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Abstract

In this work we present Bio-PEPA, a process algebra for the modelling and the analysis of
biochemical networks. It is a modification of PEPA, originally defined for the performance
analysis of computer systems, in order to handle some features of biological models, such
as stoichiometry and the use of general kinetic laws. The domain of application is the one
of biochemical networks. Bio-PEPA may be seen as an intermediate, formal, compositional
representation of biological systems, on which different kinds of analysis can be carried out.
Bio-PEPA is enriched with some notions of equivalence. Specifically, the isomorphism and
strong bisimulation for PEPA have been considered. Finally, we show the translation of
three biological models into the new language and we report some analysis results.
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1 Introduction

In recent years there has been increasing interest in the application of process al-
gebras in the modelling and analysis of biological systems [37,18,20,36,13,33,9].
Process algebras have some interesting properties that make them particularly use-
ful in describing biological systems. First of all, they offer compositionality, i.e.
the possibility of defining the whole system starting from the definition of its sub-
components. Secondly, process algebras give a formal representation of the system
avoiding ambiguity. Thirdly, biological systems can be abstracted by concurrent
systems described by process algebras: species may be seen as processes that can
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interact with each other and reactions may be modelled using actions. Finally, dif-
ferent kinds of analysis can be performed on a process algebra model. These anal-
yses provide conceptual tools which are complementary to established techniques:
it is possible to detect and correct potential inaccuracies, to validate the model and
to predict its possible behaviours.

The process algebra PEPA, originally defined for the performance analysis of com-
puter systems, has been recently applied in the context of signalling pathways [9,10].
Two different approaches have been proposed: one based on reagents (the so-called
reagent-centric view) and another based on pathways (pathway-centric view). In
both cases the species concentrations are discretized into levels, each level ab-
stracting an interval of concentration values. In the reagent-centric view the PEPA
sequential components represent the different concentration levels of the species.
In this approach the abstraction is “processes as species” and not “processes as
molecules”, as in other process algebras such as the π-calculus and Beta-binders
[37,36]. In the pathway-centric approach we have a more abstract view: the pro-
cesses represent sub-pathways. Here multiple copies of components represent lev-
els of concentration. The two views have been shown to be equivalent [10].

Even though PEPA has proved useful in studying signalling pathways, it does not
allow us to represent all the features of biological networks. The main difficul-
ties are the definition of stoichiometric coefficients (i.e. the coefficients used to
show the quantitative relationships of the reactants and products in a biochemical
reaction) and the representation of kinetic laws. Indeed, stoichiometry is not rep-
resented explicitly and the reactions are assumed to be elementary (with constant
rate). The problem of extending to the domain of kinetic laws beyond basic mass-
action (hereafter called general kinetic laws) is particularly relevant, as these kinds
of reactions are frequently found in the literature as abstractions of complex situ-
ations whose details are unknown. Reducing all reactions to the elementary steps
is complex and often impractical. This problem impacts also on other process al-
gebras. Indeed, generally they rely on Gillespie’s stochastic simulation for analysis
which considers only elementary reactions. Some recent works have extended the
approach of Gillespie to deal with complex reactions [1,12] but these extensions
are yet to be reflected in the work using process algebras. Previous work concern-
ing the use of general kinetic laws in process algebras and formal methods was
presented in [6,14]. These are discussed in Section 3.1.

In this paper we present Bio-PEPA, a language for the modelling and the analysis of
biochemical networks. A preliminary version of the language has been proposed in
[15]. Here we describe the final version of the language, we introduce new defini-
tions and more details about our approach. Furthermore, we enrich Bio-PEPA with
some notions of equivalence. In particular, we extend the definition of isomorphism
and strong bisimulation proposed for PEPA in [29] to Bio-PEPA.

Bio-PEPA is based on the reagent-centric view in PEPA, modified in order to rep-
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Fig. 1. Schema of the Bio-PEPA framework

resent explicitly some features of biochemical models, such as stoichiometry and
the role of the different species in a given reaction. A major feature of Bio-PEPA
is the introduction of functional rates to express general kinetic laws. Each action
type represents a reaction in the model and is associated with a functional rate.

The idea underlying our work is represented schematically in the diagram in Fig. 1.
The context of application is biochemical networks. Broadly speaking, biochem-
ical networks consist of some chemical species, which interact with each other
through chemical reactions. The reaction dynamics are described in terms of some
kinetic laws. The biochemical networks can be obtained from databases such as
KEGG [31,30] and BioModels Database [5,35]. From the biological model, we de-
velop the Bio-PEPA specification of the system. This is an intermediate, formal,
compositional representation of the biological model. At this point we can ap-
ply different kinds of analysis, including stochastic simulation [25], analysis based
on ordinary differential equations, numerical solution of continuous time Markov
chains (CTMC) and stochastic model checking using PRISM [38,28]. It is worth
noting that each of these analyses can help in understanding the system. The choice
of one or more methods depends on the context of application [42]. There exist
some relations between the different kinds of analysis. It is well-known that the
results of stochastic simulations tend to the ODEs solution when the number of el-
ements is relatively high. Similarly, it is shown in [24] that the numerical solution
of the CTMC with levels (derived from the PEPA pathway-centric view) tends to
the solution of the ODEs when the number of levels increases.

The paper is structured as follows. In the next section a description of biochemical
networks is reported. Section 3 describes PEPA and reports the application of PEPA
to the modelling of some signalling pathways. Furthermore, some related works
concerning the application of process algebras in systems biology are discussed.
After that, in Section 4, we define Bio-PEPA. In Section 6 we enrich the calculus
with strong bisimulation. In Section 7 we discuss the main kinds of analysis that can
be used from a Bio-PEPA model. The translation of three biological models into
Bio-PEPA and their subsequent analysis is described in Section 8. Finally, Section
9 reports some final observations and future investigations.
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2 Biochemical networks

In this work we focus on biochemical networks, such as those collected in the
Biomodels Database [35] and KEGG [31]. A widely-used classification of such net-
works distinguishes gene regulatory networks, signalling pathways and metabolic
pathways. Broadly speaking, the first class concerns genes and transcription/
translation reactions, signalling pathways involve signals and stimuli that cause
the activation/inhibition of other reactions and, finally, the last class considers reac-
tion cascades that describe metabolic processes involving enzymes and cofactors.
This classification is not exhaustive, but majority of models collected in databases
belong to one of these classes.

A biochemical systemM is composed of:

(1) a set of compartments C. These represent the locations of the various species;
(2) a set of chemical species S. These species may be genes, proteins, etc. For

each species an initial concentration is given;
(3) a set of (irreversible) reactions R. The general form of an irreversible reaction

j is given by:

κ1 jA1 + κ2 jA2 + .... + κn j jAn j

E1,E2,...I1,I2,...; f j
−−−−−−−−−−−−→ κ′1 jB1 + κ

′
2 jB2 + .... + κ

′
m j jBm j (1)

where Ah, h = 1, ..., n j, are the reactants, Bl, l = 1, ...,m j, are the products,
Ev are the enzymes and Iu, the inhibitors. Enzymes and inhibitors are repre-
sented differently from the reactants and products. Their role is to enhance or
inhibit the reaction, respectively. We call species that are involved in a reaction
without changing their concentration (i.e. enzymes/activators and inhibitors)
modifiers. The parameters κh j and κ′l j are the stoichiometry coefficients. These
express the degree to which species participate in a reaction. The dynamics as-
sociated with the reaction is described by a kinetic law f j, depending on some
parameters and on the concentrations of some species. Reversible reactions
can be seen as a pair of forward and inverse reactions.

The best known kinetic law is mass-action: the rate of the reaction is proportional
to the product of the reactants’ concentrations. In published models it is common to
find general kinetic laws, which describe approximations of sequences of reactions.
They are useful when it is difficult to derive certain information from the experi-
ments, e.g. the reaction rates of elementary steps, or when there are different time-
scales for the reactions. Generally these laws are valid under some conditions, such
as the quasi-steady-state assumption (QSSA). This describes the situation where
one or more reaction steps may be considered faster than the others and so the in-
termediate elements can be considered to be constant. There is a long list of kinetic
laws; for details see [40].
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3 PEPA and biological systems

PEPA was originally defined for the performance modelling of systems with con-
current behaviour [29]. Systems are represented as the composition of components
or agents which undertake actions. In PEPA each action is assumed to have a du-
ration, which is represented by a random variable with a negative exponential dis-
tribution. PEPA has a small set of combinators that allows the system description
to be built up as the concurrent interaction of simple sequential components. We
informally introduce the syntax of the language below. For more details see [29].

Prefix The basic term is the prefix combinator (α, r).S . It denotes a component
which has action of type α and an exponentially distributed duration with pa-
rameter r (mean duration 1/r), and it subsequently behaves as S .

Choice The component S + R represents a system which may behave either as S
or as R. The activities of both S and R are enabled. The first activity to complete
distinguishes one of them and the other is discarded.

Constant Constants are components whose meaning is given by a defining equa-

tion C
de f
= S . They allow us to assign names to patterns of behaviour associated

with components.
Hiding In S/H the setH identifies those activities which can be considered inter-

nal or private to the component S .
Cooperation The term P BC

L
Q denotes cooperation between P and Q over the co-

operation set L, that determines those activities on which the cooperands are
forced to synchronise. PEPA supports multiway synchronisation between com-
ponents: the result of synchronising on an activity α is thus another α, available
for further synchronisation. For action types not in L, the components proceed
independently and concurrently with their enabled activities. In the context of
performance evaluation the rate for the synchronised activities is the minimum
of the rates of the synchronising activities.

PEPA has a structured operational semantics which generates a labelled transition
system and from this a continuous time Markov chain (CTMC) is derived.

Recently, PEPA has been applied to the modelling and analysis of signalling path-
ways. A first study concerns the influence of the Raf Kinase Inhibitor Protein
(RKIP) on the Extracellular signal Regulated Kinase (ERK) [9], whereas in [10]
the PEPA system for Schoeberl’s model [21] involving the MAP kinase and EFG
receptors is reported. In [9] two different modelling styles have been proposed, one
based on the reagent-centric view and the other on the pathway-centric view. The
former focuses on the variation in the concentrations of the reagents: the concentra-
tions are discretized in levels, each level representing an interval of concentration
values. The level l can assume values between 0 and Nmax (maximum level). The
granularity of the representation can vary; the coarsest possibility is Nmax = 1, cor-
responding to the case of low and high levels. The pathway-centric style provides
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a more abstract view of the system and focuses on the subpathways. The two rep-
resentations were shown to be equivalent [9]. In addition to the standard analysis
offered by process algebras, in [8] a mapping from reagent-centric PEPA models to
a system of ordinary differential equations (ODEs), has been proposed.

From these works PEPA has been shown to be appropriate for the modelling of bi-
ological systems: it offers a high level of abstraction for the model and focuses on
compositionality and on the interactions. Furthermore, by using PEPA as a mod-
elling language it is possible to apply different kinds of analysis, not only stochastic
simulation, but also differential equations and the study of properties by means of
model checking.

