The Sun Hotspot JVM does not conform with the
Java Memory Model

Jaroslav Sevéik

April 28, 2008

Abstract

In this paper, we report on our experiment, which shows that Sun’s
Java Virtual Machine, the Hotspot JVM, does not conform with the
current Java Language Specification, namely with the Java Memory
Model (JMM). Although we have not been able to observe a behaviour
that is forbidden by the JMM directly, we can show that the Hotspot
JVM produces code that can lead to such behaviour.

1 Introduction

The Java Memory Model (JMM) describes the semantics of multi-threaded
Java programs. The JMM was designed to allow as many program and
hardware optimisations as possible while giving reasonable guarantees to
programmers, see Gosling et al. (2005); Manson et al. (2005) for details. In
our theoretical work, we have shown that several commonly used optimisa-
tions, such as the common subexpression elimination, are illegal in the JMM
(Sevéik and Aspinall, 2008).

This paper shows that the violation of the JMM can occur even in prac-
tice. First, we show a program that cannot produce certain behaviour in the
JMM. When we run this program on the Hotspot JVM, the JVM compiles
our program into an assembly code that can exhibit the forbidden behaviour
even when executed by a sequentially consistent processor.

2 Experiment

The full listing of the program from our experiment is in Figure 1. By the
JMM specification, printing value 1 by the spawned thread (in method run)
is a forbidden behaviour. We have run our program on the fastdebug server
version of the Hotspot JVM on a Pentium D architecture with the Linux
operating system! with the command-line switch -XX: +PrintOptoAssembly

'For further details on the runtime system, see the header of the Hotspot JVM’s log
file in Figure 5.

to output the assembly code into the JVM’s log file. The Hotspot JVM
compiled methods threadl and thread2 into the assembly code listed in
Figures 2 and 3. While the compiled code for method threadl retains the
meaning from its Java source code, the assembly code of method thread2
has a slightly different memory behaviour, and its meaning is essentially
equivalent to the Java code in Figure 4. After this compilation, the program
can print the value 1 in the spawned thread even when executed sequentially
consistently?. This violates the Java Memory Model.

We should mention that the JVM compiled the method test2 consis-
tently into the program from Figure 4 only in about half of our attempts.
This is because the Hotspot JVM’s optimisations are guided by runtime
measurements and several other heuristics that differ from run to run (Click,
1995).

3 Conclusion

We have demonstrated that the Sun’s own Java Virtual Machine does not
conform with the current Java Memory Model. This shows that either the
Java Specification or the Hotspot JVM should be fixed. We believe that
in our example, the Hotspot JVM only performs standard transformations
that are safe for multi-threaded programs, i.e., they provide the guarantee
of sequential consistency for correctly synchronised programs. Therefore,
we suggest that it is the Java Memory Model that should be revised.

References

Click, C. (1995). Global code motion/global value numbering. SIGPLAN
Not., 30(6), 246-257.

Gosling, J., Joy, B., Steele, G., and Bracha, G. (2005). Java(TM) Lan-
guage Specification, The (3rd Edition) (Java Series), chapter Threads
and Locks, pages 557-573. Addison-Wesley Professional.

Manson, J., Pugh, W., and Adve, S. V. (2005). The Java memory model. In
POPL ’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium

on Principles of Programming Languages, pages 378-391, New York, NY,
USA. ACM Press.

Sevéik, J. and Aspinall, D. (2008). On validity of program transformations
in the Java Memory Model. Accepted to ECOOP 2008.

2For further discussion of the example, please see Seviik and Aspinall (2008).

public class Tester extends Thread
{

public static int x
public static int y =

= 0;
0;

public static volatile int z = 0;

public static void main(String [] args)

{
Tester t = new Tester();
int acc = 0;
for(int i=0; i<10000000;i++) acc += threadil(t);
for(int i=0; i<10000000;i++) acc += thread2(t);
x = 0;
y = 0;
t.start();
int r = threadi(t);
System.out.println("Main thread = " + r);
}
public void run()
{
int r = thread2(this);
System.out.println("Thread 2 = " + r);
}

public static int thread1(Object snc)

{
int r1 = x;
y =rl;
return ril;
}
public static int thread2(Object snc)
{
int rl1 = z;
int r2 = y;
x = (r2==1)7y:1;
return r2;
}

Figure 1: This program cannot print ‘Thread 2 = 1’ in Java.

