Holes are

removed by finding tunnels linking all holes and excavating

units inside these tunnels to safe locations elsewhere on the

configuration.

Firstly, it should be noted that from the moves catalog of

the Chirikjian model it is clear that components cannot move

along the walls of an empty tunnel one space wide. So a two

wide tunnel needs to be determined that links all holes. This

is done in a two step process. In the first step a one wide

tunnel is found and in the second step, the one wide tunnel

is expanded to be two wide.

Fig. 6. Top, the one wide tunnel procedure. The large arrows denote the
order of Dijkstra expansion. The shade of the arrows indicate the geodesic
distance from the external unoccupied start node (yellow). The red highlights
the nodes in the minimal spanning tree that connects all unoccupied space.
Bottom, the expansion of the one wide tunnel to two wide.

To find the one wide tunnel for a configuration, c ∈ C, a

connectivity graph Gt = Gconn(c.R ∪ c.Adj) is constructed

that includes the adjacent unoccupied location but not the

anchor nodes. The edges are given weights by the (directed)

function w(x1, x2) , if(x2 ∈ c.Adj) 0 else 1

The weight function implies traversals into unoccupied

locations on this graph “cost” nothing. To find a one wide

tunnel we initiate a Dijkstra shortest path traversal initiated

at an outside adjacent location. The traversal is terminated

as soon as all unoccupied locations have been visited. The

minimal spanning tree of the search graph containing all

search nodes that expand unoccupied locations identifies the

minimal set of units that connect all holes with a one wide

tunnel (Figure 6). The time to perform the Dijkstra search

is linear. Taking the minimal spanning tree is also linearly

bounded. So overall determining what set of units lie within

the one wide tunnel has a computation time of O(n). We

denote the operation as tunnel1(c ∈ C) 7→ R1 ∈ P(P).

The second step in the tunneling procedure is to expand

the one wide tunnel to be two wide. Determining what side

of a one wide section of tunnel to dig, in order to achieve the

minimal set of nodes to remove, seems expensive to compute.

Instead we chose a linearly bounded greedy procedure.

First, all units of R1 are removed from the configuration to

yield a hole-free configuration c′ = (c.R − R1, c.A). Then,

every adjacent unoccupied location, c′.Adj, is checked to

determine whether it is a one wide passage or a kink (figure

7). If it is, then the locally minimal set of neighbor units to

undo its status are marked for removal, and c′ is updated to

reflect this (algorithm 5). Anchor locations cannot be part of



Fig. 7. The unoccupied locations which need to be corrected in order to
create a two wide tunnel. On the left is the matching context, on the right
possible fixes, where R denotes which locations should be added to the
removal sets. Only the major classes of cases are shown, subject to rigid
body transform.

Algorithm 5 Expansion of a one wide tunnel, (Figure 6) is

achieved by matching unoccupied adjacent space to problem

categories (Figure 7). If a problem is found, the solution that

requires the minimal amount of additional R tunneling units

is selected as the local solution.

tunnel2 : C 7→ set of P

tunnel2(c) , R
R1 ← tunnel1(c)
R← R1

c′ = (c.R−R, c.A)
for {e|e ∈ Ac′}

if (p← matchProblem(e) 6= ∅)
m←∞
for {s|s ∈ solutions(p)}

q ← |s ∩ c′.R−R|
if (q < m ∧ s ∩ c.A = ∅)

m← q
smin ← s

R← R ∪ smin

c′.R← c′.R− smin

the removal set. This procedure is named tunnel2.

Robotic units to be moved are identified by tunnel2 as a

set R (figure 6). Removal of R from c.R yields a surface

configuration with which an unviolated ET, W , (described in

the definition of a surface robot) can be wrapped around. W
provides a “roadmap” to determine what surface locations

are safe for robotic units to be moved to. The growth set,

G, is defined as locations where placement of a robotic unit

does not cause a violation in the ET.

The planner solves the task by moving units at a location

in R to a location in G. For speed, the planner tries to achieve

these goals by using the Ghrist’s motion catalog, and only

uses the Chirikjian model’s catalog when necessary.

The Ghrist catalog can be too limiting in some situations.

The Ghrist catalog’s motion constraints prevent a unit on the

boundary of a hole from moving to open the hole (Figure 8).

However, by definition, a hole is enclosed by a boundary of

robotic units, so the global topological change of opening the

hole cannot disconnect the overall connectivity of the robot.