However, not all the features of biochemical networks can be expressed using the
present version of PEPA: the various kinetic laws are not considered and stoichiom-
etry is added by hand in the conversion of PEPA into ODEs. With a few exceptions
(e.g. [6]) and a few cases (dimerization), these features cannot be represented in
other process algebras either.

3.1 Related work

Other process algebras have been considered in the context of biological systems.
Initial work focused upon the π-calculus and its biochemical stochastic extension
[37]. Several case studies have been considered, e.g. [18,33] and some simula-
tion tools have been implemented [41,3]. The translation of biochemical models
into this language is based on the abstraction “processes as single molecules”:
molecules are represented by processes and the biological interactions are abstracted
by communications between processes.

Beta-binders [36,39] is an extension of the π-calculus inspired by biological phe-
nomena. This calculus is based on the concept of bio-process, a box with some
sites (beta-binders) to express the interaction capabilities of the element, in which
π-like processes (pi-processes) are encapsulated. Beta-binders enrich the standard
π-calculus with some constructs that allow us to represent biological features, such
as the join between two bio-processes, the split of one bio-process into two, the
change of the bio-process interface by hiding, unhiding and exposing a site.

In both π-calculus and Beta-binders it is not possible to represent all the features
that are present in the biochemical networks proposed in this paper. The kinetic law
is assumed to be mass-action (constant rates) and reactions can have at most two re-
actants. Therefore it is not possible to represent stoichiometry with the exception of
dimerization. In order to represent multiple-reactant multiple-product reactions the
two process algebras have been enriched with transactions [16,17]. Finally, in both
cases the analysis of the model is based on stochastic simulation using Gillespie’s
algorithm [25].
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Another language used for the modelling of biological systems is the κ-calculus [19],
based on the description of protein interactions. Processes describe proteins and
their compounds, a set of processes models solutions and protein behaviour is given
by a set of rewriting rules, driven by suitable side-conditions. The two main rules
concern activation and complexation.

Previous works concerning the use of general kinetic laws and stoichiometry in pro-
cess algebras and formal methods have been proposed in [6,14]. The authors of [6]
present a stochastic extension of Concurrent Constraint Programming (CCP) and
show how to apply it in the case of biological systems. Here each species is repre-
sented by a variable and the reactions are expressed by constraints on these vari-
ables. The domain of application is extended to any kind of reactions and the rate
can be expressed by a generic function. The analysis is limited to stochastic simu-
lation using Gillespie’s algorithm. BIOCHAM [14] is a programming environment
for modeling biochemical systems, making simulations and querying the model in
temporal logic. In its current version BIOCHAM is based on a rule-based language
for modeling biochemical systems, in which species are expressed by objects and
reactions by reaction rules. The rates are expressed by using some functions, whose
definition is similar to the one proposed in our work. This language permits to eval-
uate temporal logic queries by using the NuSMV model checker [34]. Differently
from PRISM, only qualitative queries can be formulated.

4 Bio-PEPA

The aim of this work is to define a new process algebra in order to model some of
the features of biochemical networks that are not possible to represent in PEPA. We
will show that the new language is able to represent all the reactions in a straight-
forward way and it deals with stoichiometry and general kinetic laws. It extends the
reagent-centric view previously used in PEPA models of biochemical pathways.

We adopt a high level of abstraction similar to the one proposed in formalisms such
as SBML [4] 1 . Furthermore we have made the following assumptions:

(1) compartments are static, i.e. compartments are not actively involved in the
reactions —they are simply containers. The transport of a species from one
compartment to another is modelled by introducing two distinct components
for representing the species. The translocation is abstracted by a transforma-
tion of one species into another. Compartments are added to the definition of
the Bio-PEPA system as in the analysis it can be necessary to have the size of
the compartments where the species are.

1 This is a widely used XML-based format for representing models of biochemical reaction
networks. Many SBML models are collected in the BioModels Database [5,35].

7



(2) reactions are irreversible reactions.

4.1 Discrete concentrations and granularity

Following the reagent-centric view, models are based not on individual molecules,
but on discrete levels of concentration within a species: each component represents
a species and it is parametric in terms of concentration levels. Some advantages of
this view are:

• it allows us to deal with uncertainty/incomplete information in the exact number
of elements (semi-quantitative data);

• the focus is on the concentration levels not on the number of elements: this leads
to a reduction of the state space as there are less states for each component.

This view was presented in [11]. The authors focused on the case of reactions with
mass-action kinetics and stoichiometry equal to one for all the reactants and prod-
ucts. The granularity of the system has been expressed in terms of the number of
levels, representing concentration intervals. Furthermore they considered the same
step size h and the same maximum level N for all the species.

In the following we adapt this approach to general kinetic laws, stoichiometry
greater than one and different numbers of levels for the species. The granularity
of the system is defined in terms of the step size h of the concentration intervals
instead of the number of levels. We define the same step size h for all the species.
This is motivated by the fact that, following the law of conservation of mass, there
must be a “balance” between the concentrations consumed (reactants) and the ones
created (products). In the case the stoichiometry is greater than one we need to
consider concentration quantities proportional to stoichiometric coefficients. Given
a species i, we can assume that it has a maximum finite concentration Mi. The num-
ber of levels for the species i is given by Ni + 1 where Ni = d

Mi
h e (the integer value

greater than or equal to Mi
h ). Each species can assume the discrete concentration

levels from 0 (concentration null) to Ni (maximum concentration).

If li is the concentration level for the species i, the concentration is taken to be
xi = li × h.

Some observations about this approach are due. First of all, we assume that there
is a maximum concentration for the species i. This is to ensure a finite state space
in the corresponding CTMC, making numerical solution feasible. However, we can
have a species without a limiting value. In these cases we can consider a maximum
level for the values greater than a certain (high) value. It is worth noting that this
assumption affects only the CTMC and not the other kinds of analysis. A second
point concerns the assumption that all the species have the same step size. There can
be some exceptions to this assumption. First of all, since modifiers remain constant
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during reaction, we may define a different step size for each species which is only
a modifier. Secondly, we can consider a different step size for all species that are
involved only in creation/degradation reactions.

4.2 The syntax

The syntax is designed in order to collect the biological information we need:

S ::= (α, κ) op S | S + S | C P ::= P BC
L

P | S (l)

where op = ↓ | ↑ | ⊕ | 	 | �.

The component S is called sequential component (or species component) and rep-
resents the species. The component P, called a model component, describes the
system and the interactions among components. C is a Bio-PEPA constant, defined
as in PEPA. We suppose a countable set of model components C 2 and a countable
set of action types A. The parameter l ∈ N represents the discrete level of concen-
tration. The prefix term in PEPA is replaced by a new one, (α, κ) op S , containing
information about the role of the species in the reaction associated with the action
type α:

• (α, κ) is the prefix, where α ∈ A is the action type and κ is the stoichiometry
coefficient of the species in that reaction;

• the prefix combinator “op” represents the role of the element in the reaction.
Specifically, ↓ indicates a reactant, ↑ a product, ⊕ an activator, 	 an inhibitor
and � a generic modifier.

The choice operator and cooperation are unchanged. In contrast to PEPA the hiding
operator is omitted, as it is not necessary for our purposes.

In order to fully describe a biochemical network in Bio-PEPA we need to define
structures that collect information about the compartments, the maximum concen-
trations, number of levels for all the species, the constant parameters and the func-
tional rates. In the following the function name returns the names of the elements
of a given Bio-PEPA component.

First of all we define the set of compartments.

Definition 1 Each compartment is described by “V: v unit”, where V is the com-
partment name, “v” is a positive real number expressing the compartment size and
the (optional) “unit” denotes the unit associated with the compartment size. The
set of compartments is denotedV.

2 This is different from C, the costant in the definition of sequential components.
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In this version of Bio-PEPA compartments are static and they cannot change their
structure/size. The list of compartment is composed of at least one compartment.
In the case we have no information about compartments we need to add a default
compartment whose size is 1 and the unit depends on the model.

For each species represented in the system we need to define the number of possible
levels, the step, the initial concentration, the maximum concentration, the enclosing
compartment name and the compartment for the species concetration.

Definition 2 For each species we define the element C : H,N,M0,M,V, unit, where:

• C is the species component name,
• H ∈ N is the step size,
• N ∈ N is the maximum level,
• M0 ∈ R

+ ∪ { } is the initial concentration,
• M ∈ R+ ∪ { } is the maximum concentration,
• V ∈ name(V) ∪ { } is the name of the enclosing compartment,
• unit is the unit for the species concentrations.

The set of all the elements C : H,N,M0,M,V, unit is denoted N .

In the definition the symbol “ ” denotes the empty string. The last four components
are optional. Specifically, the initial concentration is added in the case we want to
compare our model results with the results in the literature. The maximum con-
centration is used in the definition of the number of levels, but generally it can be
derived from the step size and the maximum number of levels. Concerning com-
partments, if there is only one compartment for all the species in the model we can
omit it in the definition of N .

In order to collect the information about the dynamics of the system, we asso-
ciate a functional rate fα j with each action α j. This function represents the kinetic
law of the associated reaction. For the definition of functional rates we consider
mathematical expressions with simple operations and operators involving constant
parameters and components. All the kinetic laws proposed in the book by Segel
[40] can be defined in this way. In addition, for convenience, we include some pre-
defined functions to express the most commonly used kinetic laws.

Definition 3 The functional rates are expressed by the following grammar:

f rate ::= fα(k̄, C̄) = sk | fα(k̄) = sk2

sk ::= int | float | name | sk + sk | sk × sk | sk/sk | sk − sk | sksk |

exp(x) | log(sk) | sin(sk) | cos(sk)

sk2 ::= f MA(sk) | f MM(sk, sk) | f H(sk, sk, int)
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The set of functional rates is denoted FR.

The mathematical expressions are defined by some mathematical operators (sk)
and the predefined functions (sk2). The general expression for the functional rate
contains the names of the parameters and the names of the species components
involved in the associated reaction. The predefined kinetic laws considered here
are mass-action ( f MA), Michaelis-Menten ( f MM) and Hill kinetics ( f H). They
depend only on some parameters; the components/species are derived from the
context 3 . The functional rates are defined externally to the components and are
evaluated when the system is derived. They are used to derive the transition rates
of the system. In the functional rates some parameter constants can be used. These
must be defined in the model by means of the set of parameter definitions K .

Definition 4 Each parameter is defined by “kname = value unit”, where “kname <
C” is the parameter name, “value” denotes a positive real number and the (op-
tional) “unit” denotes the unit associated with the parameter. The set of the pa-
rameters is denoted K .

Finally, we have the following definition for the set of sequential components:

Definition 5 The set Comp of sequential components is defined as

Comp ::= {C def
= S , where S is a sequential component }

We can define the Bio-PEPA system in the following way:

Definition 6 A Bio-PEPA system P is a 6-uple 〈V,N ,K ,FR,Comp, P〉, where:

• V is the set of compartments;
• N is the set of quantities describing each species;
• K is the set of parameter definitions;
• FR is the set of functional rate definitions;
• Comp is the set of definitions of sequential components;
• P is the model component describing the system.

