
Geodesic trajectory generation on learnt skill manifolds

Ioannis Havoutis Subramanian Ramamoorthy
Institute of Perception, Action and Behaviour

School of Informatics, University of Edinburgh, Edinburgh, EH89AB, UK
I.Havoutis@sms.ed.ac.uk, S.Ramamoorthy@ed.ac.uk

Abstract— Humanoid robots are appealing due to their in-
herent dexterity. However, these potential benefits may only
be realized if the corresponding motion synthesis procedure
is suitably flexible. This paper presents a flexible trajectory
generation algorithm that utilizes a geometric representation of
humanoid skills (e.g., walking) - in the form of skill manifolds.
These manifolds are learnt from demonstration data that may
be obtained from off-line optimization algorithms (or a human
expert). We demonstrate that this model may be used to produce
approximately optimal motion plans as geodesics over the
manifold and that this allows us to effectively generalize from
a limited training set. We demonstrate the effectiveness of our
approach on a simulated 3-link planar arm, and then the more
challenging example of a physical 19-DoF humanoid robot. We
show that our algorithm produces a close approximation of the
much more computationally intensive optimization procedure
used to generate the data. This allows us to present experimental
results for fast motion planning on a realistic – variable step
length, width and height – walking task on a humanoid robot.

I. I NTRODUCTION

In recent years, humanoid robot platforms have been
receiving increasing attention due to their inherent dexterity
and great flexibility. Correspondingly, this highlights the
need for general purpose motion planners. Off the shelf
solutions for humanoid robot behaviours are often restricted
to a limited motion vocabulary that does not exploit the full
capacity of the system. For instance, predesigned motions
in many platforms are not parameterized in a flexible way
(e.g., allowing full control over step length, width and
height) and impose a limited discretization on the reachable
space of the robot. There is a pressing need for efficient
algorithms that can overcome these limitations and achieve
a relatively rich set of within-skill variations in a realistic and
practically implementable setting. Given such algorithms,
one could then treat the skill as a component in a higher
level discrete search [1]. Standard approaches that do allow
for such flexibility tend to be computationally expensive,
e.g., requiring high dimensional numerical optimization or
c-space search. We need a more efficient alternative.

In realistic domains, e.g. RoboCup, where restrictions to
variations on a skill would adversely impact higher level
planning goals, one seeks a compact representation of the
family of possible motions of a particular skill. This means
that one would like to be able to learn and compactly
represent the whole continuum of possible solutions for a
particular task. In a machine learning setting, where one is
acquiring a skill from demonstration, this raises the need
for good generalization to solutions that possibly lie beyond
the region of support of the original demonstration. Many

−10 −5 0 5
−4−2024

0

5

10

15

20

25

30

35

xz
y

(a) Model (b) Robot

Fig. 1. TheKHR-1HV humanoid robot used, (a) skeleton model and (b)
physical robot.

existing data-driven approaches to humanoid motion synthe-
sis are often limited in this respect - either they focus on
interpolation within narrow regions near dense demonstrated
samples or learning is posed as a problem of parameter
tuning of an externally imposed path planning algorithm
that may not naturally exploit the underlying structure of the
space of solutions. We aim to make progress in this setting,
by developing an algorithm that has better generalization
properties and also a more natural and tighter integration
between learning and planning.

In this setting, one way to obtain training data could
be from demonstrated trajectories by an expert [2]. In this
case notions such as optimality are intrinsic to the expert’s
demonstrations and can be based on a variety of (some-
times unmodelled) factors [3]. In order to have a better
understanding of the behaviour of the algorithm, in this
paper, we utilize demonstration data that is obtained from
another computational solution which involves numerical
optimization. These solutions are computationally expensive
and not feasible for online operation. However, they can
serve the same role as demonstration data. With this, we have
a clear idea of the specific optimality properties of each task
being considered, and a measure of algorithm performance
against reasonable ‘ground truth’.