#

int (java/lang/Object *)

#

#r000 ecx : parm O: java/lang/Object *

-- 01d esp -- Framesize: 16 --

#r045 esp+12: return address

#r044 esp+ 8: pad2, in_preserve

#r043 esp+ 4: pad2, in_preserve

#r042 esp+ 0: Fixed slot O

#

abababab Ni: # Bl &1t;- Bl Freq: 10001

abababab

000 B1: # N1 <- BLOCK HEAD IS JUNK Freq: 10001
000 PUSHL EBP

SUB ESP,8 # Create frame

007 MOV EBX, #440

00c MOV EAX, [EBX + precise klass Tester: 0x097a06f8:Constant:exact *] ! Field Tester.x
012 MOV EBX, #444

017 MOV [EBX + precise klass Tester: 0x097a06f8:Constant:exact *],EAX ! Field Tester.y
01d ADD ESP,8 # Destroy frame

POPL EBP

TEST PollPage,EAX ! Poll Safepoint

027 RET
027
Figure 2: The assembly code for method threadl.
#
int (java/lang/Object *)
#
#r000 ecx : parm O: java/lang/Object *

-- 01d esp -- Framesize: 16 --

#r045 esp+12: return address

#r044 esp+ 8: pad2, in_preserve

#r043 esp+ 4: pad2, in_preserve

#r042 esp+ 0: Fixed slot O

#

abababab N1: # Bl <- Bl Freq: 10001

abababab

000 B1: # N1 <- BLOCK HEAD IS JUNK Freq: 10001

000 PUSHL EBP

SUB ESP,8 # Create frame

007 MOV EBX, #444

00c MOV ECX, #440

011 MEMBAR-acquire

011 MOV [ECX + precise klass Tester: 0x09865020:Constant:exact *],#1 ! Field Tester.x
01b MOV EAX, [EBX + precise klass Tester: 0x09865020:Constant:exact *] ! Field Tester.y
021 ADD ESP,8 # Destroy frame

POPL EBP

TEST PollPage,EAX ! Poll Safepoint

02b RET
02b

Figure 3: The assembly code for method thread?2.

public static int thread2(Object snc)

{
x = 1;
int r2 = y;
return r2;
}

Figure 4: Optimised method thread2.

<?xml version=’1.0’ encoding=’UTF-8’7>

<hotspot_log version=’160 1’ process=’8604’ time_ms=’1197284856453’>
<vm_version>

<name>

Java HotSpot(TM) Tiered VM

</name>

<release>

1.7.0-ea-fastdebug-bl6-fastdebug

</release>

<info>

Java HotSpot(TM) Tiered VM (1.7.0-ea-fastdebug-bl6-fastdebug) for linux-x86,
built on Jul 20 2007 02:07:04 by "java_re" with gcc 3.2.1-7a (J2SE release)
</info>

</vm_version>

<vm_arguments>

<args>

-XX:+PrintOptoAssembly

</args>

<command>

Tester

</command>

<launcher>

SUN_STANDARD

</launcher>

<properties>

java.vm.specification.version=1.0
java.vm.specification.name=Java Virtual Machine Specification
java.vm.specification.vendor=Sun Microsystems Inc.
java.vm.version=1.7.0-ea-fastdebug-bl6-fastdebug
java.vm.name=Java HotSpot(TM) Tiered VM

java.vm.vendor=Sun Microsystems Inc.

java.vm.info=mixed mode, sharing

<!-- paths removed -->

sun. java.launcher=SUN_STANDARD

</properties>

Figure 5: The header of the hotspot.log file.