Now we consider when a Bio-PEPA system is well-defined. In a well-defined Bio-
PEPA system each element has to satisfy some conditions.

3 In the case of mass-action, the function f MA(r) is r ×
∏n j

i=1(Ci)κi , where Ci i = 1, ..., n j

are the n j distinct reactants involved in the reaction and κi is the associated stoichiometric
coefficients. The information about the reactants are derived from the Bio-PEPA speci-
fications of the system. In the case of Michaelis-Menten, the function f MM(vM,KM) is
vM × E × S/(KM + S ), where E is the enzyme and S the substrate. Also in this case E and
S are derived from the Bio-PEPA specifications. In the case of Hill kinetics, the function
f H(v,K, n) is v ×Cn/(K +Cn), where C is the element involved in the reaction.
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Definition 7 A Bio-PEPA system P is well-defined if and only if all its elements are
well-defined.

The definition of well-definedeness for each element is reported below. First of all
we define the set of action types enabled in a species or model component.

Definition 8 The set of current action types enabled in the model component P,
denotedA(P), is defined as:

A((α, κ) op S ) = {α}

A(S 1 + S 2) = A(S 1) ∪A(S 2)

A(C) = A(S ) where C def
= S

A(S (l)) = A(S )

A(P1 BC
L

P2) = A(P1)\L ∪A(P2)\L ∪ (A(P1) ∩A(P2) ∩ L)

If P is a Bio-PEPA system with model component P, the set of current action types
enabled in P isA(P) = A(P).

Definition 9 The list N = 〈V,N ,K ,FR,Comp, P〉 is well-defined if and only if:

• name(N) = name(Comp);
• for each species specification “Ci : Hi,Ni,Mi0,Mi,Vi, unit”, we have:
· Ci is defined in name(Comp);
· Hi > 0 and Hi ∈ R

+;
· Ni ∈ N with Ni ≥ 1;
· either Mi0,Mi ∈ R

+ with 0 ≤ Mi0 ≤ Mi or empty;
· Vi ∈ V or empty.

Definition 10 A functional rate fα in FR is well-defined if and only if:

• α ∈ A(P);
• if fα = fα(k̄, C̄), C̄ are defined in Comp and k̄ in K;
• if fα = fα(k̄) then k̄ are defined in K .

The list of functional rates FR is well-defined if all the functional rates are well-
defined.

Definition 11 A species component C ∈ Comp is well-defined if and only if:

• ∀αh, αk ∈ A(C) with h , k, αh , αk;
• each subterm of C is of the form “(α, κ) op C”.

The list of component definitions Comp is well-defined if all the components C are
well-defined.
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Definition 12 The model component P is well-defined if and only if:

• ∀Ci(h)(li(h)0) ∈ components(P), Ci(h) is defined in Comp;
• ∀Ci(h)(li(h)0) ∈ components(P), 0 ≤ (li(h)0) ≤ Ni(h);
• For each cooperation set L j in P, L j ⊆ A(P).

In the definition above the function components(P) returns the set of the sequential
components used in the model component P.

In the following we consider only well-defined Bio-PEPA systems. We indicate
with P̃ the set of well-defined Bio-PEPA systems.

4.3 The semantics

The semantics of Bio-PEPA is defined in terms of an operational semantics. We
define two relations over the processes. The former, called the capability relation,
supports the derivation of quantitative information and it is auxiliary to the latter
which is called the stochastic relation. The stochastic relation gives us the rates
associated with each action. The rates are obtained by evaluating the functional
rate associated with the action, divided by the step size of the species involved, and
by using the quantitative information derived from the capability relation.

The capability relation is −→c ⊆ C × Θ × C, where the label θ ∈ Θ contains the
quantitative information needed for the evaluation of the functional rate. We define
the labels θ as:

θ := (α,w)
where w is defined as w ::= [S : op(l, κ)] | w :: w, with S ∈ C, l the level and κ the
stoichiometry coefficient of the components. The order of the components is not
important. The relation −→c is defined as the minimum relation satisfying the rules
reported in Table 1.

The first three axioms describe the behaviour of the three different prefix terms.
In the case of a reactant, the level decreases, in the case of a product the level in-
creases whereas in the case of a modifier the level remains the same. Concerning
the reactants and the products, the number of levels that changes depends on the
stoichiometric coefficient κ. This expresses the degree to which a species (reactant
or product) participates in a reaction. Therefore some side conditions concerning
the present concentration level must be added to the rules. Specifically, for the reac-
tants the level has to be greater than or equal to κ, whereas for the products the level
has to be less than or equal to (N−κ), where N is the maximum level. The modifiers
can have any possible value between 0 and N. In all three cases the label records
the level and the stoichiometry of the associated component. The rules choice1
and choice2 have the usual meaning. The rule constant is used to define the be-
haviour of the constant term, defined by one or more prefix terms in summation.
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prefixReac ((α, κ)↓S )(l)
(α,[S :↓(l,κ)])
−−−−−−−−−→c S (l − κ) κ ≤ l ≤ N

prefixProd ((α, κ)↑S )(l)
(α,[S :↑(l,κ)])
−−−−−−−−−→c S (l + κ) 0 ≤ l ≤ (N − κ)

prefixMod ((α, κ) op S )(l)
(α,[S :op(l,κ)])
−−−−−−−−−−→c S (l) with op = �,⊕,	 and 0 ≤ l ≤ N

choice1
S 1(l)

(α,w)
−−−−→c S ′1(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′1(l′)

choice2
S 2(l)

(α,w)
−−−−→c S ′2(l′)

(S 1 + S 2)(l)
(α,w)
−−−−→c S ′2(l′)

constant
S (l)

(α,S ′:[op(l,κ)])
−−−−−−−−−−−→c S ′(l′)

C(l)
(α,C:[op(l,κ)])
−−−−−−−−−−→c S ′(l′)

with C
de f
= S

coop1
P1

(α,w)
−−−−→c P′1

P1 BC
L

P2
(α,w)
−−−−→c P′1 BCL P2

with α < L

coop2
P2

(α,w)
−−−−→c P′2

P1 BC
L

P2
(α,w)
−−−−→c P1 BC

L
P′2

with α < L

coop3
P1

(α,w1)
−−−−−→c P′1 P2

(α,w2)
−−−−−→c P′2

P1 BC
L

P2
(α,w1::w2)
−−−−−−−→c P′1 BCL P′2

with α ∈ L

Table 1
Axioms and rules for Bio-PEPA.

The label contains the information about the level and the stoichiometric coefficient
related to the action α. The last three rules report the case of cooperation. The rules
coop1 and coop2 concern the case when the action enabled does not belong to the
cooperation set. In this case the label in the conclusion contains only the informa-
tion about the component that fires the action. The rule coop3 describes the case in
which the two components synchronize and the label reports the information from
both the components.

In order to associate the rates with the transitions we introduce the stochastic re-
lation −→s ⊆ P̃ × Γ × P̃, where the label γ ∈ Γ is defined as γ := (α, rα), with
rα ∈ R+. In this definition rα represents the parameter of a negative exponential dis-
tribution. The dynamic behaviour of processes is determined by a race condition:
all activities enabled attempt to proceed but only the fastest succeeds.
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The relation −→s is defined as the minimal relation satisfying the rule

Final
P

(α j,w)
−−−−→cP′

〈V,N ,K ,F ,Comp, P〉
(α j,rα[w,N ,K])
−−−−−−−−−−→s〈V,N ,K ,F ,Comp, P′〉

The second element in the label of the conclusion represents the rate associated
with the transition. The rate is calculated from the functional rate fα in the following
way:

rα[w,N ,K] =
fα[w,N ,K]

h
where h is the step size for the species involved in the reaction and the notation
fα[w,N ,K] means that the function fα is evaluated over w,N and K . In detail, for
each component Ci we derive the concentration as li × h. Then we replace each free
occurrence of Ci with (li × h)κi j , where κi j is the stoichiometric coefficient of the
species i with respect to the reaction R j. Some observations about the derivation of
the rate are reported in Paragraph 4.3.1.

A Stochastic Labelled Transition System can be defined for a Bio-PEPA system.

Definition 13 The Stochastic Labelled Transition System (SLTS) for a Bio-PEPA
system is (P̃,Γ,−→s), where −→s is the minimal relation satisfying the rule Final.

The states of SLTS are defined in terms of the concentration levels of the system
components and the transitions from one state to another represent reactions that
cause changes in the concentration levels of some components.

Note that using the relation −→c it is possible to define another labelled transition
system (LTS) as (C,Θ,−→c). Given a Bio-PEPA system P with model component P,
the associated transition systems SLTS (for P) and LTS (for P) have the same states
and transitions, but have different transition labels.

The derivation of the CTMC associated with a Bio-PEPA system is reported in
Section 7.

4.3.1 Derivation of rates

In the SLTS the states represent levels of concentration and the transitions cause a
change in these levels for one or more species. The number of levels depends on
the stoichiometric coefficients of the species involved.

In [11] it was shown how to derive the transition rates in some specific cases. In the
following we extend this approach to Bio-PEPA. The derivation is valid even when
species have different numbers of levels and maximum concentrations.
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Let us consider a reaction j described by a kinetic law f j and with all stoichiometric
coefficients equal to one. Following [11], we can define the transition rate as (∆t)−1,
where ∆t is the time to have a variation in the concentration of one step for both the
reactants and the products of the reaction. Let y be a variable describing one product
of the reaction. We can consider the rate equation for that species with respect to
the given reaction. This is dy/dt = f j(x̄(t)), where x̄ is the set (or a subset) of the
reactants/modifiers of the reaction. We can apply the Taylor expansion up to the
second term and we obtain

yn+1 ≈ yn + f (x̄n) × (tn+1 − tn)

Now we can fix yn+1 − yn = h and then derived the time interval (tn+1 − tn) = ∆t as
∆t ≈ h/ f (x̄n). From this we obtain the transition rate as f (x̄n)/h.

When the reaction has stoichiometric coefficients different from one, we can con-
sider an approach similar to the one above. Let y be a product of the reaction. The
approximation gives:

yn+1 ≈ yn + r × κ ×
nr∏

i=1

xκii,n × (tn+1 − tn)

where r is the reaction constant rate, κ is stoichiometric coefficient of the product
y, xi i = 1, ..., nr are the reactants of the reaction, κi i = 1, ..., nr are the associated
stoichiometric coefficients, nr is the number of distinct reactants.

Now we can fix yn+1 − yn = κ × h and then derive the respective (tn+1 − tn) = ∆t as
∆t ≈ h/(r ×

∏nr
i=1 xκii,n). From this expression we can derive the rate as usual.

Some observations follow. First of all, this approach is based on an approxima-
tion; this depends on the time/concentration steps. Secondly, we assume that the
species can vary by one step size h (fixed) in an interval time (if all the reactants
and products are not at 0 or at the maximum level). In particular, reactants are as-
sumed to decrease until 0 is obtained and products increase until a given value.
This implies that the kinetic law has to satisfy some properties. Specifically, it must
be monotonic (non-decrescent in terms of the reactant concentration). Mass-action,
Hill-kinetics and Michaelis-Menten are all monotonic, as are many other kinetic
laws.