While the Chirikjian catalog would permit the move, it comes

at a linear cost of a connectivity check. We can avoid this

by filling all enclosed holes in the configuration with virtual

robotic units, which will allow the move to be identified by

the Ghrist catalog at constant cost. After the move has taken

place, a virtual element will be in contact with empty space.

All virtual elements in contact with empty space are removed

recursively. As the Chirikjian-to-surface converter is only

removing holes from the configuration, initial identification

of virtual elements is O(n) and the total time for removing

all elements is also O(n) (in much the same fashion of

maintenance of the set P in the StoS planner).

To improve efficiency further, rather than trying to move

elements of R out directly, a subset of R is maintained, R+,

which denotes those locations of R that contain units that

can move according to the Ghrist catalog.

Figure 9A, shows the that the number of times the Ghrist

catalog is used to remove elements from R scales as
√

n.

In comparison, the number of times the Chirikjian catalog

is used scales very slowly, and in many problem instances

is not needed at all (Figure 9B). The number of search sub-

steps required to find a path for a unit from R to G appears

to be independent of problem complexity (Figure 9C).

The algorithm only fails to remove a unit from R+ when

doing so disconnects the overall robot structure which, by

definition, violates the Chrikjian’s motion constraints. Failure

occurs when the tunneling procedure creates a tunneling

structure that partitions the robot. So far we have only

implemented an ad hoc partial solution to this problem. We

allow the planner to initially solve as much as possible, and

rerun the tunneling algorithm using added noise to the weight

function in tunnel1 when the planner gets stuck. This per-

mits the tunneling procedure to try different tunneling struc-

tures. The planner retries tunneling a maximum of 10 times

before deciding the conversion is impossible. Whilst this

means some conversion attempts fail, the noisy tunneler does

allow some extra configurations to be solved that initially

couldn’t. The majority of randomly generated configurations

are solvable by this procedure (Figure 9E). Retunneling O(n)
in time complexity, but the number of times it is required

scales very slowly with problem complexity (Figure 9D).

The overall wallclock time to compute Chirikjian-to-

surface plans is shown in Figure 9F. The data suggest that, for

most cases, the computation time is scaling linearly. There is

an exception in an experiment with 12,000 units. We cannot

explain this anomaly, as it does not correlate with any other

spikes in the other metrics. It may be due to a Java garbage

collection pause.

C. Chirikjian-to-Chirikjian planing

The Chirikjian-to-Chirikjian planner uses each of the

planning algorithms described above as sub-steps to creating

an overall single move plan to between arbitrary Chirikjian

configurations.



Fig. 8. The Ghrist catalog is unable to open an enclosed hole. By adding
a virtual robotic element to the configuration (light blue), a Ghrist catalog
move becomes applicable. After the move, the virtual robotic element can
be removed from the configuration.

Algorithm 6 The Chirikjian-to-Surface planner

C_to_S : C 7→Mk
S × C

k × S

C_to_S(c) , (m, s, c)
m← ∅
R← tunnel2(c)
W ← (c.R−R, c.A).E
while(|R| > 0):loop

R+ = {r|r ∈ P ∧ canMove(r, (c.R ∪ holes(c), c.A))}
for {u|u ∈ R+}

if (p =findAnyPathGhrist(c, u,R) 6= null)
c,R,W,m,R+ ←update(u,end(p)), goto loop

for {u|u ∈ R+}
if(p =findAnyPathChirikjian(c, u,R) 6= null)

c,R,W,m,R+ ←update(u,end(p)), goto loop

if(tries = 10) return error

tries =← tries + 1
R← tunnel2noisy(c)
W ← (c.R−R, c.A).E

Given a start and end configuration, s ∈ C, e ∈ C, a

single move plan is formed for each that transforms them

into surface adhering configurations. A plan between these

surface adhering configurations is found using StoS. This

compressed plan contains longMoves, which is decompressed

by searching the Ghrist state space. As StoS plans, on

average, contain
√

n long moves, which require
√

n Ghrist

moves to realize, decompression costs O(n) (Figure 10A).

Finally, the separate plans are concatenated together to

yield a plan that is a set of single moves that changes s to

e.

D. Single-Move to Multi-Move plan conversion

The planning algorithms discussed so far achieve their

aims by moving one component at a time. However, the time
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required to execute a plan on a hardware platform can be

drastically improved if multiple units are permitted to move

in parallel.