As known from the study of biological behaviours, natural
systems utilize synergies and coordination strategies that
allow for efficient locomotion and fast planning. Biological
strategies usually have a musculoskeletal basis that is inher-



ent to the dynamics of the system, that restricts movement
to a subset of all possible solutions. In a robotics context,
system and (possibly artificial) task constraints can servethe
same purpose. Robotics [4], [5] and graphics [6] researchers
have utilized this fact to devise efficient motion synthesis
strategies. Some recent works [7], [8], [9] also address this
issue by considering how task space constraints, e.g., end-
effector constraints, can be used to structure planning in
configuration space with local Jacobian mappings. However
the low-dimensional nature of the solutions may not always
be taken into account explicitly.

The machine learning literature includes many examples
of dimensionality reduction methods used to abstract and/or
make problem spaces manageable. For example Chalodhorn
et al. [10] use a low-dimensional sensory-motor mapping to
optimize demonstrated motions over the robot’s dynamics.
Wang et al. [11] introduced the GPDM, a Gaussian processes
based dimensionality reduction with a dynamical model of
the evolution of the state, that can learn models of human
kinematic trajectories. In the same spirit, Bitzer et al. [12] use
a Gaussian Process-based nonlinear dimensionality reduction
technique to arrive at an underlying model of demonstrated
data, while using a parameterized path generation method
over the learnt representation to generate novel movements.

Our goal is to learn a geometric structure, i.e., a skill
manifold, that naturally and directly specifies both the low
dimensional structure and dynamics on this subspace (which,
in other works, one often externally and rather arbitrarily
imposed).So, if one begins with a set of motion examples
from a specific class, e.g., due to a path optimization or
redundancy resolution principle or even a more complex
kinodynamic constraint, then one seeks a representation that
intrinsically captures both the restriction of states to a low-
dimensional space and the evolution of the trajectories in that
space. We achieve this by representing motions in terms of
skill manifolds (learnt from data) where the tangent spaces
are suitably defined so that geodesics correspond exactly to
the execution of the desired motion.

II. M ANIFOLD LEARNING

In this section we present the nonlinear manifold learning
method that form the basis of our method. Our algorithm
is a modification of Locally Smooth Manifold Learning by
Dollar et al. [13], which we have adapted with robot motion-
specific issues in mind. In particular we have replaced
the neighborhood graph creation process with a procedure
that considers task space distances as well as ensures that
temporal neighborhood relations along the demonstrated
trajectories are respected.

In the usual formulation, manifold learning is aimed at
finding an embedding or ‘unrolling’ of a nonlinear manifold
onto a lower dimensional space while preserving metric
properties such as inter-point distances. Popular examples
include MDS [14], LLE [15] and ISOMAP [16]. However,
much of this work has been focused on summarization,
visualization or analysis that explains some aspect of the
observed data.

On the other hand, we are interested in preserving proper-
ties of trajectories in the data set.So, formally our goal isto
learn a model of the tangent space of the low-dimensional
nonlinear manifold, conditioned on the adjacency relations of
the high dimensional data. The learnt manifold can be used to
compute geodesic distances, to find projections of points on
the manifold and to directly generate geodesic paths between
points.

A. Learning the model

Given that ourD-dimensional data lies on a locally smooth
d-dimensional manifold inD-dimensional space, whered <

D, there exists a continuous bijective mappingM that
converts low dimensional pointsy ∈ R

d from the manifold,
to pointsx ∈ R

D of the high dimensional space,

x = M(y).

The goal is to learn a mapping from a point on the manifold
to its tangent basisH(x),

H : x ∈ R
D 7→

[

∂

∂y1

M(y) · · ·
∂

∂yd

M(y)

]

∈ R
D×d

where each column ofH(x) is a basis vector of the tangent
space of the manifold aty, i.e. the partial derivative ofM
with respect toy.

