Ideas for a high-level proof strategy language

Cliff B. Jones
School of Computing
Newcastle University
Newcastle upon Tyne

NE1 7RU

United Kingdom

cliff.jones@ncl.ac.uk

ABSTRACT

Finding ways to prove theorems mechanically was one of the
earliest challenges tackled by the Al community. Notable
progress has been made but there is still always a limit to
any set of heuristic search techniques. From a proof done
by human users, we wish to find out whether AI techniques
can also be used to learn from a human user. AI4FM (Arti-
ficial Intelligence for Formal Methods) is a four-year project
that starts officially in April 2010 (see www.AI4FM.org). It
focuses on helping users of “formal methods” many of which
give rise to proof obligations that have to be (mechanically)
verified (by a theorem prover). In industrial-sized develop-
ments, there are often a large number of proof obligations
and, whilst many of them succumb to similar proof strate-
gies, those that remain can hold up engineers trying to use
formal methods. The goal of AI4FM is to learn enough from
one manual proof, to discharge proof obligations automati-
cally that yield to similar proof strategies. To achieve this, a
high-level (proof) strategy language is required, and in this
paper we outline some ideas of such language, and towards
extracting them.

>|<Du]ring this work Gudmund Grov has been employed jointly
by University of Edinburgh and Newcastle University.

F
Gudmund Grov
School of Informatics
University of Edinburgh
Informatics Forum
10 Crichton Street
Edinburgh, EH8 9AB
United Kingdom

ggrov@inf.ed.ac.uk

Alan Bundy
School of Informatics
University of Edinburgh
Informatics Forum
10 Crichton Street
Edinburgh, EH8 9AB
United Kingdom

bundy@inf.ed.ac.uk

1. THE FORMAL METHODS PROBLEM
There is ample evidence of the need for formal methods
(FM) in software and system design — [WLBF09] records
recent industrial success stories. One FM strategy — em-
ployed by e.g. VDM [Jon90], B [Abr96], Event-B [Abr10]
and constrained use of Z [FWO08] — is the so-called “posit and
prove” approach: a designer posits development steps and
then justifies that they satisfy earlier specifications by dis-
charging (often automatically generated) proof obligations
(POs). A large proportion of these POs can be discharged
by automatic theorem provers but “some” proofs require user
interaction. Quantifying “some” is hard since it depends on
many factors such as the domain, technology and method-
ology used — it could be as little as 3% or as much as 40%.
For example, the Paris Metro line 14, developed in the B-
method, generated 27,800 POs (of which around 2,250 re-
quired user-interaction) [Abr07] — the need for interactive
proofs is clearly still a bottleneck in industrial application
of FM, notwithstanding high degree of automation.*

One approach to reduce the number of undischarged POs
is to evolve or change the models. For example, difficult
POs can be simplified by the introduction of additional re-
finement steps that bridge the gap between two abstraction
layers. One can also simply constrain (abstract) models by
strengthening preconditions or modifying invariants. How-
ever, the industrial application of such methodologies (in
particular, providing support tools) is still a matter of fu-
ture research — and it is still likely to leave a large number
of undischarged POs.

An alternative, or even complementary, approach is to ac-
cept the hard POs and have a strategy to help proof con-
struction. This is the approach we intend to follow in our
soon-to-be-started AI4FM project.

2. THE AI4FM POSITION

First we need to explain the nature of POs arising in posit
and prove based FMs:

(1) the POs are generally not as deep as in mechanised
mathematics (e.g. the four-colour theorem);

!Evidence for this claim appears in several (in-
dustrial) contributions to the proceedings of a recent
Dagstuhl seminar on Refinement Based Methods. See
http://drops.dagstuhl.de/portals/09381/.



(2) models are expected to change and so are the POs;

(3) the POs can often be classified into families based on
their “similarity”.

The AI4FM hypothesis is that

enough information can be learned from one proof
within a family to discharge automatically the
other POs of that family.