Ghrist provides[8] a method for converting a single-move

plan into an optimal multi-move plan for moves using the

Ghrist catalog. Once the single-moves plan is calculated,

which contains moves from both Chirikjian and Ghrist

catalogs, Ghrist’s multi-move conversion algorithm can be

applied. The existence of Chirikjian moves in the plan does

not pose a problem. Ghrist’s conversion algorithm is just

applied to the solution sub-sequences that contain Ghrist

moves.

The overall time to convert the single-move compressed

plan to a multi move plan empirically appears to be bounded

quadratic, in accordance with Ghrist’s own analysis (Figure

10B). We note though, that when the multi-move conversion

step is applied, if all intermediate states and moves are

available then the conversion could be computed in a dis-

tributed fashion. So we propose representing the underlying

state of configurations using persistent red black trees[4].

Persistent red-black trees can represent sets with all the

normal operations taking O(log2(n)) but modifications to

the sets preserve the original versions at O(log2(n)) in space

cost. Using persistent red-black trees would increase the cost

of computing a single-move plan from O(n) to O(nlog2n)
but would permit all intermediate solution configuration

states to be preserved. Then, a distributed version of Ghrist’s

multi-move conversion step could compute a multi-move

plan in O(nlog2n).

VI. RESULTS

The total time to form a single move plan from two

randomly generated Chirikjian configurations is shown in

figure 10A. The total time to plan and convert into a multi-

move plan is shown in figure 10B. Sometimes the planning

algorithm can fail, caused by tunneling problems in the

CtoS converter. The failure rate is shown in Figure 9E.

On average, for over 97% of randomly generated tasks with

up-to 20, 000 units, our algorithm finds a single move plan

in linear time. While some of the CtoS computation times



spike, the magnitude of the spike is still linearly bounded

because only a finite number of O(n) retries are attempted.

The average single-move path length is shown in figure

10C. The single-move path length scales linearly with the

number of units in the configuration. The multi-move path

lengths are shown in figure 10D. Moving units in parallel

reduces the number of time steps necessary to change from

one configuration to another by several orders of magnitude.

The multi-move plans scale sub-linearly with problem com-

plexity, but not
√

n as may be hoped.

Some authors have conjectured that Pamecha et al.’s

optimal assignment heuristic[16] results in plans that are

near optimal. Recent work [13] found that the combina-

tion of greedy search guided by the optimal assignment

heuristic provides shorter solution paths than many other

general purpose motion planning techniques. However, the

plans formed by this technique grew faster than linear with

problem complexity, so we can immediately deduce that the

planner in our work produces better plans.

VII. DISCUSSION

A common extension to the SRS reconfiguration planning

problem is the addition of obstacles in the space. Our

algorithm presented here is easily extended to this situation.

The dual path violation case can be generalized to indicate

when an obstacle blocks pivot space around the surface of

the robot.

The simple solution to obstacles, avoiding movement

in the vicinity regardless of the current planning task, is

reminiscent of a conservative approach to calculating a subset

of Cfree by taking the Minkowski sum of a bounding sphere

with obstacles in the environment [10]. Our approach in

StoS planning can be viewed as a utilization of this insight.

The SRS domain is difficult for planning because the

robotic units are obstacles to each other. As we can control

the robots though, this can be used to our advantage. Our

approach has been to keep the surface of the configuration

unconstrained for robot movement, in a sense, maximizing

Cfree for those robotic units who can move. This has

enabled efficient planning over a large spanning subset of

the Chirikjian reconfiguration state space.

We have described an algorithmic procedure for solving

the self-reconfiguration problem and empirically shown that

it has O(n) complexity averaged over random problem

instances. It would be desirable to characterize and analyze

the reason for this improvement. At this time we conjecture

that the state space of the unconstrained surface model is a

discretization of Kendall’s pre-shape space [11] for general

shapes embedded in a Euclidean space. This would imply the

surface state space is homomorphic to a lower dimensional

topological hypersphere. We believe it is this structure that

the StoS planner is exploiting. In future work we will

attempt to formally identify a qualitative difference between

the general state space, C and the surface state space, S,

which would explain S’s amenability for efficient planning.

VIII. CONCLUSION

Presented here is, what we believe to be, the first O(n)
centralized algorithm for single-move SRS planning, and

a sketch of a O(nlog2n) distributed multi-move planning

algorithm, that operates on the vast majority of the kn sized

reconfiguration state space for the hexagonal metamorphic

robot.

Further improvements may be achieved by lowering

the time complexity of the path optimizing algorithm of

Ghrist[8], increasing the applicability of the algorithm to the

entire state space of C or reaching O(
√

n) path lengths for

multi-move plans.
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