Learning a model of the mapping with some parametriza-
tion θ, i.e. Hθ, is done as follows. Given two neighboring
points on the manifold,xi andxj 1, the difference between
these points,∆i

.j , should be a linear combination of the
tangent vectors at that point on the manifold, scaled by an
unknown alignment factor. Taking∆i

.j to be the centered
estimate of the directional derivative atx̄ij andǫij to be the
unknown alignment factor, we have

Hθ(x̄
ij)ǫij ≈ ∆i

.j ,

that holds givenǫ is small enough and the manifold can be
locally approximated with a quadratic form. To learnHθ we
define the error function:

err(θ) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(x̄
ij)ǫij − ∆i

.j

∥

∥

2

2
,

whereN i is the set of neighbors ofxi. This minimization
problem for θ is solved with a regularization term that
ensures that theǫ’s do not get too large, that the tangents
do not get too small and that neighboring tangent basis are
aligned. For a precise model of the tangent space one would
need to compute the tangent basis for each point,Hθ(x̄

ij),
which can be considered as a regression over the evidence
(training data), and compute the alignment factors,ǫij , for all
neighboring points. Solving for the bases and their alignment
simultaneously is complex, but if either one is kept constant,
solving for the remaining variables becomes a tractable least
squares problem.

Modeling Hθ is done with a linear model of radial basis
functions (RBF’s) with features over the evidence [14], where

1Where superscripti andj are used for indexing.



−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Task space

−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(b) Neighborhood graph

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q 3

(c) Joint space

0
0.2

0.4
0.6

0.8
1

0.8

1

1.2

1.40.6

0.8

1

1.2

q
2

q
1

q 3

(d) Tangent space

Fig. 2. Learning the optimality manifold of a 3-link arm. (a) Theplanar
task space of the arm and subsampled points (blue) used for leaning. (b)
The neighborhood graph used for learning a manifold. (c) The optimality
manifold that we wish to learn. Light gray points are not used for learning
but are plotted to give a better estimate of the geometry of the manifold.
Note that the manifold is not planar but twist and turns as we move down
the q3 axis. (d) The learnt tangent space model. Blue and green arrows are
basis vectors evaluated at points that correspond to the original grid.

the number of basis functions,f , acts as parameter that
can control the smoothness of the estimated mapping. More
nonsmooth nonlinear manifolds with abrupt changes, would
typically require more basis functions to ensure a tight
local fit, though the generalization ability may be weakened.
Optimizing the model requires alternating between the two
least squares problems described above, until a local minima
has been reached. Typically more than one random restart is
performed to avoid local minima.

B. Optimal geodesic paths

By approximating the tangent space of the manifold, we
gain access to a variety of geometric operations. Central to
our robotics aims is the ability to compute paths through
configuration space that lie on the low dimensional manifold.
In this spirit, we now change our notation of points fromx
to q, to denote poses a robot can achieve in a configuration
space.

Formally, our goal is to find the shortest path between two
prespecified posesq1, qn ∈ R

D, D being the dimensionality
of the configuration space, that respects the geometry of the
learnt manifold. In a robotics context, being on the manifold
essentially means that the constraints (e.g., optimality w.r.t. a
particular task-specific cost) inherent in the training data are
respected. In practice we, discretize our path into a set ofn

via points,q = q1, . . . , qn, with the q1 and qn being fixed,
and we follow a combination of gradient descent steps to
minimize the length of the path while not leaving the support
of the manifold.

The initial estimate of the shortest path is computed by
interpolating betweenq1 andqn, while following the geom-
etry of the manifold, until the distance between consecutive

points is acceptable. Since we have learnt the tangent space
of the manifold we can find a minimum energy solution that
follows the orthonormal (to the manifold) component of the
gradient of

errM(q) = min
{ǫij}

∑

i,j∈Ni

∥

∥Hθ(q̄
ij)ǫij − (qi − qj)

∥

∥

2

2
,

that essentially makes theqi’s “stick” to the learnt manifold
by iteratively moving them to points where neighboring
(consecutive) bases are aligned. Next we apply another
gradient descent optimization by following the parallel (to
the manifold) component of

errlength(q) =

n
∑

i=2

∥

∥qi − qi−1
∥

∥

2

2
,

that iteratively minimizes the length of the path without
leaving the support of the learnt manifold, while keeping
the endpoints fixed.