Due to (1) we believe that it is acceptable to rely on an
expert user to produce (interactively) a source proof. It is
important to note that in most cases the changes discussed
in (2) are often minor and that the “similarity” in (3) does
not imply that the same proof is necessarily valid — but that
the same proof strategy is! Thus the information from the
source proof must be captured in an abstract form. Unfor-
tunately, most tactic languages are brittle in the sense that
small changes (2) and the variation within proof families (3)
causes a target proof to fail. A high-level strategy language
to describe a proof is thus needed. The system will learn
a strategy from source (interactive) proofs — and then ap-
ply this strategy to the rest of the POs in the family. Such
high-level strategies must be robust over model changes.?

As previously discussed in [BGJ09a, BGJ09b, GBJI10], one
piece of evidence for the possibility of such a strategy lan-
guage is rippling [BBHIO5] — its generality can be illustrated
by the domains to which it has been applied, e.g.

e verification of functional, logical and imperative pro-
grams;

e synthesis of theorems, programs and witnesses;
e correction of faulty specifications; and

e hardware verification.

As we have also previously shown in [BGJ09a], items from
rippling that we expect to play a major part include:

Some ‘standard’ proof plans and known deviations from
and patches to them. In [BBHIO5], rippling is used to de-
scribe a ‘standard’ proof plan for inductive proofs and shows
how each different pattern of failure in rippling suggests a
different way of patching a failed proof attempt. We hy-
pothesise that expert-provided proofs of undischarged POs
will typically exhibit either a new proof plan or a new patch
to an existing plan.

2VDM and Event-B follow a methodology where the user
posits a specification. This is followed by a step of PO gen-
eration, and these POs must be discharged to justify the
specification. Such PO generation approach can itself be
viewed as a (very) high-level strategy

It is worth pointing out that the form of the PO generation
in a method like VDM or Event-B can itself be viewed as a
(very) high-level strategy.

Choices of unusual induction rules and variables, choices
of loop invariants. Choosing an alternative non-standard
induction rule is one of the patches to the standard induc-
tion proof plan which is described in [BBHIO5]; patching a
failed loop invariant is the patch described in [SI98].

Choices of intermediate lemmas. Designing, construct-
ing and proving a key intermediate lemma is another of the
patches to the standard induction proof plan described in
[BBHIO5].

Generalisation of the PO. In [BBHIO5] it is also describes
ways of generalising the PO or the current goal to patch a
failed proof.

3. FACETS OF A STRATEGY LANGUAGE

Tactic expressions that work on one proof task (hypothe-
ses/goal) often fail on remarkably similar tasks. A previ-
ously working tactic can even fail when lemmas are added.
We believe that this is because tactic languages are too low
level.

Lemmas, case splits, loop invariants, generalisations and
their points of application all need to be described in an
abstract form if they are to apply to all members of a family
of proofs. This is because the details will vary from proof
to proof, but there may be a level of abstraction at which
their descriptions coincide. We will now outline potential
facets of a proposed strategy language able to capture proof
descriptions at such an abstract level — although some of
our facets may not relate directly to the strategy language,
but describe more means of using or creating it.

Remember that our aim is that the system will learn such
strategies from interactive proofs. The first task in front of
the AI4FM project is to devise such a strategy language;
figuring how to deduce its instances from proofs will come
later (see §4).

3.1 Non-sequential strategy language(s)
We focus here on one particular aspect of tactic languages
being too low level: they are overly sequential.

Finding a path from hypotheses to desired conclusion looks
like a search problem that should not always be tackled from
one end. It also looks like a prompt to deploy concurrency.

This may sound like a suggestion to treat the search as some
sort of graph spanning problem but our view is that the
key thing to learn from human experts is how they spot
intermediate points that usefully decompose the task.

A description that might be useful to a human theorem
prover in looking for intermediate steps might consist of very
general advice such as “when I get stuck with that sort of
proof, I try dropping a line in the middle to split the prob-
lem” or “you can probably avoid doing an explicit induction
by ...” We wish to have clauses in our strategy language at
this level of discourse.



It’s useful to think of a goal-oriented style of strategy lan-
guage. The obvious final goal is to discharge the top-level
proof task. We can generalise this to reducing the set of
undischarged proof goals to the empty set. But it is clear
that a viable strategy is to replace a complex proof task by
a number of simpler sub-tasks. The problem is that there is
no metric for difficulty!

