
An OS-Based Alternative to Full Hardware Coherence on Tiled CMPs∗

Christian Fensch and Marcelo Cintra

School of Informatics
University of Edinburgh

c.fensch@ed.ac.uk, mc@inf.ed.ac.uk

ABSTRACT

The interconnect mechanisms (shared bus or crossbar)

used in current chip-multiprocessors (CMPs) are expected

to become a bottleneck that prevents these architectures from

scaling to a larger number of cores. Tiled CMPs offer bet-

ter scalability by integrating relatively simple cores with a

lightweight point-to-point interconnect. However, such in-

terconnects make snooping impractical and, thus, require al-

ternative solutions to cache coherence.

This paper proposes a novel, cost-effective mechanism

to support shared-memory parallel applications that forgoes

hardware maintained cache coherence. The proposed mech-

anism is based on the key ideas that mapping of lines to

physical caches is done at the page level with OS support

and that hardware supports remote cache accesses. It al-

lows only some controlled migration and replication of data

and provides a sufficient degree of flexibility in the mapping

through an extra level of indirection between virtual pages

and physical tiles.

We evaluate the proposed tiled CMP architecture on the

Splash-2 scientific benchmarks and ALPBench multimedia

benchmarks against one with private caches and a distributed

directory cache coherence mechanism. Experimental results

show that the performance degradation is as little as 0%, and

16% on average, compared to the cache coherent architec-

ture across all benchmarks for 16 and 32 processors.

1 INTRODUCTION

Chip-multiprocessors (CMPs) have now replaced very

wide-issue out-of-order superscalar processors as they pro-

vide higher aggregate computational power, multiple clock

domains, better power efficiency and simpler design through

replicated building blocks. Current CMPs are commonly

built around a relatively small number of cores (2 to 8),

∗This work was supported in part by EPSRC under grant GR/S79572/01

and by the EC under grants IP 27648 (FP6) and HiPEAC IST-004408.

each with its own L1, and possibly L2, cache, connected

through an on-chip interconnect that is either a shared bus or

crossbar. Supporting shared-memory, parallel applications

requires cache coherence, which is greatly facilitated by the

use of buses and crossbars in current CMPs. Such intercon-

nects allow for straightforward hardware cache coherence

mechanisms based on snooping [26] and directories [14, 17].

However, such types of interconnect are expected to be-

come a bottleneck as the number of cores increases [20]. Ei-

ther access latencies have to be significantly stretched or the

area required by the interconnects has to be increased to the

point of becoming impractical. Tiled CMPs [4, 6, 19, 28, 29]

have been advocated as a possible alternative. Such sys-

tems are built from a relatively large number (≥ 32) of rela-

tively simple cores plus a tightly integrated and lightweight

point-to-point interconnect. Unfortunately, such scalable in-

terconnects complicate the implementation of snooping and

directory protocols. In fact, the existing hardware solution

to cache coherence on such interconnects is to use fully dis-

tributed directory coherence protocols [22], which are noto-

riously hard to implement and verify (e.g., [1]).

In this paper, we propose an alternative, cost-effective

software/hardware mechanism to support shared-memory

parallel applications that forgoes hardware maintained cache

coherence. The mechanism is based on the key ideas that

mapping of lines to physical caches is done at the page level

with OS support and that the hardware efficiently supports

remote cache accesses. An extension of the basic scheme

only allows some controlled migration and replication of

data. Data is migrated by refreshing the page mappings at

barriers. Read-only sharing is done with the help of the ex-

isting write-protection mechanism in the TLB/OS. Overall,

the mechanisms allow a sufficient degree of flexibility in the

mapping and sharing. This paper also addresses in depth

some issues that arise from the implementation of the tech-

nique, such as the implementation of memory locks.

By moving the key coherence handling and decision mak-

ing to software (in our case the OS), the proposed scheme,

like software-managed coherence mechanisms [8, 21], bene-

fits from the possibility of modifying the protocol after hard-

355978-1-4244-2070-4/08/$25.00 ©2008 IEEE

ware shipping, which may allow for customizing the proto-

col to application behavior and for more easily fixing bugs.

Like other recent attempts to divide coherence labor between

OS/software and hardware [33, 34], the mechanism is likely

to be more cost-effective and easier to verify and validate

than distributed directory schemes. Unlike such previous

trap-based schemes, however, the small hardware extensions

to support an extra level of indirection between virtual pages

and tiles, as well as to support remote cache accesses, mini-

mizes the need for OS and trap handler activity. In the pro-

posed scheme, only the processor’s first load or store to data

in a page requires trap handler intervention and only the sys-

tem’s first load or store to data in a page requires full OS

intervention. Also, unlike recent hardware-only schemes for

co-operative distributed caching [2, 9, 16, 35] the proposed

scheme does not rely on broadcasts, centralized tag stores or

large redundant tag stores in order to map, locate and access

data cached remotely.

We evaluate the proposed tiled CMP architecture on

benchmarks from two very different domains – the Splash-2

scientific benchmarks and the ALPBench multimedia bench-

marks. We compare the system against one with an SGI Ori-

gin like distributed directory cache coherence mechanism.

Experimental results show that the proposed scheme per-

forms very close to this system with a performance gap as

close as 0% (no gap), and 16% on average, across all bench-

marks for 16 and 32 processors.

The rest of the paper is organized as follows: Section 2

describes the tiled CMP architecture that we assume; Sec-

tion 3 describes our proposed scheme to support shared-

memory parallel programs; Section 4 describes our simu-

lation infrastructure and our evaluation methodology; Sec-

tion 5 presents the experimental results; Section 6 discusses

related work; and Section 7 concludes the paper.

2 TILED ARCHITECTURES

2.1 Current CMPs and Coherence Mechanisms

Current chip-multiprocessors are currently commonly

built around a relatively small number of cores (2 to 8), each

with its own L1, and possibly L2, cache, and are connected

through an on-chip interconnect to a lower level shared

cache. So far, the choice of on-chip interconnect has fol-

lowed those of multi-chip symmetric multiprocessor (SMP)

systems: shared bus fabrics and crossbars. The main reason

for this choice is that such interconnects allow a straight-

forward implementation of coherence via snooping (bus) or

directory at the shared cache level (crossbar). Unfortunately,

as pointed out in [20], future technology scaling will lead

to on-chip interconnects having different sets of tradeoffs

and design issues than traditional off-chip interconnects. In

particular, wire widths and the area required by connectors

do not scale down at the same rate as other features shrink,

which means that either the delay or the area overheads, or

both, of buses and crossbars increase as process scales. In

fact, the detailed study in [20] clearly shows that the area

and delay overheads of buses and crossbars will become pro-

hibitively high in CMPs with more than 16 cores in 65nm

and smaller processes.