The next sections present two examples of our method.
The first example presents experiments on a simulated 3-link
arm where both the manifold and the learnt model can be
visualized and are representative of the core ideas behind this
work. For the second example we use a physical humanoid
robot, with which we demonstrate how our method scales to
more complex systems and more challenging tasks.

III. E XPERIMENTS ON A ROBOTIC ARM

Our first set of experiments were designed to elucidate the
basic concepts underlying our approach. We have chosen a
3-link planar arm where we can explicitly visualize both
the configuration space and the optimization manifold. The
arm is a series of three rigid links of unit length that are
coupled with hinge joints, producing a redundant system with
3 degrees of freedom (DoFs) that is constrained to move on
a 2 dimensional plane (task space).

A. Training data

We start with a21 × 31 grid in task space and compute
the joint positions for each goal point with an iterative
optimization procedure detailed below. We subsample 100
grid points to get a random permutation for learning, as in
Fig. 2(a).

The system being redundant, we first have to choose a
redundancy resolution strategy, which implicitly specifies the
manifold that we will subsequently learn. Here, we choose
the joint space configuration,q, that minimizes the distance
to a convenience (robot default or minimum strain) pose,qc.
Formally,

min ‖q − qc‖
2
, subject tof(q) − x = 0,

wheref is the forward kinematics andx is the goal endpoint
position on the plane.

The resultingq’s trace a smooth nonlinear manifold in
joint space, depicted in Fig. 2(c). We note that the manifold
does not lie on a plane but on a convex strip that twists
clockwise and tightens as we travel down theq3 axis. Also
different redundancy resolution strategies would produce



−0.5 0 0.5 1

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

x

y

(a) Interpolation

−0.5 0 0.5 1 1.5 2 2.5 3
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

x

y

(b) Extrapolation

(c) Generalization errors (d) Time

Fig. 3. Results of the 3-link arm experiments. Novel task space trajectories
produced with random start and end points where (a) demonstrates gener-
alization within the region of support of the data, while (b)demonstrates
generalization beyond the region of support of the trainingdata. (c) RMSE
error of generated trajectories against ground truth for the two cases. In the
interpolation scenario the error is practically zero (y axis in log-scale). (d)
Absolute planning time for the two cases. Note that in the interpolation case
the length of the paths is consistently low.

different optimality manifolds. We note that, in general, this
kind of information may not be explicitly known (in the case
of human demonstration) or visualizable for more complex
problems.

B. Implementation

The first step in data-driven learning of the desired mani-
fold is to compute the neighborhood graph of the training
data. We evaluate the task space distances to compute
the neighborhood graph with the constraint that the graph
contains a single connected component. In practice we grad-
ually increase the neighborhood distance until all points are
connected, as in Fig. 2(b).

The tangent space that we wish to learn is inherently two
dimensional. We learn a model ofHθ with 10 RBF’s and
100 points, the blue points in Fig. 2(c). We can subsequently
evaluateHθ at any point in our joint space. Fig. 2(d) shows
the tangent bases evaluated at every point of the previously
generated grid. Note that the basis vectors are aligned and
vary smoothly, i.e. we obtain a good generalization within
the region of support of the data.

C. Results

For measuring the goodness of our learnt manifold, we use
two metrics. Central to our aims is the generalization ability
of the model. Thus we quantitatively evaluate the error of
planned motions against the poses that the original optimiza-
tion procedure would produce. We distinguish between two
scenarios for our motion planning. The first evaluates the
model’s interpolation ability, generating trajectories that in
task space lie within the grid from which 100 points have
been sampled for learning. The second case evaluates the

extrapolation ability of the model by generating trajectories,
the endpoints of which lie outside the original grid. In both
cases start and endpoint positions in task space were random,
while results are averaged over 10 trials for each scenario.