An analogy might be with chess strategies where things like
“centre control” or “mobility” can improve a player’s posi-
tion. Strategies then should have heuristics that tend to
introduce “stepping stones” and thus reduce a proof task by
substituting simpler sub-tasks — albeit at the expense of
proliferating them. Of course, there is a need to “kill off”
avenues that are going nowhere.

3.2 Splitting roles of rules

An important goal is to split the places where knowledge is
stored and to apply only results that are likely to yield sim-
pler sub-tasks. One boon of a theorem proving system is that
users can build up a database of lemmas that can reduce the
effort in subsequent proofs — but it is likely that the size of
the body of results will become too large to be useful. Many
systems have offered structuring methods (“theories” in mu-
ral [JJLM91]) that encourage users to think about collecting
together related properties. One would probably have, for
example, a collection for all of the results about the opera-
tors of set theory. This process is, however, in the hands of
users; it requires manual action.

Classifying previously established results is central to cut-
ting down the search problem and automatic classification is
more likely to result in long-term improvements than relying
on extra effort by hard-pressed engineers. What follows are
some preliminary ideas of classifications. One split we are
thinking about is to distinguish:

e properties that interlink a collection of related opera-
tors (e.g. results about sequences in VDM)

e rules that “extend the vocabulary” of operators (e.g. the
post condition of sort could use predicates for ordered
and permutation)

A thought through development of such a classification would
be useful to a theorem prover in that if it is faced with a
proof task whose hypotheses and conclusions all use related
operators, only rules of the first category need be consid-
ered. On the other hand, if the desired conclusion uses an
operator not mentioned in the hypotheses, at least one “vo-
cabulary extending” rule is required. Text book examples
with exactly one symbol make it easy to spot the missing
rule; larger applications might have to look for chains of
definitions.

3.3 Data structures vs. task ‘‘shape”

Use of well-chosen abstract data structures is central to suc-
cessful formal specification of significant systems (see VDM
or B) and users will build up properties relating to the spe-
cific data structures used in their specifications. It feels sen-
sible to group these results together with the relevant data
structure.

In contrast there are proof strategies that are more clearly
related to the “shape” of the task. At the level of the base
logic, one knows that goals with existential quantifiers re-
quire “witnesses”. Perhaps more usefully, recurring patterns
of multiple quantifiers might suggest different strategies de-
pending on the pattern. This ‘knowledge’ should probably
be stored separately from the data structures where the pat-
tern is first detected.

The above split of knowledge is so far only binary — finding
more such categories would be useful.

3.4 Reflecting the context where a proof task

arose
There are results that sit more naturally with the type of
proof obligation. For example, VDM'’s so-called “adequacy”
proof obligation shows that —in a step of data reification—
there is at least one representation for each element of the
abstract data space (with respect to what VDM calls the
“retrieve function”). These POs include an existential quan-
tifier. In general, proving existential results requires that
the user provides a witness. Looking at a range of adequacy
proofs, one sees different approaches. In some cases, it is
worth writing a function that serves the purpose of being a
rough inverse of the retrieve function: the latter is a homo-
morphism from concrete to abstract; in general, its inverse
will not be a function; but a function that chooses an ar-
bitrary representation can be used to select a witness for
existential proofs. Alternatively, some adequacy POs are
easily handled with a relational form of the homomorphism.

The argument here is that separating data structure prop-
erties from those about proof obligations makes it possible
to record higher level strategies. In effect, a “vocabulary” is
established with the different rules in the various data struc-
tures providing local instances of things like “ways to split
cases”. A strategic expression can use the names for these
rules and be applicable to a wide range of data structures.

3.5 Reflecting the domain of the POs

We are also considering other classifications including that
suggested by Thierry Lecomte (Clearsy) of using the “do-
main” of application (e.g. railway vs. automotive) as a guide.
Notice that this distinction comes from the problem domain.
For example, rail applications might organise information
about track segments as relations; these relations might need
to be composed and the ability to reason about transitive
closures of relations might be the determining factor in the
automation of such proofs.

3.6 Explore Gazing

Gazing is an Al technique developed by Plummer to control
the use of rewrite rules within an automated theorem prover
[Plu88]. This works by constructing a plan indicating which
rewrite rules will simplify the conjecture to be proven — and
is achieved by keeping track of which definitions are defined
in terms of each other.