4.4 From biochemical networks to Bio-PEPA

The translation tr BM BP of a biochemical network M into a Bio-PEPA system
P = 〈V,N ,K ,FR,Comp, P〉 is based on the following abstraction:
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(1) Each compartment is defined in the setV in terms of a name and an associated
volume. In this version of Bio-PEPA compartments are not involved actively
in the reactions and therefore are not represented by processes.

(2) Each species i in the network is described by a species component Ci ∈ Comp.
The constant component Ci is defined by the “sum” of elementary components
(i.e.prefix terms) describing the interaction capabilities of the species. We sup-
pose that there is at most one elementary component in each species compo-
nent with an action of type α. A single definition can express the behaviour of
the species at any level.

(3) Each reaction j is associated with an action type α j and its dynamics is de-
scribed by a specific function fα j ∈ FR. The constant parameters used in the
function can be defined in K .

(4) The model P is defined as the cooperation of the different components Ci.

4.5 Some examples

In the following we report some simple examples in order to show how some bio-
chemical situations can be specified in Bio-PEPA.

4.5.1 Example 1: Mass-action kinetics

Consider the reaction 2X + Y
; fM
−−−→3Z, described by the mass-action kinetic law

fM = r × X2 × Y . The three species can be specified by the syntax:

X
def
= (α, 2)↓X Y

def
= (α, 1)↓Y Z

def
= (α, 3)↑Z

The system is described by (X(lX0) BC
{α}

Y(lY0)) BC
{α}

Z(lZ0), where lX0, lY0 and lZ0 denote
the initial level of the three components. The functional rate is fα = f MA(r). The
rate associated with a transition is given by:

rα =
r × (lX × h)2 × (lY × h)

h

where lX, lY are the concentration levels for the species X and Y in a given state and
h is the step size of all the species. The reaction can happen only if we have at least
3 levels (0, 1, 2) for X and 4 levels (0, 1, 2, 3) for Z.

4.5.2 Example 2: Michaelis-Menten kinetics

One of the most commonly used kinetic laws is Michaelis-Menten. It describes
a basic enzymatic reaction from the substrate S to the product P and is written

as S
E; fE
−−−→P, where E is the enzyme involved in the reaction. This reaction is an
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approximation of a sequence of two reactions, under the quasi-steady state as-
sumption (QSSA). The whole sequence of reactions is described by the kinetic
law fE =

vM×E×S
(KM+S ) . For more details about the derivation of this kinetic law and the

meaning of parameters see [40].

The three species can be specified in Bio-PEPA by the following components:

S
def
= (α, 1)↓S P

def
= (α, 1)↑P E

def
= (α, 1) ⊕ E

The system is described by (S (lS 0) BC
{α}

E(lE0)) BC
{α}

P(lP0) and the functional rate is
fα = f MM(vM,KM).

The transition rate is given by:

rα =
vM × (lS × h) × (lE × h)

(KM + lS × h)
×

1
h

where lS , lE are the concentration levels for the species S and E in a given state and
h is the step size of all the species. The reaction can happen only if we have at least
2 levels (0, 1) for all the species involved.

4.5.3 Example 3: competitive inhibition

Competitive inhibition is a form of enzyme inhibition where binding of the inhibitor
to the enzyme prevents binding of the substrate and vice versa. In classical com-
petitive inhibition, the inhibitor binds to the same active site as the normal enzyme
substrate, without undergoing a reaction. The substrate molecule cannot enter the
active site while the inhibitor is there, and the inhibitor cannot enter the site when
the substrate is there. This reaction is described as:

S + E + I ←→ SE −→ P + E

l

EI

where S is the substrate, E the enzyme, I the inhibitor and P the product. Under
QSSA the intermediate species SE and EI are constant and we can approximate the

reactions above by a sinlge reaction S
E,I: fI
−−−−→P, with rate fI =

vc × S × E
S + KM(1 + I

KI
)
, where

vc is the the turnover number (catalytic constant), KM is the Michaelis-Menten con-
stant and KI is the inhibition constant.

The specification in Bio-PEPA is:

S
def
= (α, 1)↓S P

def
= (α, 1)↑P E

def
= (α, 1) ⊕ E I

def
= (α, 1) 	 I
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The system is described by ((S (lS 0) BC
{α}

E(lE0)) BC
{α}

I(lI0)) BC
{α}

P(lP0) with functional
rate

fα = fCI((vc,KM,KI), S , E, I) =
vc × S × E

S + KM(1 + I
KI

)
.

The transition rate is given by:

rα =
vc × (lS × h) × (lE × h)

(lS × h + KM(1 + lI×h
KI

))
×

1
h

where lS , lE, lI are the concentration levels for the species S , E, I in a given state
and h is the step size of all the species. The reaction can happen only if we have at
least 2 levels (0, 1) for all the species involved.

4.5.4 Example 4: degradation and synthesis of a species

Two particular reactions are those which describe the degradation and the creation
of a species. In order to model these reactions we need to add two auxiliary species
components to represent respectively the residue (Res) of the reaction and the cre-
ation factor (CF), i.e. genes or DNA.

Let us consider the degradation reaction A−→∅. We describe this reaction in Bio-
PEPA by introducing the component Res as the residue/product of the reaction.
The two species A and Res are defined as:

A
def
= (α, 1)↓A Res

def
= (α, 1) � Res

The component Res is described by one or more sub-terms each of which describes
a different degradation reaction.

In contrast the synthesis of a species ∅−→A is described by a new component CF.
The two species A and CF are described by:

A
def
= (α, 1)↑A CF

def
= (α, 1) � CF

In the definitions of the components Res and CF we use the symbol � to indicate
that they do not change with the reaction.

5 Auxiliary definitions

In this section we report some auxiliary definitions. Firstly we consider the deriva-
tive of a component, the derivative set and the derivative graph. We refer to the
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relation −→s. The case of −→c is analogous, the only differences are in the label and
in the fact that the former relation refers to Bio-PEPA systems and the latter refers
to model components.

Definition 14 If P
(α,r)
−−−→sP

′ then P′ is a one-step −→s system derivative of P.

If P
(α1,r1)
−−−−→sP1

(α2,r2)
−−−−→s....

(αn,rn)
−−−−→sP

′ then P′ is a system derivative of P.

We can indicate the sequence
γ1
−→s

γ2
−→s....

γn
−→s with

µ
−→s, where µ denotes the sequence

γ1γ2, ...γn (possibly empty).

Definition 15 A system α-derivative of P is a system P′ such that P
(α,r)
−−−→sP

′. For
each α ∈ A we have at most one system α-derivative of a system P.

Definition 16 The system derivative set ds(P) is the smallest set such that:

• P ∈ ds(P);

• if P′ ∈ ds(P) and there exists α ∈ A(P′) such that P′
(α,r)
−−−→sP

′′

then P
′′

∈ ds(P).

Definition 17 The system derivative graph D(P) is the labelled directed multi-
graph whose set of nodes is ds(P) and whose multi-set of arcs are elements in
ds(P) × ds(P) × Γ.

It is worth noting that in the case of well-defined Bio-PEPA components the multi-
plicity of 〈Pi,P j, γ〉 is always one.

The definitions above refer to Bio-PEPA systems. The only element of the system
P = 〈V,N ,K ,F ,Comp, P〉 that evolves is the model component P. The other
elements collect information about the compartments, the species, the rates and
report the definition of the species components. They remain unchanged in the
evolution of the system. In some cases it can be useful (and simpler) to focus on
the model component instead of considering the whole system and use the other
elements for the derivation of the rates. We define a function πP(P) = P, that, given
a Bio-PEPA system returns the model component. Then we define a (component)
derivative of P by considering the model component P′ of the system derivative of
P. Similarly, we define a (component) α-derivative of P, (component) derivative
set ds(P) and the (component) derivative graph D(P) starting from the definitions
for the associated system P.

In the derivation of the CTMC (see Section 7.1) we need to identify the actions
describing the interactions from one state to another.

Definition 18 Let P be a Bio-PEPA system and let P = πP(P). Let Pu, Pv be two
derivatives of a model component P with Pv a one-step derivative of Pu. The set of
action types associated with the transitions from the process Pu to the process Pv is
denotedA(Pu|Pv).
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The next definition concerns the complete action type set of a system P and of a
component P.

Definition 19 The complete action type set of a system P is defined as:

Ā = ∪Pi∈ds(P)A(Pi)

The complete action type set of a component P is defined similarly.

Other useful definitions are the ones concerning the exit rate and transition rates.
In the following we report the definition for the model components, but a similar
definition can be used for Bio-PEPA systems.

Definition 20 Let us consider a Bio-PEPA system P = 〈V,N ,K ,F ,Comp, P〉
and let P1, P2 ∈ ds(P). The exit rate of a process P1 is defined as:

rate(P1) =
∑

{α|∃P2.P1

(α,rα[w,N ,K])
−−−−−−−−−→sP2, P1=πP(P1)}

rα[w,N ,K]

Similarly, the transition rate is defined as:

rate(P1 | P2) =
∑

{α|P1

(α,rα[w,N ,K])
−−−−−−−−−→sP2, P1=πP(P1), P2=πP(P2)}

rα[w,N ,K]

Given the transition labels it can be useful to define some functions to extract infor-
mation from them. For the label θ in the capability relation, the function action(θ) =
α extracts the former element of the pair (i.e. the action type) and list(θ) = w re-
turns the second element (i.e. the vector of quantitative information). Furthermore,
the functions reacts(θ), prods(θ) mods(θ), enzs(θ), inhibs(θ), totMods(θ) return
the sets of component names that are indicated as reactants, products, generic mod-
ifiers, enzymes, inhibitors and any of the last 3 possibilities from the vector w,
respectively. The functions #reacts, #prods,... return the number of elements in-
volved as reactants, products and so on. For the label γ in the stochastic relation,
the function action(γ) = α extracts the first element of the pair (i.e. the action type)
and the function rate(γ) = r ∈ R returns the second element (i.e. the rate).

6 Equivalences

It is sometimes useful to consider equivalences between models in order to deter-
mine whether the systems represented are in some sense the “same”. In this section
we present some notions of equivalence for Bio-PEPA. Some characteristics of
the language impact on the definitions of equivalence and we start by highlighting
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those. Firstly, there is no hiding operator or τ actions. Therefore, in Bio-PEPA we
do not have weaker forms of equivalence based on abstracting τ actions. Secondly,
in well-defined systems we have at most one action of a given type in each sequen-
tial term and each component describes the behaviour of a single species. So we
cannot have processes of the form “S + S ” or terms such as “A = a.C” (where A
and C differ). Thirdly, if we have two transitions between the processes P and P′,
they involve different action types and they represent similar reactions that differ
only in the kind/number of modifiers. Finally, we have defined two relations within
the semantics. In the former relation the labels contain the information about the
action type and about the elements involved. This is used as an auxiliary relation
for the derivation of the second one, in which the labels contain the information
about the action type and the rate (similarly to PEPA activity). Thus we have a a
notion of equivalence for each relation.