We create 50 optimal geodesic paths, with random start
and end points for each case, with the method detailed in
section II-B. Samples of such paths for both generalization
cases are depicted in Fig. 3(a) and (b) (grid points in light
gray for comparison).

We then collect all the intermediate points and compute
the optimal solutions of their forward kinematics with the
redundancy resolution algorithm detailed in section III-A, as
ground truth. We compute theRMSE, for each trial and for
each case, between ground truth and prediction of model, for
a total of 10 trials.

The averaged errors are depicted in Fig. 3(c). Note that
theRMSEaxis is in log-scale while the difference of the two
bars is of 2 orders of magnitude. To be precise the average
RMSE for paths generated within the region of support of
the data is1.8935×10−4 ±3.6013×10−5(practically zero),
while beyond the support of the data the averageRMSE is
6.84×10−2±2.19×10−2. In addition, computing the optimal
geodesic paths takes less time on average (Fig. 3(d) in both
cases).

IV. EXPERIMENTS ON A HUMANOID ROBOT

The three-link arm experiments are useful for demon-
strating the working of the manifold learning and optimal
geodesic path planning algorithm. We now move to a more
complex system. In this setting, the skill manifold idea is
more intuitively understood. We use theKHR-1HV (Fig.
1(b)), a “KidSized” humanoid robot2 that stands approx-
imately 35cm tall. It consists of 19 digital servo motors
on brackets, in a bipedal-two-armed configuration, with a
control board and a battery pack. The system is unstable as
the center of mass is elevated.

No analytical model of the dynamics of the system is
available to us as. Obtaining such models is labor intensive.
Moreover, even if we were to approximate such a model, it
would have to account for varying model parameters, e.g. the
change in the servos’ behaviour as the battery gets depleted
or the motor temperatures vary. These effects are hard to
estimate, so we prefer to work directly from experimental
data.

We focus on the task of walking, with the aim of generat-
ing a motion synthesis strategy that allows for full coverage
of a reasonably large interval in step length. We begin with a
redundancy resolution strategy that would yield training data
and ground truth for our subsequent comparisons.

A. Training data

We frame the redundancy resolution strategy as an uncon-
strained nonlinear optimization problem. Algorithmically, we
use a Quasi-Newton approach with a cubic line search pro-
cedure, based on the BFGS formula for iteratively updating

2According to the RoboCup Humanoid League size classification.



−10

−5

0

5

−5
0

5

0

2

4

xz

y

(a) Right steps

−5

0

5

10

−5
0

5

0

2

4

xz

y

(b) Left steps

−10

−5

0

5

−5
0

5

0

2

4

xz

y

(c) Right neighborhood graph

−5

0

5

10

−5
0

5

0

2

4

xz
y

(d) Left neighborhood graph

Fig. 4. Task spacerepresentation of the training data through forward
kinematics. Random start and end point leg swing trajectories of the left (a)
and right (b) legs. (c) and (d) the neighborhood graphs that result from the
task space distances between demonstrated data (units incm). This provides
the task-specific distance metric for the high dimensionaljoint-space. Note
that depicted here are only feet midpoint positions while thedatasets consist
of the joint space points that are 19-dimensional.

the estimate of the Hessian of the objective (cost) function
[17]. Formally, the optimization problem is of the form

min
q

J (q), subject tof(q) − x = 0,

whereJ is the cost function,f is the forward kinematics
and x is a goal task space position. The cost function is a
mixture of task constraints and stability constraints. Thecost
function evaluates:

• the distance of the midpoint of the swing foot to the
desired goal

• the alignment of the swing foot with the x and y versors,
to keep the foot flat

• the horizontal distance of the position of the pelvis to
the desired pelvic position, to manipulate the center of
mass of the humanoid

• the alignment of the waist of the robot with the z versor,
to keep the humanoid, from the hips up, in an upright
position

The optimization initialization pose is one where the hu-
manoid stands upright with the knee joints slightly bent.