In order to scale the number of cores in a CMP above this

barrier, and into the numbers of cores proposed for tiled ar-

chitectures [4, 6, 19, 28, 29], it is necessary to resort to scal-

able (i.e., point-to-point) interconnect types. Such intercon-

nects are suitable not only because their peak bandwidth nat-

urally scales with the number of cores, but also because, due

to the short-length wires and low radix, their area overhead

is a fixed, independent fraction of the number of cores. How-

ever, they do not lend themselves well to the implementation

of snooping cache coherence protocols (although recent re-

search attempts to address this limitation [25]). The alterna-

tive to continue enforcing cache coherence in such systems

is to employ distributed directory schemes, which have been

used in multi-chip multiprocessors in the past (e.g., [1, 22]).

These have proven fairly scalable, reaching up to hundreds

of processors. Snooping protocols are already somewhat dif-

ficult to completely debug and verify due to subtle corner

cases and state transitions [11]1, and distributed directories,

with even more states, races, and corner cases, are notori-

ously even harder to debug and verify (e.g., [1]). Most of

this complexity stems from the fact that requests cannot al-

ways be resolved at the home directory, but must in some

cases generate further requests, such as forwarding and in-

validation requests, which lead to complex protocols with

subtle race conditions and several pending states. All this

complexity is of serious concern and designing and verifying

the directory coherence protocol for each new generation of

the CMP architecture may likely become an expensive bot-

tleneck.

An alternative to enforce coherence in a distributed mem-

ory system is to use the OS’ virtual memory (VM) system

to handle the copies of virtual pages, as was done on soft-

ware DSM systems (e.g., [5, 15, 18, 23]). In this scheme, all

caches are private and it is the responsibility of software to

maintain coherence. As with distributed directories, such

schemes have only been tested in multi-chip systems and

must be adapted to operate on a CMP. A major drawback

of directly porting software DSM schemes to the CMP en-

vironment is that such schemes require moving, comparing

(“diff”), and copying data in physical memory pages to en-

force coherence. This is because creating multiple physical

copies of the same virtual page is the only way to cope with

1Further suggestion to the difficulty of complete verification is the re-

cent Core 2 Duo Errata AI39: “Cache Data Access Request from One Core

Hitting a Modified Line in the L1 Data Cache of the Other Core May Cause

Unpredictable System Behavior” [13].

356

false sharing and the inability of the hardware to identify

which parts of a cache line have been modified. In this way,

at communication points, such as lock transfers and barriers,

the individual copies must be compared against the previ-

ous stable copy of the page and the modifications must be

merged into a single new stable copy of the page. These

operations are likely to be extremely costly in a CMP, will

consume precious off-chip memory bandwidth, and generate

much pollution in the relatively small on-chip caches.

Overall, the potentially complex hardware solution of

distributed directories and the potentially high-overhead

software-only solution of a VM-based scheme are two ex-

tremes in the spectrum of solutions for the cache coherence

problem in tiled CMPs. In Section 3 we describe our alter-

native to such cache coherence mechanisms, after we define

the baseline tiled architecture in the next section.

2.2 A Baseline Architecture

In this paper, we are concerned with tiled CMPs consist-

ing of 32 or more processors. Such systems are built by

replicating regular building blocks, which are usually sim-

ple and small enough that the maximum intra-tile wire delay

is small (1 to 2 cycles). As discussed in the previous sec-

tion, snooping cache coherence approaches are unlikely to

be suitable at such a scale due to the area overheads of the

PE

L1−I L1−D

NCNC

NC NC

RAC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

PE

L1−I L1−D

PE

L1−I L1−D

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

RAC RAC RAC RAC

RAC RAC RAC

RAC RAC RAC RAC

RAC RAC RAC RAC PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

PE

L1−I L1−D

NC

RAC RAC RAC RAC

RAC RAC RAC RAC

RAC RAC RAC RAC

RAC RAC RAC RAC

PE

NC

L1−I L1−D

RAC

(a) Proposed tiled CMP overview.

F

T

Communication within a tileCommunication between tiles

data
send queue

tile #

p−addr

data

v
−

a
d
d
r

data

p−addr

data

v
−

a
d
d
r

tile #

v−addr

send queue RAC queue

local?

Tag
Comparison

Tag
Comparison

MAP

TLB

Cache

MAP

TLB

Cache

Element
Processing

Network
Controller

Network
Controller

(b) Remote cache access mechanism.

Figure 1. Proposed architecture overview.

broadcast interconnects they require, and the only currently

established alternative, namely distributed directory coher-

ence, could prove to be prohibitively complex.

Before we describe our design, we first present the base-

line tiled CMP that we assume. We assume a fairly generic

tile that consists of a compute processor (PE) that is a sim-

ple single-issue RISC processor with separate and private in-

struction and data caches. These first level caches are virtu-

ally indexed and physically tagged.

The on-chip interconnect fabric consists of a point-to-

point network with a mesh topology where each tile is con-

nected to its four neighbors. Each tile contains a very simple

network controller (NC) that performs simple dimension-

ordered routing. The number of message buffers in the NC

is enough to guarantee maximum throughput, which cor-

responds to four non-conflicting transfers per cycle. Fig-

ure 1(a) gives a high-level overview of the architecture (the

shaded gray components are explained in Section 3).

3 A HARDWARE/OS SCHEME TO AVOID

CACHE INCOHERENCE

As described in Section 2.2, the baseline architecture does

not support shared-memory parallel applications because it

suffers from the cache coherence problem. One option is to

enforce cache coherence in hardware with a distributed di-

rectory protocol. For this purpose one would add directory

tags and a directory controller to each node next to the L1

data cache in Figure 1(a). In this section, we present an al-

ternative solution. The scheme divides the work between the

hardware and the OS and, in reality, does not enforce co-

herence across cached copies of data, but rather avoids the

possibility of incoherence by not allowing multiple modifi-

able shared copies of data. The key ideas are to map data

to tiles at the granularity of pages under OS control and to

support remote cache accesses in hardware.

3.1 Caches and Coherence

This section describes the mechanism we propose to

avoid incoherence. The basic idea is to treat all L1s as a sin-

gle logical cache and, thus, avoid replication of data, which

can lead to data incoherence. This initial architecture is ex-

tended later in Sections 3.2 and 3.3 to allow some controlled

migration and replication.

3.1.1 Data Placement and Remote Cache Accesses

Instead of trying to keep the L1 caches coherent, the pro-

posed scheme avoids duplicate copies of a single cache line.

To achieve this, every memory line can only reside in one

L1 cache (the home cache or tile) and processors in other

tiles must perform remote cache reads and writes to access

357

the data. Thus, instead of a directory controller we add a

remote cache access controller (RAC) to each tile, as shown

in Figure 1(a). To receive and service remote data requests

the RAC is given access to the network and it uses the ded-

icated ports to the cache’s data and tag arrays that would be

otherwise used by the snooping or directory controller.