In the case of Bio-PEPA we need to define equivalences both for systems and model
components. It is worth noting that the only element that changes in the transitions
of a Bio-PEPA system is the model component. All the other elements remain un-
changed. We define equivalences for the Bio-PEPA systems in terms of equiva-
lences for the model components. Specifically, we say that two Bio-PEPA systems
P1 and P2 are equivalent if their respective model components are equivalent.

In the following we use the same symbol to denote equivalences for both the system
and the corresponding model component. In this section we present definitions of
isomorphism and strong bisimulation which are similar to the relations defined
for PEPA in [29]. Furthermore we show some relationships between the defined
equivalences.

6.1 Isomorphism

Isomorphism is a strong notion of equivalence based on the derivation graph of
the components (systems). Broadly speaking, two components (systems) are iso-
morphic if they generate derivation graphs with the same structure and capable of
carrying out exactly the same activities.

We have the following definition of isomorphism based on the capability relation:

Definition 21 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. A function F : ds(P)→ ds(Q) is a component isomorphism
between P and Q, with respect to −→c, if F is an injective function and for any
component P′ ∈ ds(P), A(P′) = A(F (P′)), with rα[P′,N ,K] = r′α[F (P′),N ′,K ′]
for each α ∈ A(P), and for all α ∈ A the set of α-derivatives of F (P′) is the same
as the set of F−images of the α-derivatives of P′, with respect to −→c.

The definition of isomorphism based on the capability relation is very strong since
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the labels in the derivative graph contain a lot of information. Formally, we can
define isomorphic components in the following way:

Definition 22 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P and Q are isomorphic with respect to −→c (denoted P =c Q), if there
exists a component isomorphism F between them such that D(F (P)) = D(Q),
whereD denotes the derivative graph.

We can now define when two Bio-PEPA systems are isomorphic.

Definition 23 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P1 and P2 are isomorphic with respect to −→c (denoted P1 =c P2), if
P =c Q.

For the stochastic relation we have the following three definitions.

Definition 24 A function F : ds(P1) → ds(P2) is a system isomorphism between
P1 and P2, with respect to −→s, if F is an injective function and for any system P′1,
A(P′1) = A(F (P′1)), and for all α ∈ A, the set of system α-derivatives of F (P′1)
is the same as the set of F−images of the system α-derivatives of P′1, with respect
to −→s.

Definition 25 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P and Q are isomorphic with respect to −→s (denoted P =s Q), if there
exists a system isomorphism F between P1 and P2 such thatD(F (P1)) = D(P1).

Definition 26 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q. P1 and P2 are isomorphic with respect to −→s (denoted P1 =s P2), if
P =s Q.

The next proposition reports some properties of the two notions of isomorphism.

Proposition 1 The following properties hold.

(1) Both =c and =s are equivalence relations.
(2) Both =c and =s are congruences.
(3) Isomorphic components (=c or =s) generate identical Markov processes.
(4) =c ⊂ =s.

The proof of the first three points is analogous to the case of isomorphism for PEPA
in [29]. The last point follows from the fact that in the former isomorphism we take
into account the information in the vector w on the label of the capability relation,
in addition to the rate and the action type. Thus isomorphism =c is more strict.
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6.1.1 Equational laws

In the following the symbol “=” denotes either =c or =s. The proof follows the
definition of isomorphism and the semantic rules.

Choice The laws for choice are:
1) (P + Q) BC

L
S = (Q + P) BC

L
S

2) (P + (Q + R)) BC
L

S = ((P + Q) + R) BC
L

S
Cooperation The laws for cooperation are:

(1) P BC
L

Q = Q BC
L

P

(2) P BC
L

(Q BC
L

R) = (P BC
L

Q) BC
L

R

(3) P BC
K

Q = P BC
L

Q if K ∩ (Ā(P) ∪ Ā(Q)) = L

(4) (P BC
L

Q) BC
K

R =

 P BC
L

(Q BC
K

R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(P) ∩ (K\L) = ∅

Q BC
L

(P BC
K

R) if Ā(R) ∩ (L\K) = ∅ ∧ Ā(Q) ∩ (K\L) = ∅

Constant The law for constant is: If A
def
= P then A = P

In the case of Bio-PEPA systems we have the following law, that follows directly
from the definition.

Bio-PEPA systems The law for Bio-PEPA systems is:

Let P1 and P2 be two Bio-PEPA systems, with P = πP(P1) and Q = πP(P2).

If P = Q then P1 = P2.

6.2 Strong bisimulation

The definition of bisimulation is based on the labelled transition system. Strong
bisimulation captures the idea that bisimilar components (systems) are able to per-
form the same actions with same rates resulting in derivatives that are themselves
bisimilar. This makes the components (systems) indistinguishable to an external
observer. We give two definitions according to the two relations.

In the case of the capability relation the label contains a lot of information. We can
define different relations according to the information we want to consider. In the
following we report two possible relations.

Definition 27 A binary relation R ⊆ C × C is a strong capability bisimulation if
(P,Q) ∈ R implies for all α ∈ A:
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• if P
θ1
−→cP′ then, for some Q′ and θ2, Q

θ2
−→cQ′ with (P′,Q′) ∈ R and

(1) action(θ1) = action(θ2) = α;
(2) #reacts(list(θ1)) = #reacts(list(θ2)), #prods(list(θ1)) = #prods(list(θ2)),

#enzs(list(θ1)) = #enzs(list(θ2)),#inhibs(list(θ1)) = #inhibs(list(θ2));
• the symmetric definition with Q replacing P.

Definition 28 Let P1, P2 be two Bio-PEPA systems whose model components
are P and Q, respectively. P and Q are strong capability bisimilar, written P ∼c

Q, if (P,Q) ∈ R for some strong capability bisimulation R and rα[P,N ,K] =
r′α[Q,N

′,K ′] for all α ∈ A.

A condition concerning the transition rate is added. In the case of Bio-PEPA sys-
tems we have the following definition.

Definition 29 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P1, P2 are strong capability bisimilar, written P1 ∼c P2, if
P ∼c Q.

We can relax the second point omitting it entirely. In this way we obtain a weaker
form of strong capability bisimulation. We denote this P ∼2

c Q in the case of model
components and P1 ∼

2
c P2 in the case of systems.

The definition of strong stochastic bisimulation is reported below.

Definition 30 A binary relation R ⊆ P̃ × P̃ is a strong stochastic bisimulation, if
(P1,P2) ∈ R implies for all α ∈ A:

• if P1
γ1
−→sP

′
1 then, for some P′2 and γ2, P2

γ2
−→sP

′
2 with (P′1,P′2) ∈ R and

(1) action(γ1) = action(γ2) = α
(2) rate(γ1) = rate(γ2)
• the symmetric definition with P2 replacing P1.

Definition 31 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P and Q are strong stochastic bisimilar, written P ∼s Q, if
(P1,P2) ∈ R for some strong stochastic bisimulation R.

Definition 32 Let P1, P2 be two Bio-PEPA systems whose model components are
P and Q, respectively. P1, P2 are strong stochastic bisimilar, written P1 ∼s P2, if
P ∼s Q.

Some facts about the strong bisimulation relations are reported in the following
proposition.

Proposition 2 The following facts hold:

(1) the bisimulations ∼c, ∼2
c and ∼s are all equivalences and congruences;
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(2) ∼c ⊂ ∼
2
c;

(3) ∼s = ∼
2
c;

(4) =c ⊂ ∼c and =s ⊂ ∼s

The last point reports that two components that are isomorphic are also strong
bisimilar. The proof is identical to the case for PEPA. From this some equational
laws are defined for the bisimulation relation too.

6.2.1 Example

Consider the following systems representing two biological systems. The former
system P1 represents a system described by an enzymatic reaction with kinetic law
v1 × E × S

K1 + S
, where S is the substrate and E the enzyme. We have that the set N is

defined as “S : h,NS ; P : h,NP; E : 1, 1; ” for some step size h and maximum
levels NS and NP. The component and the model components are defined as:

S
def
= (α, 1)↓S E

def
= (α, 1) ⊕ E P

def
= (α, 1)↑P

The model component P1 is (S (lS 0) BC
{α}

E(1)) BC
{α}

P(lP0). The functional rate is fα =
f MM(v1,K1).

The second system P2 describes an enzymatic reaction where the enzyme is left

implicit (it is constant). The rate is given by
v1 × S ′

K1 + S ′
, where S ′ is the substrate.

We have that the set N is defined as “S ′ : h,NS ′; P′ : h,NP′; ”.

The components are defined as S′
def
= (α, 1)↓S ′ and P′

def
= (α, 1)↑P′ and the model

component P2 is S ′(lS 0) BC
{α}

P′(lP0). In this case fα = f MM′((v1,K1), S ′) =
v1 × S ′

K1 + S ′
and the component S ′ and P′ have the same number of levels/maximum concentra-
tion of S and P.

We have that P1 ∼s P2, but P1 /c P2, because the number of enzymes is different.
The same relations are valid if the systems rather than the model components are
considered.

7 Analysis

A Bio-PEPA system is an intermediate, formal, compositional representation of the
biological model. Based on this representation we can perform different kinds of
analysis. In this section we discuss briefly how to use a Bio-PEPA system to derive
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a CTMC with levels, a set of Ordinary Differential Equations (ODEs), a Gillespie
simulation and a PRISM model.

7.1 From Bio-PEPA to CTMC

As for the reagent-centric view of PEPA, the CTMC associated with the system
refers to the concentration levels of the species components. Specifically, the states
of the CTMC are defined in terms of concentration levels and the transitions from
one state to the other describe some variations in these levels. Hereafter we call
the CTMC derived from a Bio-PEPA system (or from a PEPA reagent-centric view
system) CTMC with levels.

Theorem 1 For any finite Bio-PEPA system P = 〈V,N ,K ,FR,Comp, P〉, if we
define the stochastic process X(t) such that X(t) = Pi indicates that the system
behaves as the component Pi at time t, then X(t) is a Markov Process.

The proof is not reproduced here but it is analogous the one presented for PEPA
[29]. Instead of the PEPA activity we consider the label γ and the rate is obtained
by evaluating the functional rate in the system. We consider finite models to ensure
that a solution for the CTMC is feasible. This is equivalent to supposing that each
species in the model has a maximum level of concentration.

Theorem 2 Given (P̃,Γ,−→s), let P be a Bio-PEPA system, with model component
P. Let nc = |ds(P)|, where ds(P) is the derivative set of P. Then the infinitesimal
generator matrix of the CTMC for P is a square matrix Q (nc × nc) whose elements
qu,v are defined as

qu,v =
∑

α j∈A(Pu |Pv)

rα j[wu,N ,K] if u , v qu,u = −
∑
u,v

qu,v otherwise.

where Pu, Pv are two derivatives of P.