To generate a walking trajectory we start with the desired
task space path of the swing leg and the position of the pelvis,
and discretize to 20 waypoints. The swing foot trajectories
are straight lines from start to goal points while the heightof
the foot is regulated with a sinusoid, scaled to a prespecified
height. In practice we set the position of the pelvis to be
over the support foot and perform a double support weight
shift step once the swing leg has reached the goal position.
Last we run the optimization procedure detailed earlier, and
get the joint space trajectory of the leg swing and the weight
swift phases for each complete task space step path.

The optimization results are approximately constant speed
quasi-static trajectories, in the sense that inertial effects are
negligible. We collected 20 full body joint space trajectories
for stepping with the right leg and the same amount for
stepping with the left leg. Start and goal points of every step

have been randomized within a reasonable reaching distance.
Figure 4(a) and 4(b) show the task space trajectories of
each swing leg by running the datasets through the forward
kinematics (the support foot is in light gray for comparison).

B. Implementation

Compared to our previous simpler example, this is higher
dimensional space and sampling is necessarily somewhat
sparse. Of the 19 DoFs of the robot we used the 12 DoFs
of legs and hips and kept the remaining arm joints at a
constant pose. Furthermore we separated each footstep to a
swing phase and a weight shift phase. This way we divided
the learning into two components, leg swing manifold and
support weight shift manifold, as the measure of optimality
is essentially different for each phase.

We begin with the same neighborhood graph computation
procedure where we gradually increase our neighborhood
distance until the graph is not disconnected (Fig 4(d) and
4(c)). We set the dimensionality of the manifolds to be 3,
corresponding to the natural task space of the robot (see
section V). In all learnt manifolds we used models with 20
RBF’s and 400 data points that belong to 20 random task
space trajectories as described in the previous section.

C. Results

The learnt manifolds are able to produce smooth walking
trajectories that satisfy the optimization criteria used to
produce the training data. Specifically, the averageRMSE
(degrees) of the leg swing manifold for the ground truth
was as low as0.12 while the averageRMSEof the weight
shift manifold ranged on average near0.06 (Fig. 5(c)). This
implies that the geometry of the step manifold is more
complex and some of its features might be smoothed over
by the RBF model. Nonetheless the procedure was able to
produce stable walking in the continuum of the reaching
space of the robot as depicted in Fig. 5(a) and 5(b) for right
and left swings accordingly.

One point to note is that the shape of the trajectories in
task space is qualitatively different than the training data.
This suggests that the learnt manifold indeed traces the true
underlying geometry that the optimization procedure sculpts
in the robot’s joint space. In contrast the training data has
been generated on a point by point basis, while the shape
of the trajectories in the task space (sinusoid) has been
artificially imposed, regardless of the intrinsic structure of the
optimality surface. The geodesic paths that are generated are
optimal with respect to the manifold’s geometry and traverse
the configuration space smoothly.

The absolute time needed to generate an optimal geodesic
path on the pair of manifolds (swing leg and weight shift)
from random start to random end points was approximately
1.5552±0.4785 seconds (in a standard, not particularly fine-
tuned, numerical implementation of the algorithm) whereas
generating a trajectory with the optimization procedure, de-
scribed in section IV-A required approximatelytwo minutes
on average. This is asignificantdecrease in absolute planning



−5

0

5

10

−5
0

5

0

2

4

x
z

y

(a) Generated left steps

−10

−5

0
−5

0
5

0

2

4

xz

y

(b) Generated right steps

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
M

S
E

 

 

Step error
Weight shift error

(c) Error

10
0

10
1

10
2

10
3

T
im

e 
(s

ec
)

 

 

Optimal geodesic paths
Numerical optimization

(d) Absolute time

−10
−5

0
5

0
10

20
30

40

0

5

10

15

20

25

30

35

xz

y

(e) Generated random walk

Fig. 5. Experimental results with the humanoid robot. Random start and
end point trajectories for left (b) and right (b) leg swings that have been
generated from our learnt manifold, via geodesic path optimization (units
in cm). (c) RMSE (degrees) of generated data against ground truth. (d)
absolute time needed for planning and optimization with our method and
the nonlinear optimization method (y axis in logscale) described in the text
(section IV-A). (e) Random walk generated by geodesic path optimization
on the learnt manifolds for randomized task-space goals. Snapshots of the
robot executing the motion in Fig. 6, see also accompanying video.

time, which makes it possible to deploy this algorithm in
realistic application scenarios (e.g. RoboCup).