The simplest way to place and locate data in the L1 caches

whilst enforcing a single copy of each line would be to stat-

ically map lines to L1 caches based on the address. This,

however, is too restrictive and takes no account of the data

access patterns. At the other end of the spectrum, each

line would be dynamically mapped to any one L1 cache

and it would be located through broadcasts, centralized tag

stores, or redundant tag stores, as has been previously pro-

posed [2, 9, 16, 35]. What we propose is to map whole mem-

ory pages to L1 caches through extensions to the OS page

table and the hardware TLB mechanisms.

We expose the internal chip structure to the OS and ex-

tend the traditional page table with a new table that maps

virtual pages to architectural tiles. This is matched with a

new TLB-like hardware table that caches these translations

and allows for fast identification of the home L1 cache where

data in the page can be found. Each tile is given one of such

hardware structures, which we call a MAP. The default pol-

icy for the OS to map virtual pages to tiles is first-touch.

Note that the proposed mechanism is different from simply

mapping memory pages to L1 caches based on the physi-

cal address and using the virtual-to-physical page translation

mechanism to provide the run-time mapping. The problem

with the latter is that physical addresses are bound to specific

L1 caches, which limits the OS flexibility in allocating phys-

ical memory and may lead to fragmentation and inefficient

use of physical memory. Additionally, it makes any changes

to the mappings much more involved, as the physical pages

have to be moved in memory. It is for these reasons that we

decided to add this extra level of indirection.

One important design decision at this point is where to

provide virtual-to-physical address translation. Traditional

CMPs keep all the translations of the local processor in the

local TLB and ship only physical addresses to access lower

level caches. A problem with using physical addresses for

the remote cache accesses in our architecture appears when

virtually indexed L1 caches are used, which is often the case

in order to speed up accesses from the local processor. Thus,

performing the virtual-to-physical address translations lo-

cally in the case of remote L1 accesses would require some

(impractical) inverse translation at the remote tile. Our so-

lution is to keep the virtual-to-physical address translations

only in the TLB next to the home L1 cache and to ship vir-

tual addresses over the network for remote cache accesses.

Note that this is not intrinsic to our scheme, but a solution

in case one wants to use virtually indexed L1 caches; with

physically indexed L1 caches our proposed scheme would

work as usual with physical addresses on the network.

In this scheme a processor request proceeds as follows

(Figure 1(b)). Firstly, the virtual address is simultaneously

used to index the local L1 cache, to perform a local TLB

lookup to obtain the physical address, and to perform a local

MAP lookup to obtain the identity of the home tile. If the re-

sult of the MAP translation points to a remote L1 cache, the

local cache access is aborted. In this case, the result of the

local TLB lookup is also ignored, including a possible TLB

miss. The virtual address is then shipped to the RAC in the

remote tile over the network. At the remote tile, the virtual

address is simultaneously used to index the L1 cache and to

perform a TLB lookup. To avoid delaying local cache re-

quests due to remote cache requests we provide an extra port

to the TLBs. Since our L1 caches are virtually indexed, the

cache lookup can proceed in parallel with the TLB lookup

and the extra TLB latency due to the extra port is unlikely

to have any impact on the overall L1 access latency. If the

TLB lookup succeeds then a tag comparison follows, using

the physical tag. A cache or TLB miss is handled as usual. If

the result of the MAP translation points to the local L1 cache

then the local cache access proceeds as usual.

The above discussion only applies to data caches. Each

tile has its own read-only instruction cache.

3.2 Data Migration

The proposed first-touch data mapping strategy, com-

bined with the fact that mapping is done at the granularity

of pages, may lead to poor performance when data migrates

across threads. Mechanisms have been proposed to allow

migration and replication of memory pages in CC-NUMA

machines [31]. These are tailored to much larger systems

with larger latencies, and, thus, we borrow some of their

ideas but adapt the mechanisms and policies.

We propose a simple mechanism that allows for some de-

gree of migration by invalidating the mappings of virtual

memory pages to L1 caches. This is done by invalidating

the MAP table in all tiles. After an invalidation, a first-touch

policy is again used for the new mappings. Thus, invali-

dating the mappings does not in itself migrate pages, but it

creates an opportunity for this to happen. The invalidation

is more easily implemented at a quiescent state where there

are no pending memory requests on chip. A natural point

to perform such invalidation is at barriers. In many well-

designed applications barriers are used to signal change in

the data access pattern and communication across threads.

Thus, barriers are also naturally good points for re-mapping

and migration. Finally, to effect the migration of the data, all

dirty lines in the L1 caches must be written back at a map-

ping invalidation such that the modified data may be reach-

able after the re-mapping.

The actual invalidation is done in two phases. First, each

358

processor invalidates the local MAP table just before joining

the barrier. This is done with a new instruction that is very

similar to the existing tlbia instruction in the PowerPC IS.

At this point, the local cache controller starts writing back

dirty cache lines to main memory with the goal of hiding the

write-back overhead with the idle synchronization time.

In the second phase, before releasing the barrier, one pro-

cessor invokes a special system call to invalidate the OS’ in-

ternal MAP table. Also at this point (before barrier release)

all tiles write back all remaining dirty cache lines. When

the writebacks are completed, the contents of the caches are

invalidated and the barrier is released.

3.3 Read­Only Data Sharing

The proposed baseline scheme, coupled with the exten-

sion to refresh mappings to allow migration, is likely to work

well as long as there is not much sharing of data at the gran-

ularity of pages. Whilst full-blown sharing requires line-

based hardware coherence, some degree of sharing can be

easily enforced by the OS with minimal hardware support.

What we propose is a simple mechanism that allows shar-

ing of pages across multiple readers and a single writer at

any given time. The mechanism works as follows. The first

processor to touch a given page for reading obtains a local

mapping for it whilst the OS marks the page as read-only in

the page table and in the processor’s TLB and MAP. Other

processors touching the same page for reading are allowed

to create local mappings for it, also in read-only mode. At

this point, the OS does not need to keep track of which pro-

Transition does no

serialize in OS

by another tile

Transition caused

Transition serializes

in OS

r

rw

w
rw r

w r

w r

w

{r}

{w}

{w}

rw

1/CY

State in local MAP table:

1

2

3

4

− Local R/W

− Local R/O

− No Entry

B − Shared

C

− No EntryA

− Remote

State in OS MAP table:

− Owned by <n>n

4/CY

2/CY

3/CX 4/B

1/B

1/A

Figure 2. Sharing protocol for node X. The state of a page

depends on its local (numbers) and OS (letters) state. Ac-

tions shown in braces are those taken by some other node Y.

cessors are sharing the page. The first write by a processor

to a page is intercepted by the OS, which then marks the

page as modified and makes this processor the owner of the

page. Subsequent reads by other processors with existing lo-

cal mappings can continue to use these mappings and access

local data. However, subsequent writes by other processors

when intercepted by the OS will not be allowed to proceed

locally, but will generate a MAP entry (or change it if one al-

ready exists) that points to the owner node. Similarly, reads

by processors without a local mapping for the page will gen-

erate an entry pointing to the owner node. Figure 2 shows a

state diagram for the complete protocol. Note that most of

the state transitions occur only at the OS level and the hard-

ware state machine (corresponding to the MAP state in the

figure) is fairly simple.