It is worth noting that the states of CTMC are defined in terms of the derivatives
of the model component. These derivatives are uniquely identified by the levels
of species components in the system, so we can give the following definition of
CTMC states:

Definition 33 The CTMC states derived from a Bio-PEPA system can be defined
as vectors of levels σ = (l1, l2, ..., ln), where li, for i = 1, 2, ..., n, is the level of the
species i and n is the total number of species. We can avoid consideration of the
two levels for Res and CF as they are always constant.

This leads to the following proposition.

Proposition 3 Let P be a Bio-PEPA system with model component P. Let Pu and
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Pv be two derivatives of P such that the latter is one-step derivative of the former.
If there exist two action types α1 and α2 that belong toA(Pu|Pv) then:

(1) α1 , α2;
(2) the two action types refer to two transitions/biological reactions that differ

only in the modifiers.

If two transitions are possible between a pair of states, the actions involved are
different and they represent reactions that differ only in the modifiers and/or the
number of enzymes used. The former point follows from the definition of well-
defined Bio-PEPA system. The second point follows because the only possibility
to have two transitions between two given states is that the associated reactions
have the same reactants and products. We can see this by observing that the states
depend on the levels and the reactions cause some changes in these levels. The only
elements involved that do not change during a reaction are the modifiers.

7.2 From Bio-PEPA to ODEs

The translation into ODEs is similar to the method proposed for PEPA (reagent-
centric view) [8]. It is based on the syntactic presentation of the model and on
the derivation of the stoichiometry matrix D = {di j} from the definition of the
components. The entries of the matrix are the stoichiometric coefficients of the
reactions and are obtained in the following way: for each component Ci consider
the prefix subterms Ci j representing the contribution of the species i to the reaction
j. If the term represents a reactant we write the corresponding stoichiometry κi j as
−κi j in the entry di j. For a product we write +κi j in the entry di j. All other cases are
null.

The derivation of ODEs from the Bio-PEPA systemP, hereafer called tODE, is based
on the following steps:

(1) definition of the stoichiometry (n × m) matrix D, where n is the number of
species and m is the number of molecules;

(2) definition of the kinetic law vector (m × 1) vKL containing the kinetic laws of
each reaction;

(3) association of the variable xi with each component Ci and definition of the
vector (n × 1) x̄.

The ODE system is then obtained as:

dx̄
dt
= D × vKL

with initial concentrations xi0 = li0 × h, for i = 1, ..., n.
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The following property holds:

Property 1 For a biochemical networkM and a Bio-PEPA systemP= tr BM BP(M),
we have that tODE(P) = tBODE(M), where tODE and tBODE are the translation func-
tions from Bio-PEPA and the biological system into ODEs, respectively.

The ODE system derived from a Bio-PEPA system P is “equal” to the one obtained
directly from the biological network itself. This means that in the translation into
Bio-PEPA no information for the derivation of ODEs is lost. This result follows
from the fact that in both cases we derive the stoichiometric matrix and, for con-
struction, they are the same in both cases. However the Bio-PEPA model can collect
generally more information than the respective ODEs. We have this further result:

Property 2 Given two biochemical networks M1 and M2 we define the corre-
sponding Bio-PEPA models P1 = tr BM BP(M1) and P2 = tr BM BP(M2). Let
tODE(P1) and tODE(P2) be the two ODE systems obtained from P1 and P2 respec-
tively. If tODE(P1) = tODE(P2) it does not imply that P1 is “equivalent” to P2.

The above result can be easily seen with appropriate counterexamples. For example
consider the Bio-PEPA models corresponding to the following sets of reactions:

{A
r
−→B+C; A

r
−→B; A

r
−→C+D} and {A

2r
−→B+C; A

r
−→D}. The two Bio-PEPA models are

different, but the ODE systems that we derived from them coincide.

7.3 From Bio-PEPA to stochastic simulation

Gillespie’s stochastic simulation algorithm [25] is a widely-used method for the
simulation of biochemical reactions. It deals with homogenous, well-stirred sys-
tems in thermal equilibrium and constant volume, composed of n different species
that interact through m reactions. Broadly speaking, the goal is to describe the
evolution the system X(t), described in terms of the number of molecules of each
species, starting from an initial state. Every reaction is characterized by a stochastic
rate constant c j, termed the basal rate (derived from the constant rate r by means
of some simple relations proposed in [25,42]). Using this it is possible to calculate
the actual rate a j(X(t)) of the reaction, that is the probability of the reaction R j

occurring in time (t, t + ∆t) given that the system is in a specific state.

The algorithm is based essentially on the following two steps:

• calculation of the next reaction that occurs in the system;
• calculation of the time when the next reaction occurs.

We derive the information above from two conditional density functions:
p( j | X(t)) = a j(X(t))/a0, that is, the probability that the next reaction is R j and
p(τ|X(t)) = a0ea0X(t)τ, the probability that the next reaction occurs in [t+τ, t+τ+dτ],
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where a0 =
m∑

v=1
av(X(t)).

The translation of a Bio-PEPA model to a Gillespie’s simulation is similar to the
approach proposed for ODEs. The main drawbacks are the definition of the rates
and the correctness of the approach in the case of general kinetic laws. Indeed
Gillespie’s stochastic simulation algorithm supposes elementary reactions and con-
stant rates (mass-action kinetics). If the model contains only this kind of reactions
the translation is straightforward. If there are non-elementary reactions and gen-
eral kinetic laws, it is a widely-used approach to consider them translated directly
into a stochastic context. This is not always valid and some counterexamples have
been demonstrated [7]. The authors of [7] showed that when Gillespie’s algorithm
is applied to Hill kinetics in the context of the transcription initiation of autoreg-
ulated genes, the magnitude of fluctuations is overestimated. The application of
Gillespie’s algorithm in the case of general kinetics laws is discussed by several
authors [1,12]. Rao and Arkin [1] show that this approach is valid in the case of
some specific kinetic laws, such as Michaelis-Menten and inhibition. However, it is
important to remember that these laws are approximations, based on some assump-
tions that specific conditions (such as “S � E” in the case of Michaelis-Menten)
hold. The approach followed here is as in [32]: we apply Gillespie’s algorithm, but
particular attention must be paid to the interpretation of the simulation results and
to their validity.

The definition of a Gillespie model is based on:

• definition of the state vector X̄. It is composed of n elements Xi, representing the
number of molecules for each species i.

• Definition of the initial condition X̄0. The values are given by:

Xi0 = li0 × h × NA × vi molecules

where NA is the Avogadro’s number that indicates the number of molecules in a
mole of a substance and vi is the volume size of the containing compartment Vi.

• Definition of the actual rate for each reaction. We have two cases:
(1) reactions whose dynamics is described by mass-action law and with constant

rate r j. The actual rate for the reaction is:

a j(X̄ j) = c j × fh(X̄ j)

where c j is the stochastic rate constant, fh is a function that gives the number
of distinct combinations of reactant molecules and X̄ j are the species involved
in the reaction j. The stochastic rate constant is defined in [42] as:

c j =
r j

(NA × v)ntot−1 ×

n j∏
u=1

κu j!
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where n j is the number of distinct reactants in the reaction j, r j is the rate of

the reaction and ntot =

n j∑
u=1

κu j is the total number of reactants 4 .

Finally, the number of possible combinations of reactants is defined as

fh(X̄ j) =
n j∏

u=1

(
Xp(u, j)

κu j

)
∼

n j∏
u=1

(Xp(u, j))κu j

n j∏
u=1

κu j!

(2) reactions with general kinetic laws fα j(k̄, C̄). The actual rate is:

a j(X̄ j) = fα j(k̄, X̄ j)

7.4 From Bio-PEPA to PRISM

PRISM [38] is a probabilistic model checker, a tool for the formal modelling and
analysis of systems which exhibit random or probabilistic behaviour. PRISM has
been used to analyse systems from a wide range of application domains. Models are
described using the PRISM language, a simple state-based language and it is pos-
sible to specify quantitative properties of the system using a temporal logic, called
CSL [2] (Continuous Stochatic Logic). For our purposes the underlying mathemat-
ical model of a PRISM model is a CTMC and the PRISM models we generate
from Bio-PEPA correspond to the CTMCs with levels. However we present the
translation separately as the models are specified in the PRISM language.

The PRISM language is composed of modules and variables. A model is composed
of a number of modules which can interact with each other. A module contains a
number of local variables. The values of these variables at any given time constitute
the state of the module. The global state of the whole model is determined by the
local state of all modules. The behaviour of each module is described by a set of
commands. Each update describes a transition which the module can make if the
guard is true. A transition is specified by giving the new values of the variables in
the module, possibly as a function of other variables. Each update is also assigned
a probability (or in some cases a rate) which will be assigned to the correspond-
ing transition. It is straightforward to translate a Bio-PEPA system into a PRISM
model. We have the following correspondences:

• The model is defined as stochastic (this term is used in PRISM for CTMC).

4 We assume that all the species that are involved in the reaction as reactants are inside the
same compartment with volume v.
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• Each element in the set of parameters K is defined as a global constant.
• The maximum levels, the concentration steps and the volume sizes are defined

as global constants.
• Each species component is represented by a PRISM module. The species com-

ponent concentration is represented by a local variable and it can (generally) as-
sume values between 0 and Ni. For each sub-term (i.e. reaction where the species
is involved) we have a definition of a command. The name of the command is
related to the action α (and then to the associated reaction). The guards and the
change in levels are defined according to whether the element is a reactant, a
product or a modifier of the reactions.

• The functional rates are defined inside an auxiliary module.
• In PRISM the rate associated with an action is the product of the rates of the

commands in the different modules that cooperate. For each reaction, we give
the value “1” to the rate of each command involved in the reaction, with the ex-
ception of the command in the module containing the functional rates. In this
case the rate is the functional rate f , expressing the kinetic law. The rate associ-
ated with a reaction is given by 1 × 1 × ... × f = f , as desired.

8 Examples

This section reports the translation of three biological models into Bio-PEPA and
some analysis results. The first example is taken from [26] and describes a minimal
model for the cascade of post-translational modifications that modulate the activity
of cdc2 kinase during the cell cycle. The second model is taken from [7] and con-
cerns a simple genetic network with a negative feedback loop. The last example is
the repressilator [22], a synthetic genetic network with an oscillating behaviour.

In the present work the stochastic and deterministic simulations are obtained ex-
porting the Bio-PEPA system by means of the maps described in Section 7. An
automatic translation is under implementation.

8.1 The Goldbeter’s model

In the following we show the translation of the Goldbeter’s model presented in
[26] into Bio-PEPA and we discuss the kinds of analysis that are possible from it.
Broadly speaking, the model describes the activity of the protein cyclin in the cell
cycle. The cyclin promotes the activation of a cdk (cdc2) which in turn activates a
cyclin protease. This protease promotes cyclin degradation, and therefore a negative
feedback loop is obtained.
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id name react. prod. mod. kinetic laws

R1 creation of cyclin - C - vi

R2 degradation of cyclin C - - kd ×C

R3 activation of cdc2 kinase M′ M - C×V1
(Kc+C)

M′
(K1+M′)

R4 deactivation of cdc2 kinase M M′ - M×V2
(K2+M)

R5 activation of cyclin protease X′ X M X′×M×V3
(K3+X′)

R6 deactivation of cyclin protease X X′ - X×V4
K4+X

R7 degradation of cyclin C - X C×Vd×X
C+Kd

triggered by protease
Table 2
Goldbeter model. The list of reactions.