A randomized walk sequence entirely generated with our
method is depicted in Fig. 5(e). Notice that the step lengths
are varying and the step points are variable as well with
respect to thex axis. Snapshots of this walk executed by
the robot are shown in Fig. 6. Also see the video clip
accompanying this paper.

V. D ISCUSSION

We have demonstrated how a machine learning technique
for approximating a low-dimensional skill manifold may be
tightly integrated with the process of trajectory generation.
One of the important differences between the manifold
learning algorithm as used here, and other versions of such
algorithms coming out of domains such as vision, is that
we utilize task space metrics to shape the geodesic compu-
tations on the (configuration space) manifold, and focus on
preserving properties of the trajectories, and not just a point
set.

In both examples presented, we have chosend to have
the dimensionality of the system’s task space. The reasoning
behind this choice is that there might be configurations
that are close in joint space but far away in task space.
Since our aim is to learn skill-specific manifolds, this seems
natural.We could have used anyd < D, but simpler models
are preferred. Choosing the appropriate dimensionality falls
under the bias-variance trade off, as discussed below.

We now make a few observations regarding limitations
(hence, directions for future improvement) of the algorithm
in its current form. In this work, we do assume that the skills
may be represented by a subspace that is a single connected
component. This is clearly not an issue for the 3-link arm
example. However, in general, this may well be insufficient
as the dimensionality of the system grows. The place where
this plays a role is the neighborhood graph computation
where by connecting two points that should not be connected
we would obtain a skewed model. In practice, suitably dense
sampling, or better still incremental sampling in appropriate
regions, and a bit of algorithmic book keeping, would suffice
to ensure that this aspect of the manifold structure is properly
reflected.

Also, one must keep in mind that the manifold learning
step is performed with an iterative algorithm, much like
Expectation Maximization, that is randomly initialized and
does not always guarantee a global minimum. So, learnt
models may not be unique solutions. This may call for better
model selection procedures - a topic for future development.

The number of RBF basis in our experiments was chosen
empirically, thus is open to further improvement. A high
number of RBF’s would allow the model to capture more
intricate local geometric structure of the manifold, but would
impair its generalization ability. On the other hand a low
number of RBF’s may oversmooth the solution and lose much
of the geometric variation present in the training data.

This is a bias-variance trade-off and could be handled
with a cross-validation procedure. Such choices would need
to be closely related to the geometric complexity of the
manifold that one would like to learn. Also the use of the
centered estimate of the directional derivatives implies that
the expressive ability of the model would not be able to
handle manifolds that cannot be locally approximated with
a quadratic form. In practice highly nonlinear manifolds that
vary wildly or have sudden cutoffs may not be suitable for
learning, without additional treatment.

Finally, we assume that start and end points of each
trajectory are known. For this we have used the redundancy
resolution strategy used in generating the demonstrated data.
There is no implicit mapping of task space goals to config-
uration space poses on the manifold per se, but in principle
once the manifold is learned one can easily search for points
that satisfy task space goals.

VI. CONCLUSIONS AND FUTURE WORK

We have demonstrated how a manifold learning algorithm
can capture the geometric properties of a low dimensional
skill manifold that underlies a high dimensional dataset.



Fig. 6. Stills of the robot executing the planned motion depicted in Fig. 5(e).

We have also shown how this model can be naturally used
to generate joint space trajectories, and how the generated
trajectories reflect the optimality and constraints inherent in
the training data.