The mechanism just described allows processors to con-

tinue using local mappings and locally cached data even after

other processors write to data in the page. To prevent stale

data from being used we assume a release consistency mem-

ory model and invalidate the MAP entries for shared pages

on lock acquire operations. This is done by a special instruc-

tion that clears the valid bit of a MAP entry if the shared bit is

set. By doing so we guarantee that all accesses to data mod-

ified by other processors will use a new remote mapping and

will become remote. Entries that point to non-shared data

don’t have to be invalidated, since no migration happens at

lock acquires and, thus, they do not change. It is also nec-

essary to extend the barrier actions used with the migration

mechanism of Section 3.2 to include a full cache flush in ad-

dition to the writebacks and the refresh of the mapping. No

special action is required on lock releases.

While this mechanism may seem very similar to previous

software cache coherence mechanisms (e.g., [18]), it differs

from these in one crucial way. Namely, it does not allow

multiple writers, reverts to a single up-to-date copy of every

page upon a write, and enforces remote cache accesses in

such cases. The key benefit of this is that in our scheme,

no multiple modified copies of physical pages exist at any

time and, thus, there is no need to perform expensive diff

operations and copy data in memory.

3.4 Synchronization

Memory locks have been implemented in the past using

either compare&swap-style atomic instructions or load-link

store-conditional (LL-SC) pairs. The latter approach has

been favored recently because it is easier to implement in

hardware with cache coherence.

In our proposed architecture, compare&swap-style prim-

itives can be more easily implemented than in current mul-

tiprocessors. This is because there is no replication of the

lock variable in multiple caches and it is, thus, easier to en-

force the atomicity of the primitive. Implementing this prim-

359

itive then only requires adding the compare logic to the cache

controller and blocking subsequent requests from other pro-

cessors until the swap is performed.

On the other hand, implementing load-link store-

conditional pairs in our proposed architecture is more dif-

ficult than in current multiprocessors with cache coherence.

In current CMPs, these are easily implemented by keeping

a RESERVE register in the local L1 and relying on the hard-

ware coherence mechanism to detect conflicting stores (Fig-

ure 3(a)). Keeping the RESERVE in the local L1 of the re-

questing processor will not work, however, without cache

coherence. Instead, to implement the LL-SC primitive we

place the RESERVE register in the home L1, and this regis-

ter is then shared by all processors attempting to obtain any

locks that map to this L1 cache. However, now a livelock

is possible when processors attempting to lock different lock

variables displace each other’s LL from the RESERVE regis-

ter (Figure 3(b)). Our solution to this is to change the opera-

tion of the RESERVE register such that once set it cannot be

overwritten by LL requests to other lock addresses.

Another problem with this approach is shown in Fig-

ure 3(c), where more than one processor obtains the same

lock simultaneously. This can happen when the LL and SC

operations of three processors are interleaved in such a way

that a second SC incorrectly succeeds because it is matched

with the third LL. Our solution to this problem is to extend

the RESERVE register with the ID of the tile that success-

fully sets it, and to only consider successful SCs that match

the value in the register and come from the same tile.

The solutions proposed so far lead to another problem

when the thread holding the RESERVE register fails to is-

sue the matching SC, either accidentally or maliciously. To

handle this, we introduce a timeout mechanism to clear the

RESERVE register. To account for variabilities in latencies

in the network, we place this timeout mechanism not in the

tile holding the RESERVE, but in the requesting tile, which

is then responsible for sending a special reservation cancel

message to the tile holding the lock (Figure 3(d)).

One final side effect of using the mechanism described in

Section 3.3 is that the LL instruction has to be treated as a

write when it comes to replication. This guarantees that any

updates to the lock variable will become visible to processors

issuing LL instructions even if they previously had a read-

only copy of the page.

3.5 Multi­Level On­Chip Cache Hierarchies

The design proposed so far assumes only a single level of

cache per tile and no other level of cache on chip. In some

cases, a higher storage capacity per tile may be required. Our

architecture can be extended to work with L2 caches in each

tile and our key ideas can still be applied. In this case, the

L2s take the roles of the L1s in the architecture described so

SC 0x10, 1

SC FAIL

T
im

e

Tile A

LL 0x10

LL 0

Protocol

Cache
Coherence

LL 0

LL 0x10

Tile B

SC 0x10, 1

SC OK

ESERVER ESERVER

clear

0x10

0x10

clear

(a) Lock acquire in a system with cache coherence.

Tile caching the Locks

LL 0x30

LL 0

SC 0x30, 1

SC FAIL

LL 0x30

LL 0

C
o
m

m
u
n
ic

at
io

n
 w

it
h
 T

il
e

B

SC 0x10, 1

SC FAIL

LL 0x10

LL 0

SC 0x10, 1

LL 0x10

LL 0

C
o
m

m
u
n
ic

at
io

n
 w

it
h
 T

il
e

A

T
im

e

ESERVER

0x30

0x10

0x30

0x10

(b) Livelock.

Tile caching the Locks

LL 0x10

LL 1

LL 0x10

LL 0

LL 0x10

LL 0

SC 0x10, 1

SC OK

SC 0x10, 1

SC OK

A

B

A

B

T
im

e

C

ESERVER

0x10

clear

0x10

clear

(c) Same lock acquired twice.

T
im

e

Tile caching the Locks

SC 0x10, 1

SC OK

LL 0x10

LL 0

LL cancel

LL 0

LL 0x10

Tile A

ESERVER

clear

Counter
Timeout

Timeout
Counter

clear

A:0x10

A:0x10

(d) Timeout mechanism to prevent dead-

locks.

Figure 3. Problems of locks implemented with load-link

(LL)/store-conditional (SC).

far and constitute a single logical shared cache. Again, map-

ping of memory lines to L2 caches is done at the granularity

of pages with both OS and hardware support. The migration

and shared-only replication mechanisms can still be applied.

The only requirement is that the L1 caches must only be al-

lowed to cache lines that are mapped to the local L2 cache.

The RAC is still connected to the L1. Coherence between

the L1 and L2 in the same tile can be easily maintained by

making the L1 write-through.

3.6 Cost Comparison with Directory Coherence

Since we are proposing to replace a directory controller

and its protocol with our RAC+MAP and a combined hard-

ware/OS protocol, it is relevant to compare both schemes’

area and complexity overheads. In particular, our main goal

is to provide a less complex alternative. A comprehensive

comparison between the two competing approaches would

require the full design of the controllers and their circuit im-

plementation. This is a highly involved task and, instead, we

360

attempt to provide some intuition into why we believe our

scheme is less complex.