A plan is achieved over a hierarchy of abstraction spaces, by
abstracting both the rewrite rules and conjecture — and is
created by analysing which effects rewrite rules have on the
conjecture in the abstraction space.



3.7 Hierarchical strategies

Our desired strategy language may also require a notion of
hierarchies and abstractions. The abstractions will have the
following implications:

e a higher level strategy will apply to a “larger” fam-
ily of related POs compared to a lower level strategy;
however,

e a lower level strategy will require less proof search
when discharging a PO, compared to a higher level
strategy.

Thus, when the level of abstraction is high, there is a strong
dependency on the power of the underlying theorem prover
which interprets the strategy. An illustration of the use of
such high-level strategy would be to follow the “ACL2 ap-
proach”. Here, the strategy language describes (in an ab-
stract form) the sequence of intermediate lemmas required,
and ACL2 automatically discharges each lemma. A low level
strategy would then be close to the level of LCF tactics.

Such hierarchical strategy language will have a close resem-
blance to the notion of HiProofs [DPT06], which gives a
hierarchical description of proofs.

3.8 Productive use of failure

In rippling, proof critics are used to capture and repair com-
mon patterns of failure [BBHIO5]. The strategy language
should be able to describe and classify common forms of
failure and repair. It should be able to describe how ex-
perts recover from failure and to guide recovery during au-
tomated proof search of related proofs. This will have the
benefit that a strategy language interpreter can benefit from
initially failed proof attempts as well as successful ones.

4. EXTRACTING STRATEGIES

In this section we briefly discuss some ideas around extract-
ing strategies. This is how the system will learn strate-
gies from one exemplar proof, and make it possible to apply
strategies to other POs.

4.1 Refining “generic' strategies within an hi-

erarchical language

Following this approach, one way of learning a strategy from
a proof would be to have a (small) set of (very) high-level
generic strategies, such that every proof would be an imple-
mentation of one (or more) of these strategies. The learning
mechanism would then refine this generic strategy using in-
formation from the proof to a correct level of abstraction
capturing a sufficiently large family without requiring too
much proof search. Obviously, finding this level of abstrac-
tion and the set of predefined generic strategies will be a
non-trivial task.

4.2 The use of anti-unification

Anti-unification [Plo69], the dual of unification, has for ex-
ample been used to create analogies by discovering generali-
sation of terms in different domains. We believe it may have
a role to play for discovering a strategy for proofs within a
family. However, we see the use of anti-unification more as

a process in analysing existing proofs in order to create a
strategy language, and not as part of the strategy. In par-
ticular, it may have a large role to play to discovering those
“generic” strategies discussed in §3.7. We will probably re-
quire a higher-order form of anti-unification [KSGKO07] to
achieve this.

4.3 Extracting toy examples®

When debugging large software applications one often tries
to isolate the bug by developing small toy programs which
also exhibit the error. The toy programs are then used to
find a fix for the bug, and this fix is carried across to the
large application.

A similar approach is also used within formal methods and
proofs. When stuck on a difficult proof of a complex theorem
(from a large and complex formal model), the user (mathe-
matician) often creates a smaller toy model containing the
“heart” of the original model. This toy model is then used
to find a solution to the proof in the complex model — which
is then used to solve the real theorem in the complex model.
An example of such a solution, is the discovery of a key in-
termediate lemma. We would like to able to have strategies
to extract (simpler) toy problems from complex problems,
such that the strategy used to solve the toy problems can
be used to solve the real complex problems.

We see resorting to extracting toy example as a last resort
in case all other strategies fail.

5. CONCLUSION

We have outlined some facets of our proposed strategy lan-
guage. The discussion is still speculative, and in order to
develop the language we will need to get our “hands dirty”
by analysing a large number of proof obligations from a large
number of (large scale) developments. We plan to be generic
when both analysing the proofs and developing the strategy
language.

Acknowledgements

This research is supported by the EPSRC Platform Grants
EP/E005713/1 and EP/E035329/1, and by EPSRC grants
ALJFM: the use of Al to automate proof search in Formal
Methods (EP /H024050/1, EP /H024204/1 and EP/H023852/
1).