We started with an example of a simulated robotic arm
that is suitable for demonstrating the core concepts of our
work and then demonstrated a similar result on a more
interesting humanoid robot behaviour. We have demonstrated
how manifolds of complex numerical optimization solutions
can be learnt from sparse data and how the geometric
structure generalizes within and beyond the support of the
data. Finally, we have shown how such learnt manifolds can
be used to produce novel approximately optimal solutions to
continuous path planning queries in a very efficient and fast
manner.

In future we aim to further extend our method for planning
in the presence of kinodynamic constraints. Also we would
like to add sensory feedback to the planning step as well as
incorporate higher order terms, e.g. velocities and accelera-
tions, in the state space. Our long term goal is to utilize the
manifold learning and planning method as the the core of a
larger system that would be able to learn, plan and execute
motions robustly and in real time.

REFERENCES

[1] J. Chestnutt, M. Lau, K. M. Cheung, J. Kuffner, J. K. Hodgins, and
T. Kanade, “Footstep planning for the honda asimo humanoid,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, April 2005.

[2] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to
motor learning by imitation,”Philosophical Transactions: Biological
Sciences, vol. 358, no. 1431, pp. 537–547, 2003.

[3] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” inICML ’08: Proceedings of the 25th
international conference on Machine learning. New York, NY, USA:
ACM, 2008, pp. 144–151.

[4] S. Ramamoorthy and B. J. Kuipers, “Trajectory generation for dynamic
bipedal walking through qualitative model based manifold learning,”
IEEE International Conference on Robotics and Automation (ICRA),
pp. 359–366, May 2008.

[5] P. Isto and M. Saha, “A slicing connection strategy for constructing
prms in high-dimensional cspaces,”Robotics and Automation, 2006.
ICRA 2006. Proceedings 2006 IEEE International Conferenceon, pp.
1249–1254, May 2006.

[6] A. Safonova, J. K. Hodgins, and N. S. Pollard, “Synthesizing phys-
ically realistic human motion in low-dimensional, behavior-specific
spaces,”ACM Trans. Graph., vol. 23, no. 3, pp. 514–521, 2004.

[7] D. Berenson, S. Srinivasa, D. Ferguson, and J. Kuffner, “Manipulation
planning on constraint manifolds,” inIEEE International Conference
on Robotics and Automation (ICRA ’09), May 2009.

[8] M. Stilman, “Task constrained motion planning in robot joint space,”
Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Interna-
tional Conference on, pp. 3074–3081, 29 2007-Nov. 2 2007.

[9] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-stepmotion
planning for free-climbing robots,” inin WAFR, 2004, pp. 1–16.

[10] R. Chalodhorn, D. Grimes, G. Maganis, R. Rao, and M. Asada,
“Learning humanoid motion dynamics through sensory-motor map-
ping in reduced dimensional spaces,” inRobotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, May 2006, pp. 3693–3698.

[11] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Gaussian process
dynamical models for human motion,”IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 2, pp. 283–298, 2008.

[12] S. Bitzer, I. Havoutis, and S. Vijayakumar, “Synthesising novel move-
ments through latent space modulation of scalable control policies,”
in Lecture Notes in Computer Science. Springer Berlin / Heidelberg,
2008, pp. 199–209.

[13] P. Dollár, V. Rabaud, and S. Belongie, “Non-isometric manifold
learning: Analysis and an algorithm,” inICML, June 2007.

[14] T. Hastie, R. Tibshirani, and J. H. Friedman,The Elements of Statis-
tical Learning. Springer, August 2001.

[15] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding.”Science, vol. 290, no. 5500, pp. 2323–2326,
Dec 2000.

[16] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A globalgeometric
framework for nonlinear dimensionality reduction.”Science, vol. 290,
no. 5500, pp. 2319–2323, Dec 2000.

[17] J. Nocedal and S. J. Wright,Numerical Optimization, 2nd ed.
Springer, 2006.