8.1.1 The biological model

CYCLIN (C)

cdc2 inactive (M’)  

  Protease inactive (X’) Protease active (X)

R1

R3

R4

R7
cdc2 active (M)

R2

R6

R5

Fig. 2. Goldbeter’s model.

A schema of the model is shown in Fig. 2. There are three distinct species involved:

• cyclin, the protein protagonist of the cycle, represented by variable C;
• cdc2 kinase, in both active (i.e. dephosphorylated) and inactive form (i.e. phos-

phorylated). The variables used to represent them are M and M′, respectively;
• cyclin protease, in both active (i.e. phosphorylated) and inactive form (i.e. de-

phosphorylated). The variables are X and X′.

A detailed list of reactions is reported in Table 2. The first two reactions are the
creation of cyclin and its degradation. The reactions R3-R6 are enzymatic reactions
describing the activation/deactivation of the biological species cdc2 and protease.
These reactions are activated through phosphorylation/dephosphorylation. The last
reaction is the degradation of the cyclin triggered by the protease.

Concerning the kinetic laws, the first two reactions have mass-action kinetics, whereas
all the others have Michaelis-Menten kinetics. We have some kinetic laws in which
the enzyme is explicit (reactions 3, 5), others in which is not explicit (reactions 4,
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6) as it is constant and abstracted within the Michaelis-Menten parameter Vi.

8.1.2 The Bio-PEPA system

The translation of the Goldbeter’s model into Bio-PEPA is achieved in the follow-
ing steps.

• Definition of the listV. In the model compartments are not considered. Here we
add the default compartment:

V : 1.10−14 litre

• Definition of the set N . This is defined as:

C : h,NC, 0.01, 0.6,V, ; M′ : h,NM′ , 0.99, 1,V, ; M : h,NM, 0.01, 0.7,V, ;
X′ : h,NX′ , 0.99, 1,V, ; X : h,NX, 0.01, 0.65,V, ;

Res : 1, 1, , , , ; CF : 1, 1, , , , ;

The components Res and CF are added to represent degradation reactions
and the synthesis of the cyclin, respectively. The information about the initial
and the maximum concentrations are derived from the paper. We can fix the
step size to 0.05. In this case the maximum levels are: NC = 12, NM = 14,
NX = 13, NM′ = NX′ = 20. If we wanted to consider the finer granularity h = 0.01
(corresponding to the initial concentration of some of the species) we would have
NC = 60, NM = 70, NX = 65, NM′ = NX′ = 100.

• Definition of functional rates (FR) and parameters (K). The functional rates are:

fα1 = f MA(vi); fα2 = f MA(kd); fα4 = f MM(V2,K2);

fα5 = f MM(V3,K3); fα6 = f MM(V4,K4); fα7 = f MM(Vd,Kd);

fα3 = f MM′((V1,Kc,K1),M′,C) =
V1 ×C
Kc +C

M′

K1 + M′
;

The parameters are those reported in the original paper and we have:

vi = 0.025 µM.min−1; kd = 0.01 min−1; V1 = 12 µM.min−1; K1 = 0.02 µM;

V2 = 1.5 µM.min−1; K2 = 0.02 µM; V3 = 12 min−1; K3 = 0.02 µM;

Vd = 0.0625 µM.min−1; V4 = 2 µM.min−1; K4 = 0.02 µM; Kd = 0.02 µM ;

Kc = 0.5 µM
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• Definition of species components (Comp) and of the model component (P).

C
def
= (α1, 1)↑C + (α2, 1)↓C + (α7, 1)↓C + (α3, 1) ⊕C;

M′ def
= (α4, 1)↑M′ + (α3, 1)↓M′;

M
def
= (α3, 1)↑M + (α4, 1)↓M + (α5, 1) ⊕ M;

X′
def
= (α6, 1)↑X′ + (α5, 1)↓X′;

X
def
= (α5, 1)↑X + (α6, 1)↓X + (α7, 1) ⊕ X;

Res
def
= (α2, 1) � Res; CF = (α1, 1) � CF;

C(l0C) BC
{α3}

M(l0M) BC
{α3 ,α4}

M
′

(l0M′ ) BC
{α5 ,α7}

X(l0X) BC
{α5 ,α6}

X
′

(l0X′ ) BC
{α2}

Res(0) BC
{α1}

CF(1)

The levels represent the initial values of the system and are set to l0C = l0M =

l0X = 0 and l0M′ = l0X′ = 20.

8.1.3 Analysis

In the following we report some observations about the analysis of the Bio-PEPA
system.

8.1.3.1 SLTS and CTMC By considering the step size h = 0.05 and the num-
ber of levels given in the Bio-PEPA system we obtain a CTMC with 52 states and
185 transitions. The states are described by the vector:

(C(lC),M′(lM′),M(lM), X′(lX′), X(lX))

where the different components can assume different values according to the pos-
sible number of levels for each species. This CTMC is not reported.

In the following we present a simpler CTMC for our model, obtained assuming
h = 1 and considering only two levels for each species. The vector N is modified
accordingly. We show how to define the states and the transition rates of this CTMC
starting from the Bio-PEPA system and the associated transition system. The ini-
tial situation is with C, M and X absent (0) and the other elements present (1).
The initial state is (C(0),M′(1),M(0), X′(1), X(0)). Figure 3 reports the stochastic
transition system in this simplified case.

The numbers indicate the different transitions. Each transition is characterized by a
label γi containing the information about the action type and the rate. We have:
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(0,0,1,1,0)(0,1,0,1,0)

(0,1,0,0,1)(1,0,1,1,0)

(1,1,0,1,0) (0,0,1,0,1)

(1,0,1,0,1) (1,1,0,0,1)

4

1 2
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5 6 9 10 11

12 13

14 15
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22
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23
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Fig. 3. The transition system for the Goldbeter’s model in the case of two levels.

γ1 = (α1, r1) γ2 = (α2, r2) γ3 = (α3, r3) γ4 = (α4, r4)

γ5 = (α5, r5) γ6 = (α6, r6) γ7 = (α4, r7) γ8 = (α3, r8)

γ9 = (α1, r9) γ10 = (α2, r10) γ11 = (α7, r11) γ12 = (α4, r12)

γ13 = (α3, r13) γ14 = (α5, r14) γ15 = (α6, r15) γ16 = (α4, r16)

γ17 = (α2, r17) γ18 = (α6, r18) γ19 = (α1, r19) γ20 = (α2, r20)

γ21 = (α7, r21) γ22 = (α1, r22) γ23 = (α6, r23)

where

r1 = r9 = r19 = r22 = vi = 0.025, r2 = r10 = r20 = r17 = kd × MC = 0.0001,

r3 = r13 =
V1∗MC
Kc+MC

MM′

(K1+MM′ )
= 0.23, r4 = r7 = r12 = r16 =

V2×MM
(K2+MM) = 2.66,

r5 = r14 =
V3×MM×MX′

(K3+MX′ )
= 0.117, r6 = r15 = r23 = r18 =

V4×MX
(K4+MX) = 2.66,

r11 = r21 =
Vd×MC×MX

(Kd+MC) = 0.00086

The states and transitions of the CTMC correspond to those of the SLTS with the
exception of multiple transitions between the same two states. In this case in the
CTMC we have only two transitions whose rate is the sum of the rates of two single
transitions in the SLTS. In the graph above these cases correspond to the degrada-
tion of cyclin, that can happen both with and without the protease. In the CTMC the
rate associated with the transition between the states (C(1),M′(0),M(1), X′(0), X(1))
and (C(0),M′(0),M(1), X′(0), X(1)) and between (C(1),M′(1),M(0), X′(0), X(1))
and (C(0),M′(1),M(0), X′(0), X(1)) is given by the sum of the rates of the two
degradation reactions kd × MC +

vd×MC×MX
(Kd+MC) = 0.00093 µM.min−1. The rates associ-

ated with the other transitions are the ones contained in the labels γi above.
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8.1.3.2 ODEs The stoichiometry matrix D associated with the Bio-PEPA sys-
tem above is

R1 R2 R3 R4 R5 R6 R7

C +1 -1 0 0 0 0 -1 xC

M′ 0 0 -1 +1 0 0 0 xM′

M 0 0 +1 -1 0 0 0 xM

X′ 0 0 0 0 -1 +1 0 xX′

X 0 0 0 0 +1 -1 0 xX

The vector that contains the kinetic laws is:

vT
KL =

(
vi × 1, kd × xC,

V1 × xC

Kc + xC

xM′

(K1 + xM′)
,

V2 × xM

(K2 + xM)
,

V3 × xM × xX′

(K3 + xX′)
,

V4 × xX

(K4 + xX)
,

vd × xC × xX

(Kd + xC)

)
where “T” indicates the transpose of a vector (or a matrix). The system of ODEs is
obtained as dx̄

dt = D× vKL, with x̄T := (xC, xM′ , xM, xX′ , xX), the vector of the species
variables:

dxC

dt
= vi × 1 − kd × xC −

vd × xC × xX

(Kd + xC)
;

dxM′

dt
=−

V1 × xC

Kc + xC
×

xM′

(K1 + xM′)
+

V2 × xM

(K2 + xM)
;

dxM

dt
=

V1 × xC

Kc + xC
×

xM′

(K1 + xM′)
−

V2 × xM

(K2 + xM)
;

dxX′

dt
=−

V3 × xM × xX′

(K3 + xX′)
+

V4 × xX

(K4 + xX)
;

dxX

dt
=

V3 × xM × xX′

(K3 + xX′)
−

V4 × xX

(K4 + xX)
;

The initial conditions are the ones reported in the set N . It is worth noting that
the system is equivalent, after some arithmetic manipulations, to the ODE model
presented in [26]. The analysis of the model using ODEs is reported in Figure 11.
The graphs coincide with results in the original paper.

8.1.3.3 PRISM The full translation of the model into PRISM is reported in the
Appendix A. The number of levels, the maximum concentrations and the parame-
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Fig. 4. ODE simulation results. In both the figures we consider the same parameters with the
exception of Michaelis-Menten constants. For Ki i = 1, 2, 3, 4 we have that Ki = 0.02 µM
for the graph on the left and Ki = 40 µM for the graph on the right. The initial values are the
ones reported in the original Goldbeter’s paper: 0.01 µM for C, X and M. The simulation
time is 100 minutes. In the figure on the left we have sustained oscillations whereas in the
figure on the right we have no oscillations.

ters used in the kinetic laws are expressed using global constants. For each species
a module is constructed. The module representing the cyclin is:

module cyclin

cyclin : [0..Nc] init 0;

[creationC] cyclin < Nc→ (cyclin′ = cyclin + 1);

[degradationC] cyclin > 0→ (cyclin′ = cyclin − 1);

[activationM] cyclin > 0→ (cyclin′ = cyclin);

[degradationCX] cyclin > 0→ (cyclin′ = cyclin − 1);

endmodule

The variable cyclin is local and represents the species “cyclin”. The possible values
are [0..Nc] (where Nc is the maximum level for cyclin) and the initial value is set to
0. Cyclin is involved in four different reactions represented by four commands. The
name in the square brackets denotes the reaction. The guards are defined according
to whether cyclin is a reactant, product or modifier of the reaction (this can be
derived from the Bio-PEPA specification of the model). The rate associated with
each command is “1” with the exception of the command in the module describing
the functional rates. The functional rates are defined in a specific module.