We would like to thank Laurent Voison (Systerel) and Thierry
Lecomte (Clearsy) for constructive discussions during our
visit of December 2009. We are particular grateful to J
Moore for the intensive discussion on how the ACL2 group
works, and in especially uses toy problems. We are also
grateful for input from Andrew Ireland, Michael Butler, Joey
Coleman, Paul Jackson and Teresa Llano — and the close col-
laboration with the DEPLOY project.

6. REFERENCES

[Abro6) J.-R. Abrial. The B-Book: Assigning programs
to meanings. Cambridge University Press, 1996.
[Abr07] J.-R. Abrial. Formal methods: Theory

becoming practice. Journal of Universal
Computer Science, 13(5):619-628, 2007.

3This section derives from discussions with J Moore.



[Abr10]

[BBHIO5]

[BGJ09a]

[BGJO9b)]

[DPT06]

[FWO08]

[GBJI10]

[JILMO1]

[Jon90]

[KSGKO7]

[P1069)]

[P1uss]

[SI98]

Jean-Raymond Abrial. Modelling in Fvent-B:
System and Software Engineering. Cambridge
University Press, 2010. To be published.

A. Bundy, D. Basin, D. Hutter, and A. Ireland.
Rippling: Meta-level Guidance for
Mathematical Reasoning, volume 56 of
Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, 2005.
Alan Bundy, Gudmund Grov, and Cliff B.
Jones. Learning from experts to aid the
automation of proof search. In Liam O’Reilly
and Markus Roggenbach, editors, AVoCS’09 —
PreProceedings of the Ninth International
Workshop on Automated Verification of Critical
Systems, Technical Report of Computer Science
CSR-2-2009, pages 229-232. Swansea
University, Wales, UK, 2009.

Alan Bundy, Gudmund Grov, and Cliff B.
Jones. An outline of a proposed system that
learns from experts how to discharge proof
obligations automatically. In Proceedings of
Dagstuhl Seminar 09381: Refinement Based
Methods for the Construction of Dependable
Systems, 2009.

Ewen Denney, John Power, and Konstantinos
Tourlas. Hiproofs: A hierarchical notion of
proof tree. Electr. Notes Theor. Comput. Sci,
155:341-359, 2006.

Leo Freitas and Jim Woodcock. Mechanising
mondex with Z/eves. Formal Aspect of
Computing, 20(1):117-139, 2008.

Gudmund Grov, Alan Bundy, Cliff B. Jones,
and Andrew Ireland. The AI4FM approach for
proof automation within formal methods — a
Grand Challenge 6 “Dependable Systems
Evolution” project. Grand Challenges in
Computing Research (GCCR’10) — part of the
ACM-BCS Visions of Computer Science 2010,
April 2010.

C. B. Jones, K. D. Jones, P. A. Lindsay, and
R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.

C. B. Jones. Systematic Software Development
using VDM. Prentice Hall International, second
edition, 1990.

Ulf Krumnack, Angela Schwering, Helmar
Gust, and Kai-Uwe Kiihnberger. Restricted
higher-order anti-unification for analogy
making. In Mehmet A. Orgun and John
Thornton, editors, AI 2007: Advances in
Artificial Intelligence, 20th Australian Joint
Conference on Artificial Intelligence, volume
4830 of Lecture Notes in Artificial Intelligence,
pages 273-282. Springer, 2007.

G. D. Plotkin. A note on inductive
generalization. In B. Meltzer and D. Michie,
editors, Machine Intelligence 5, pages 153-163,
Edinburgh, 1969. Edinburgh University Press.
David Plummer. Gazing: Controlling the use of
rewrite rules. Research Paper 412, University of
Edinburgh, 1988.

J. Stark and A. Ireland. Invariant discovery via

[WLBF09)

failed proof attempts. In P. Flener, editor,
Logic-based Program Synthesis and
Transformation, number 1559 in LNCS, pages
271-288. Springer-Verlag, 1998.

J. Woodcock, P. G. Larsen, J. Bicarregui, and
J. Fitzgerald. Formal Methods: Practice and
Experience. ACM Computing Surveys, 41(4),
Oct 2009.