Like a directory controller, the RAC has to handle remote

read and write requests. Unlike a directory controller, it does

not have to deal with forwarded transactions and multiple in-

validations, which lead to complex protocols with subtle race

conditions and several pending states. The RAC can directly

handle requests and generate responses for all transactions

in our protocol. Thus, the RAC has fewer states and a much

simpler finite state machine, which means that it has simpler

logic than a directory controller does. This means that the

resulting protocol is simpler to verify and validate.

As far as state storage is concerned, there is probably no

significant difference. For instance, for a 32 tile system a

MAP table with 128 entries, each with 22 bits (15 bits for

the virtual address tag, 5 bits for the tile ID, 1 shared bit, and

1 valid bit) would have a total of 352 bytes. A directory for

32Kbytes L1 caches and 32bytes lines would have 34 bits

per entry (32 bits for the sharing vector and 2 bits for line

state), for a total of about 4Kbytes.

On the negative side, our system requires an additional

port to the 4-way associative TLB to handle remote accesses

independently from the CPU. As we mentioned earlier this

is unlikely to impact the overall L1 access latency with our

virtually indexed caches.

4 EVALUATION SETUP

4.1 Applications

For our performance analysis, we use the Splash-2 bench-

marks [32] and three ALPBench benchmarks [24]. The

Benchmark Input Instr. Lock Barr.

cholesky tk29.O 1,234M 72,075 3

FFT 65,536 points 58M 32 7

LU 512x512 matrix 389M 32 67

16x16 block

S
p
la

sh
2

K
er

.

radix 262,144 keys 54M 406 12

barnes 16,384 particles 4,361M 69,360 18

fmm 16,384 particles 2,903M 47,074 34

ocean 258x258 grid 412M 6,656 900

radiosity demo 646M 281,217 19

raytrace car 2,006M 95,528 2

volrend head 1,344M 38,604 20

S
p
la

sh
2

A
p
p
.

water-nsq 512 molecules 652M 35,360 19

water-spa 512 molecules 664M 609 19

facerec ALP Training 2,826M 30 3

mpegdec 525 tens 040.m2v 1,049M 29 41

A
L

P

mpegenc Output of mpegdec 9,477M 29 40

Table 1. Characteristics of the applications used. The num-

ber of instructions refers to the total number for a sequential

execution of the benchmark. The number of locks refers to

those encountered by all 32/16 tiles (Splash-2/ALPBench)

within the application (not library) code.

Splash-2 benchmarks are representative of scientific and en-

gineering workloads and the ALPBench benchmarks are

representative of multimedia workloads. Both benchmark

suites use explicit locks and barriers, assume the release con-

sistency memory model, and rely on hardware maintained

cache coherence if caches are used. We use the reference in-

puts for the Splash-2 benchmarks except radiosity for which

we use a reduced input set to keep simulation time manage-

able. Similarly, we reduced the input for mpegdec to only

20 frames. Because the input sets for the ALPBench bench-

marks were not intended to be used with more than 16 pro-

cessors, we do not simulate larger systems for these bench-

marks.

Speedups are reported with respect to the execution time

of the sequential programs on a single processor after initial-

ization. Table 1 lists the benchmarks we used.

The benchmarks were compiled with gcc 3.4.4 and glibc

2.3.5 for PowerPC. Compiler and library were modified

such that they use synchronization primitives that have been

adapted to our architecture.

4.2 Simulation Environment

size 32K entries 128

hit latency 3 cycl. page size 4K

miss latency 200+16 cycl. associativity 4-way

line size 32 bytes hit latency 1 cycl.

associativity 4-way T
L

B
/M

A
P

miss latency 200 cycl.

L
1

D
-c

ac
h
e

writeback buf. 8 RAC input queue 32 entry

Remote cache access latency without any congestion:

2 ∗ (h + w) + t + 1, where h is the number of hops, w is the number of

words in the message (2 or 3), and t is the access time at the remote cache.

Table 2. Memory system configuration.

We implemented a simulator using the Liberty Simula-

tion Environment (LSE) [30]. A tile consists of a PowerPC

core, a network controller, a data cache module, and a pri-

vate instruction cache. The single-issue CPU is implemented

as an 8-stage pipeline running at 2GHz and is simulated

in detail. The cache has been implemented with the cache

module from SimpleScalar [3]. The details for the mem-

ory system are shown in Table 2. We also implemented a

detailed wormhole routed interconnect, where contention is

accurately simulated at the network end points as well in-

termediate nodes. System calls and interrupts to the OS are

assumed to take 2000 cycles.

4.3 Systems Evaluated

We compare our architecture against a similarly config-

ured one where the L1 caches are kept coherent on a cache

line basis through an SGI-Origin-like distributed directory

protocol [22]. We note that developing this protocol was

361

S
p

e
e

d
u

p

0

10

20

30

40

0

10

20

30

40

cholesky

fft

lu

radix

barnes

fmm

ocean

radiosity

raytrace

volrend

w−nsquared

w−spatial

Splash−2

0

5

10

15

20

0

5

10

15

20

facerec
mpegdec

mpegenc

ALPBench

Dir−Coh
NUCA−Dist
SW DSM

Figure 4. Speedups for 32 (Splash-2) and 16 (ALPBench) tiles compared to the execution time of a single tile.

greatly simplified by the use of common simulation artifices

and the complexity we found is a far cry from the complex-

ity we expect from a real implementation. For fairness of

comparison, we augment the directory scheme with migra-

tion of pages at barriers, which minimizes any negative ef-

fects from the first-touch home-allocation policy in the ini-

tialization phase. The cost of migration is the same as in

our system: 2000 cycles plus the cost of flushing the caches.

For the directory controller, we assume an aggressive hard-

ware implementation that requires only 5 cycles to process

each request. We also compare our architecture against one

that maintains cache coherence through a TreadMarks-like

software DSM protocol [15]. Our implementation is much

simplified in that it only takes into consideration the over-

head of creating diffs and cache pollution by twin and diff

creation. To estimate the cost of the diff we wrote a highly

optimized kernel that compares the contents of two physical

pages in memory and writes back one of the values if they

differ. The cost was measured to be about 50K cycles.

We refer to the systems as NUCA-Dist for a system that

implements our architecture with both re-mapping and read-

only sharing of pages, Dir-Coh for the system with directory

coherence, and SW DSM for the system with software DSM

coherence.

5 EXPERIMENTAL RESULTS

5.1 Overall Performance

We start by comparing the overall performance of our

architecture against the hardware distributed directory sys-

tem. Figure 4 presents the speedups for 32 (Splash-2) and 16

(ALPBench) tile systems of Dir-Coh, NUCA-Dist, and SW

DSM. We can see that Dir-Coh scales well for most bench-

marks, with an efficiency (speedup divided by number of

processors) of 81% on average. These results are somewhat

better than those in [22] mainly due to the lower communi-

cation latencies observed in a single chip multiprocessor.

Looking at the performance of our scheme (NUCA-Dist)

we can see that it performs fairly close to the hardware di-

rectory coherence system, with a performance gap for 32

processors ranging from 0% (no gap) to 32% (for radiosity),

and 16% on average. Moreover, the performance gap is less

than 10% for 6 out of 15 benchmarks, which is an impressive

result considering that the directory coherence system uses

a very aggressive hardware implementation and that our ar-

chitecture requires only simple hardware support.

Finally, SW DSM performs, with few exceptions, signifi-

cantly worse than the other systems. While the system per-

forms very well on benchmarks that mainly use barriers for

synchronization (the good results are possibly due to our

simplifications), the results show that it is not able to pro-

vide sufficient scalability for most applications. The gap to

our system is on average 27%, ranging from -57% to 98%.

These results are in line with those reported in [12].

5.2 Memory Access Breakdown

To better understand the behavior of the proposed archi-

tecture, we track the outcome of each processor memory re-

quest. Figure 5 shows the breakdown of memory requests for

each benchmark and for configurations with 32 (Splash-2)

and 16 (ALPBench) processors. For each benchmark and

configuration, the bar is normalized to the total number of

processor memory requests, which does not vary noticeably

across the different systems. The bars are broken down into

the following components: accesses that hit in the local L1

cache (local hits); accesses that hit in a remote L1 cache (re-

mote hits); accesses that go off-chip following a miss in the

local cache (local miss); and accesses that go off-chip fol-

lowing a miss in a remote cache (remote miss).

The figure shows that the fraction of off-chip accesses is

fairly small in most cases, with the exception being ocean,

where the off-chip accesses for all systems account for about

12% of all requests. Another exception is facerec, where

sequential execution shows only a small number of off-chip

362

0 20 40 60 80 100

cholesky
Single tile:

32 tiles:
Dir−Coh

N−Dist

0 20 40 60 80 100

FFT

0 20 40 60 80 100

LU

0 20 40 60 80 100

radix

0 20 40 60 80 100

barnesSingle tile:

32 tiles:
Dir−Coh

N−Dist

0 20 40 60 80 100

fmm

0 20 40 60 80 100

ocean

0 20 40 60 80 100

radiosity

0 20 40 60 80 100

raytrace
Single tile:

32 tiles:
Dir−Coh

N−Dist

0 20 40 60 80 100

volrend

0 20 40 60 80 100

water−nsquared

0 20 40 60 80 100

water−spatial

0 20 40 60 80 100

facerecSingle tile:

16 tiles:
Dir−Coh

N−Dist

0 20 40 60 80 100

mpegdec

0 20 40 60 80 100

mpegenc

local hits
remote hits
local miss
remote miss

Figure 5. Distribution of memory accesses into local and remote, further divided into cache hits and misses.

accesses, but both parallel systems show a large fraction of

off-chip accesses. Given this generally small number of off-

chip accesses, we expect the main differentiating factor to be

the ratio of local to remote cache accesses.

The results for NUCA-Dist show that the fraction of re-

mote cache accesses is fairly small for most benchmarks,

except cholesky and mpegdec, and, to a lesser extent, lu

and radiosity. Such a relatively small number of remote

cache accesses partially explains the good performance of

our architecture for many benchmarks. An interesting case

is cholesky where the fraction of remote cache accesses is

high compared to most benchmarks, but its performance

with NUCA-Dist is good. On the other hand, some bench-

marks, such as ocean and barnes, show a small fraction of

remote cache accesses, but their performance with NUCA-

Dist is not as good as some of the other benchmarks. The re-

sults for Dir-Coh, on the other hand, show that it incurs very

few remote accesses (i.e., cache-to-cache transfers), which

mainly explains its very good performance.

To try to further reduce the amount of remote accesses in

NUCA-Dist we experimented with 1KByte pages. The re-

sults (not shown) were, however, not much different from

those with 4KByte pages and the small gains from the re-

duction in remote accesses were negated by the increase in

cold and capacity misses in the TLB and MAP tables.

The impact of local, remote, and off-chip accesses can be

further seen in Figure 6, which shows the average load laten-

cies, in cycles, for the different types of loads for NUCA-Dist

and for the average load for Dir-Coh. While the latencies

for remote loads in NUCA-Dist are significantly larger than

those of local loads, the average latencies are fairly close to

the local ones and, thus, very close to those in Dir-Coh.

Migration and replication not only improve the average

load latency by converting remote accesses to local ones,

but also reduce the average load latency of the remote loads

themselves (results not shown). This is because reducing re-

mote accesses reduces the contention that occurs when mul-

tiple requests target the same tile.

5.3 Network and Contention Effects

One important effect of our proposed mechanism is a po-

tential increase in the number of messages in the network,

due to the remote accesses used in the scheme. To properly

account for this effect, we modeled the network in detail in-

cluding congestion both at intermediate nodes and at the end

points. Congestion at the end points does lead to some per-

formance degradation and is one of the main reasons for the

relatively large remote cache access latency shown in Fig-

ure 6 (note that for a 32 tile system the uncontended remote

cache access latency should be around 18 processor cycles).

On the other hand, our results show that congestion inside

the network is small and leads to negligible performance im-

pact. One of the reasons for this is the relatively small num-

ber of messages in-flight in the network at any given time.

5.4 Impact of Flushing and Invalidations

Our read-only sharing scheme (Section 3.3) involves the

potentially very expensive operations of flushing caches on

barriers and invalidating the MAP table on lock acquires. To

assess the actual impact of these operations’ overheads on

363

0

10

20

30

40

50

60

0

10

20

30

40

50

60

cholesky
fft

lu
radix

barnes
fmm

ocean
radiosity

raytrace
volrend

w−nsquared
w−spatial

facerec
mpegdec

mpegenc

401
local

remote

avg

Dir−Coh

Figure 6. Average latencies for local, remote, and all loads for NUCA-Dist. The average latencies for Dir-Coh are shown as a

comparison. The y-axis shows the latency in processor cycles.

Benchm. Barrier Lock Benchm. Barrier Lock

cholesky <0.01 0.77 ocean 10.56 <0.01

fft 0.23 0.04 radiosity 3.74 <0.01

lu 8.01 <0.01 raytrace <0.01 5.57

radix 8.75 0.17 volrend 0.00 0.00

barnes <0.01 <0.01 water-nsq 0.18 0.43

fmm 1.67 0.21 water-spa 0.47 0.04

Table 3. Overhead for NUCA-Dist with 32 processors in

% caused by flushing the cache at barriers and invalidating

the MAP table on a lock acquire.

our benchmarks, we run a modified version of our scheme

that does not suffer from these overheads.

The results of this analysis for a 32 core system are shown

in Table 3 for the Splash-2 benchmarks. For most bench-

marks, the overhead stays well below 1%. Exceptions are

ocean, which experiences close to 11% overhead at barri-

ers, and raytrace, which experiences 6% overhead at locks.

The overhead for ocean was expected considering that this

benchmark has 900 barriers. Similarly, since raytrace has

a high number of locks, it is not much of a surprise that it

suffers from invalidating the MAP table. Still, other bench-

marks have similar numbers of locks and do not suffer as

much. In these benchmarks a significant number of pages

are not mapped as shared on a lock acquire, and thus are

not invalidated. While these overheads are a non-negligible

cause of some performance loss in three benchmarks, they

do not affect the others as badly as one might expect.

5.5 Multi­level On­Chip Cache Hierarchies

The design evaluated so far assumes only a single level of

cache per tile. We also evaluated systems with a 128KByte

L2 cache per tile and a write-through L1 cache with the same

size as before. The total L2 capacity on chip of 4MBytes

and the relatively small capacity per core is in line with what

S
p
e
e
d
u
p

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

cholesky
fft

lu
radix

barnes
fmm

ocean
radiosity

raytrace
volrend

w−nsquared
w−spatial

Dir−Coh NUCA−Dist

Figure 7. Speedups for 32 tiles with L2 caches compared

to the execution time of a single tile also with L2 cache.

could be expected from a CMP with 32 cores. Each L2 has

20 cycle access time.

Figure 7 shows the speedup results of such a system for

Dir-Coh and NUCA-Dist for the Splash-2 benchmarks. Note

that these speedup numbers are not directly comparable to

those in Figure 4, because they are normalized to differ-

ent sequential execution times. The figure shows that the

performance gap between NUCA-Dist and Dir-Coh remains

mostly the same as for systems without the second-level

cache (the gap range is now 1%-32% and the average gap

is 15%), demonstrating that our scheme also works with the

addition of a second level cache.

6 RELATED WORK

The work in [2] extended the original uniprocessor

NUCA proposal of [16] for CMPs. Unlike our work, that

work focused on a large shared L2 and assumed that L1 co-

herence is maintained through directories.

364

Closer to our work, [7, 9, 35] considered the tradeoffs in

organizing the L2 caches in a tiled CMP where L2 is physi-

cally distributed along with each tile. Similarly to ours, those

works considered the option of organizing these distributed

L2 caches as a logically single L2 cache. They differ from

ours in the following ways: firstly, the L1 caches are private

to each tile and allow replication of data, such that coher-

ence is always required; secondly, those works propose tech-

niques that allow replication of data in the L2 caches that is

at the line level and is controlled by the hardware. Our work

emphasizes simplicity and only allows a very restricted de-

gree of replication that is totally controlled by the OS and,

thus, forgoes hardware coherence mechanisms.

Our work is also similar in spirit to attempts to migrate

most of the cache coherence management to software [8, 21].

Like those systems, our proposal benefits from the possibil-

ity to modify, and fix, the protocol with software modifi-

cation and without any hardware changes. Those systems,

however, run a full-blown coherence protocol in a dedicated

protocol processor or a dedicated processor context. Even

closer to ours are recent works that attempt to transfer some

of the coherence burden to the OS/software [33, 34]. Un-

like such previous trap-based schemes, however, the small

hardware extensions that we propose minimize the need for

OS and trap handler activity. In our proposed scheme, only

the processor’s first load or store to data in a page requires

trap handler intervention and only the system’s first load or

store to data in a page requires full OS intervention. An-

other important difference is that all those schemes focused

on coherence mechanisms for multi-chip systems.

There have been several proposals for tiled CMP archi-

tectures [4, 6, 19, 28, 29]. Most of these have focused on

novel execution paradigms to exploit ILP and DLP in single-

threaded applications. In the few studies with parallel appli-

cations, it is assumed that there is some hardware mecha-

nism for cache coherence, but no details are given. Closer to

our architecture, [6] does not provide hardware cache coher-

ence, but, unlike ours, relies on the programmer/compiler to

maintain coherence.

Our work is related to previous work on OS directed page

migration and replication in CC-NUMA environments, such

as [31]. Those differ from ours in that the hardware cache co-

herence mechanism of CC-NUMA machines supports fine-

grain caching of memory lines, so that the page-level migra-

tion and replication is only necessary when the workloads

overflow the private caches.

While most past shared-memory systems offered cache

coherence in hardware, the Cray T3D and T3E are notable

exceptions [27]. Unlike our proposed system, those ma-

chines did not support remote cache accesses and did not

offer OS control of caching. Thus, avoiding incorrect local

caching of shared data was left to the responsibility of the

programmer/compiler. Hardware supported remote memory

accesses were also proposed in the M-Machine [10]. How-

ever, that system also allowed indiscriminate private caching

of data and no details are given on how coherence would

be maintained, and it leaves the decision of caching versus

remote accesses to the programmer/compiler.

Finally, our work is also related to previous work on soft-

ware DSM systems, such as [5, 15, 18, 23]. Similarly to

our proposal, those also tried to avoid the costs of hardware

coherence by using the OS page mechanism to enforce co-

herence, but unlike ours, the majority of those systems sup-

ported full-blown coherence in software with full replica-

tion and multiple readers and writers. Our proposal, on the

other hand, allows only a single writer at a time and relies

on the relatively short communication delays on chip to per-

form efficient remote cache accesses. While [23] enforced

a single-writer policy, it allowed ownership to move across

nodes instead of enforcing remote accesses, which can lead

to significant traffic. In addition, while [18] supported re-

mote writes, it did not support remote reads, which had to be

implemented by a tortuous mechanism by which the remote

node performs remote writes on request. Those works also

differ from ours in that they were tailored to multi-computer

systems, where no hardware-supported single address exists.

7 CONCLUSION

In this paper, we proposed and evaluated a novel cost-

effective software/hardware mechanism to support shared-

memory parallel applications that forgoes hardware main-

tained cache coherence. The proposed mechanism treats all

caches in the tiled CMP as a single logical cache and is based

on the key idea that mapping of lines to physical caches is

done at the page level with OS support. We extend a tiled

CMP architecture with this mechanism and evaluate it on

the Splash-2 and ALPBench benchmarks against an SGI-

Origin-like cache coherent system. We propose two simple

mechanisms to perform migration of pages and sharing of

read-only data. These mechanisms bring the performance

of the proposed system within 16% on average for 16 and 32

processors of the directory coherent system across all bench-

marks. This is an impressive result considering that the di-

rectory coherence system uses a very aggressive hardware

implementation and that our architecture requires only sim-

ple hardware support.

REFERENCES

[1] D. Abts, S. Scott, and D. J. Lilja. So Many States, So Lit-

tle Time: Verifying Memory Coherence in the Cray X1. In

Proceedings of IPDPS 17, Apr. 2003.
[2] B. M. Beckmann and D. A. Wood. Managing Wire Delay

in Large Chip-Multiprocessor Caches. In Proceedings of MI-

CRO 37, pages 319–330, Dec. 2004.

365

[3] D. Burger, T. M. Austin, and S. Bennett. Evaluating Future

Microprocessors: The SimpleScalar Tool Set. Tech. Report

CS-TR-1996-1308, University of Wisconsin-Madison, 1996.
[4] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin, L. K.

John, C. Lin, C. R. Moore, J. Burrill, R. G. McDonald, W. Yo-

der, and the TRIPS Team. Scaling to the End of Silicon with

EDGE Architectures. Computer, 37(7):44–55, July 2004.
[5] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementa-

tion and Performance of Munin. In Proceedings of SOSP 13,

pages 152–164, Oct. 1991.
[6] C. Caşcaval, J. G. Castaños, L. Ceze, M. Denneau, M. Gupta,

D. Lieber, J. E. Moreira, K. Strauss, and H. S. Warren, Jr.

Evaluation of a Multithreaded Architecture for Cellular Com-

puting. In Proceedings of HPCA 8, pages 311–322, Feb.

2002.
[7] J. Chang and G. S. Sohi. Cooperative Caching for Chip Multi-

processors. In Proceedings of ISCA 33, pages 264–276, June

2006.
[8] M. Chaudhuri and M. Heinrich. SMTp: An Architecture for

Next-generation Scalable Multi-threading. In Proceedings of

ISCA 31, pages 124–137, June 2004.
[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimiz-

ing Replication, Communication, and Capacity Allocation in

CMPs. In Proceedings of ISCA 32, pages 357–368, June

2005.
[10] M. Fillo, S. W. Keckler, W. J. Dally, N. P. Carter, A. Chang,

Y. Gurevich, and W. S. Lee. The M-Machine Multicomputer.

International Journal of Parallel Programming, 25(3):183–

212, June 1997.
[11] E. Hagersten. Personal Communication regarding the verifi-

cation of the coherence protocol of Sun Microsystems’ Enter-

prise Servers E3000, E4000, E5000 and E6000. July 2007.
[12] L. Iftode, J. P. Singh, and K. Li. Understanding Applications

Performance on Shared Virtual Memory Systems. In Pro-

ceedings of ISCA 23, pages 122–133, May 1996.
[13] Intel. Intel Core2 Extreme Processor X6800 and Intel Core2

Duo Desktop Processor E6000 and E4000 Sequence Specifi-

cation Update, July 2007. Document No: 313279-016.
[14] R. Kalla, B. Sinharoy, and J. M. Tendler. IBM Power5

Chip: A Dual-Core Multithreaded Processor. IEEE Micro,

24(2):40–47, March-April 2004.
[15] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel.

TreadMarks: Distributed Shared Memory on Standard Work-

stations and Operating Systems. In USENIX Winter 1994

Technical Conference Proceedings, pages 115–131, Jan.

1994.
[16] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-

Uniform Cache Structure for Wire-Delay Dominated On-

Chip Caches. In Proceedings of ASPLOS 10, pages 211–222,

Oct. 2002.
[17] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-

way Multithreaded Sparc Processor. IEEE Micro, 25(2):21–

29, March-April 2005.
[18] L. I. Kontothanassis, G. Hunt, R. Stets, N. Hardavellas,

M. Cierniak, S. Parthasarathy, W. Meira, Jr., S. Dwarkadas,

and M. L. Scott. VM-Based Shared Memory on Low-Latency,

Remote-Memory-Access Networks. In Proceedings of ISCA

24, pages 157–169, June 1997.
[19] R. Krashinsky, C. Batten, M. Hampton, S. Gerding, B. Phar-

ris, J. Casper, and K. Asanović. The Vector-Thread Architec-

ture. In Proceedings of ISCA 31, pages 52–64, June 2004.

[20] R. Kumar, V. Zyuban, and D. M. Tullsen. Interconnections in

Multi-core Architectures: Understanding Mechanisms, Over-

heads and Scaling. In Proceedings of ISCA 32, pages 408–

419, June 2005.
[21] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-

moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,

M. Horowitz, A. Gupta, M. Rosenblum, and J. L. Hennessy.

The Stanford FLASH Multiprocessor. In Proceedings of ISCA

21, pages 325–337, Apr. 1994.
[22] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA

Highly Scalable Server. In Proceedings of ISCA 24, pages

241–251, June 1997.
[23] K. Li. IVY: A Shared Virtual Memory System for Parallel

Computing. In Proceedings of ICPP 1988, volume 2, pages

94–101. Pennsylvania State University Press, Aug. 1988.
[24] M. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes.

The ALPBench Benchmark Suite for Complex Multimedia

Applications. In Proceedings of IISWC 2005, pages 34–45,

Oct. 2005.
[25] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token coher-

ence: Decoupling performance and correctness. In Proceed-

ings of ISCA 30, pages 182–193, June 2003.
[26] C. McNairy and R. Bhatia. Montecito: A Dual-Core, Dual-

Thread Itanium Processor. IEEE Micro, 25(2):10–20, March-

April 2005.
[27] S. L. Scott. Synchronization and Communication in the T3E

Multiprocessor. In Proceedings of ASPLOS 7, pages 26–36,

Oct. 1996.
[28] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin.

WaveScalar. In Proceedings of MICRO 36, pages 291–203,

Dec. 2003.
[29] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,

B. Greenwald, H. Hoffmann, P. Johnson, J. Kim, J. Psota,

A. Saraf, N. Shnidman, V. Strumpen, M. Frank, A. Agarwal,

and S. Amarasinghe. Evaluation of the Raw Microprocessor:

An Exposed-Wire-Delay Architecture for ILP and Streams.

In Proceedings of ISCA 31, pages 2–13, June 2004.
[30] M. Vachharajani, N. Vachharajani, and D. I. August. The Lib-

erty Structural Specification Language: A High-Level Model-

ing Language for Component Reuse. In Proceedings of PLDI

2004, pages 195–206, June 2004.
[31] B. Verghese, S. Devine, A. Gupta, and M. Rosenblum. Oper-

ating System Support for Improving Data Locality on CC-

NUMA Compute Servers. In Proceedings of ASPLOS 7,

pages 279–289, Oct. 1996.
[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The

SPLASH-2 Programs: Characterization and Methodological

Considerations. In Proceedings of ISCA 22, pages 24–36,

June 1995.
[33] H. Zeffer and E. Hagersten. A Case For Low-Complexity MP

Architectures. In Proceedings of the Conference on Super-

computing, Nov. 2007.
[34] H. Zeffer, Z. Radović, M. Karlsson, and E. Hagersten. TMA:

A Trap-Based Memory Architecture. In Proceedings of ICS

20, pages 259–268, June 2006.
[35] M. Zhang and K. Asanović. Victim Replication: Maximizing

Capacity while Hiding Wire Delay in Tiled Chip Multiproces-

sors. In Proceedings of ISCA 32, pages 336–345, June 2005.

366