8.1.4 Extension of the model with a control mechanism based on inhibition

The authors of [23] proposed an extension of Goldbeter’s model in order to rep-
resent a control mechanism for the cell division cycle (CDC). Their approach is
based on the introduction of a protein that binds to and inhibits one of the proteins
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involved in the CDC. This influences the initiation and the conclusion of cell di-
vision and modulates the frequency of oscillations. Their approach is based on the
basic biochemical network of the CDC oscillations and not on the details of the
model so that it may work for other models of this kind. One possible extension for
Goldbeter’s model is reported in Figure 5.

 

  

Protease inactive (X’) Protease active (X)

R7

R6

cdc2 active (M)
R4

cdc2 inactive (M’)

CYCLIN (C)
R1

INHIBITOR−CYCLIN (IC)

INHIBITOR (I)
R10

R3

R5

R8R9

R11

R13

R12

R2

Fig. 5. Extension of the Goldbeter’s model. An inhibitor is added.

Generally speaking, given a general CDC model with l proteins U1, U2, ...,Ul, Gard-
ner et al. show that the ODE model is modified in the following way (see [23] for
details):

dU1

dt
= f1(U1,U2, · · · ,Ul) − a1 × U1 × Y + (a2 + θ × d1);

dU2

dt
= f2(U1,U2, · · · ,Ul);

...
dUl

dt
= fl(U1,U2, · · · ,Ul);

dY
dt
= vs − d1 × Y − a1 × U1 × Y + (a2 + θ × kd) × Z;

dZ
dt
= a1 × U1 × Y − (a2 + θ × d1 + θ × kd) × Z;

where:

• fi(U1,U2, ...) with i = 1, 2, ..., l are the functions of the standard model;
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• U1 is the concentration of the target protein of the inhibitor, Y is the inhibitor
and Z denotes the concentration of the inhibition-target complex. U2,...,Ul are
the other proteins involved in the cycle;

• a1 and a2 are the constant rates for the binding and for the release;
• vs and d1 are the rate for the inhibitor synthesis and degradation;
• θ < 1 is the fraction of the degradation rates for the complex Z.

In the following we show how to modify the Bio-PEPA system in order to capture
the new reactions and species. Bio-PEPA offers a compositional approach: it is
possible to compose the whole system by defining the simple subcomponents that
compose it. As observed in Section 1, compositionality is one of the main prop-
erties of process algebras, that makes them particularly useful in the case of com-
plex models. In our example, the new reactions and species are indeed added in a
straightforward way, with minor modifications of the system specification. Broadly
speaking, we need to define components for the new species, some new terms to
describe the new reactions and new functional rates. Finally, the new components
are added to the system component.

Here we consider l = 3, U1 = C, U2 = M and U3 = X. However we can obtain
modulation of CDC frequency by using an inhibitor of any of the proteins.

We need to extend the Bio-PEPA model in the following way:

C
def
= · · · + (α8, 1)↓C + (α9, 1)↑C + (α12, 1)↑C

...
...

Res
def
= · · · + (α11, 1) � Res CF

def
= · · · + (α10, 1) � CF

I
def
= (α8, 1)↓I + (α9, 1)↑I + (α10, 1)↑I + (α11, 1)↓I + (α13, 1)↑I

IC
def
= (α8, 1)↑IC + (α9, 1)↓IC + (α12, 1)↓IC + (α13, 1)↓IC

where I stands for the inhibitor and IC for the inhibitor-cyclin complex in Figure 5.
The new functional rates, all described by mass-action kinetics, are reported below.

fα8 = vs; fα9 = f MA(d1); fα10 = f MA(a1);

fα11 = f MA(a2); fα12 = f MA(θ × d1); fα13 = f MA(θ × kd)

The list of parameters is extended in order to consider the new values.

40



Finally the Bio-PEPA model is:

C(l0C) BC
{α3}

M(l0M) BC
{α3 ,α4}

M
′

(l0M′ ) BC
{α5 ,α7}

X(l0X) BC
{α5 ,α6}

X
′

(l0X′ )

BC
{α2}

Res(0) BC
{α1}

CF(1) BC
{α8 ,α9 ,α10 ,α11}

I(l0I) BC
{α8 ,α9 ,α12 ,α13}

IC(l0IC)

The results of the ODE simulations corresponding to the new model are reported
in Fig. 6.

Fig. 6. ODE simulation results for the extended model. The parameters of Goldbeter’s
model are as before. For the new parameters, in all the graphs d1 = 0.05, θ = 0.1 and
Kdiss =

a1
a2
= 1. In the model on the left a1 = a2 = 0.3 and vs = 0.6, in the graph in the

middle a1 = a2 = 0.7 and vs = 1.4 and in the graph on the right a1 = a2 = 0.05 and
vs = 0.1. The initial values of C, X,M and I are 0.01µM. Simulation time is 100 minutes.

8.2 A simple genetic network

Information processing in biological cells is often implemented by a genetic net-
work. The state of such a network is represented by the concentrations and locations
of the different species of molecules. The interactions between these molecules oc-
cur in a random fashion. In order to prevent large fluctuations in the number of
molecules of some species, the genetic network itself can contain negative feed-
back mechanisms that suppress these fluctuations.

In order to show how to model genetic networks in Bio-PEPA, we consider a model
from [7]. The model describes a general genetic network with negative feedback
through dimers, such as the one representing the control circuit for the λ repressor
protein CI of λ-phage in E.Coli. Here we focus on the second model presented in
the paper, which uses an inhibition reaction to describe the negative feedback loop
(3 species and 5 reactions, one of which is reversible).

In the present work the stochastic and deterministic simulations are obtained ex-
porting the Bio-PEPA system by means of the maps described in the previous sec-
tion.
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Fig. 7. Genetic network model

8.2.1 The biological model

A schema of the model is reported in Figure 7. The model is composed of three
biological entities that interact with each other through five reactions (of which one
is reversible). The biological entities are the mRNA molecule (M), the protein in
monomer form (P) and the protein in dimeric form (P2). The first reaction (1) is the
transcription of the mRNA (M) from the genes/DNA (not considered explicitly).
The protein P in the dimer form (P2), which is the final result of the network, has
an inhibitory effect on this process. The second reaction (2) is the translation of the
protein P from M. Another two reactions represent the degradation of M (3) and the
degradation of P (4). Finally there is the dimerization of P and its inverse process
(5,5i). All the reactions are described by mass-action kinetics with the exception of
the first reaction, which has an inhibition/Michaelis-Menten kinetics.

8.2.2 The Bio-PEPA system

The translation of the model in Bio-PEPA is based on the following steps:

• Definition of compartments. The only compartment is defined as vcell : 1 (nM)−1.
• Definition of the set N .

C : M : 1, 1, 1, 1, vcell, nM; P : 30, 2, 0, 60, vcell, nM;
P2 : 30, 6, 0, 180, vcell, nM; Res : 1, 1, , , , ; CF : 1, 1, , , , ;

From the original paper the maximum concentrations are MM = 1 nM, MP =

60 nM and MP2 = 180 nM. We can consider hM = 1 nM and hP = hP2 = 30 nM.
Indeed the stoichiometry of P in the dimerization reaction is 2 and we need to
consider at least two levels for P. The maximum levels for the three species are:
NM = 1, NP = 2 and NP2 = 6.
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• Definition of the set of functional rates FR.

fα1 = f I((v,KM), [P2,CF]) = v×CF
KM+P2 ;

fα2 = f MA(k2); fα3 = f MA(k3); fα4 = f MA(k4);

fα5 = f MA(k5); fα5i = f MA(k5i)

where the suffix of the action type α refers to the number of the reaction as
reported in Fig. 7.

• Definition of the set of parameters. The parameter values are

KM = 356 nM; v = 2.19 s−1; k2 = 0.043 s−1; k3 = 0.0039 s−1;

k4 = 0.0007 s−1; k5 = 0.025 s−1nM−1; k5i = 0.5 s−1

• Definition of the set of species components and of the model component.

M
def
= (α2, 1) ⊕ M + (α3, 1)↓M + (α1, 1)↑M;

P
def
= (α4, 1)↓P + (α5, 2)↓P + (α5i, 2)↑P) + (α2, 0)↑P;

P2 def
= (α1, 1) 	 P2 + (α5i, 1)↓P2 + (α5, 1)↑P2;

Res
def
= (α3, 1) � Res + (α4, 1) � Res;

CF
def
= (α1, 1) � CF;

(((CF(1) BC
{α1}

M(0)) BC
{α2}

P(0)) BC
{α5 ,α5i}

P2(0)) BC
{α3 ,α4}

Res(0)

8.2.3 Analysis

The model is amenable to a number of different analyses as we report in the fol-
lowing paragraphs.

8.2.3.1 SLTS and CTMC From the Bio-PEPA model we can derive the SLTS
and the CTMC. The transition system consists of 42 states and 108 transitions, in
the case we consider the information about species listed above.

The states are described by the levels of the single components. Specifically, we
can define a state using a vector (CF(l1),M(l2), P(l3), P2(l4),Res(l5)), where li,
for i = 1, ..., 5, represents the level of each component. The parameter li can as-
sume the values 0 and 1 in the case of M, the values 0, 1, 2 for P and values
between 0 and 6 for P2. Res and CF can assume only one value (0 and 1, respec-
tively). The labels γt of the stochastic transition system contain the action type α j

and the rate rα j , calculated by applying the associated function fα j to the quantita-
tive information collected in the labels of the capability relation and dividing this
by the step size of the reactants/products involved in the reaction. These rates are
the ones associated with the CTMC transitions.
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8.2.3.2 ODEs and Gillespie A second kind of analysis concerns differential
equations. The stoichiometry matrix D associated with the system is

R1 R2 R3 R4 R5 R5i

CF 0 0 0 0 0 0 xCF

M +1 0 -1 0 0 0 x1

P 0 +1 0 -1 -2 +2 x2

P2 0 0 0 0 +1 -1 x3

Res 0 0 0 0 0 0 xRes

The kinetic-law vector is vT
KL = ( v×xCF

K+x3
; k2 × x1; k3 × x1; k4 × x2; k5 × x2

2; k5i × x3). The
system of ODEs is obtained as dx̄

dt = D × vKL:

dx1

dt
=

v × 1
K + x3

− k3 × x1

dx2

dt
= k2 × x1 − k4 × x2 − 2 × k5 × x2

2 + 2 × k5i × x3

dx2

dt
= k5 × x2

2 − k5i × x3

The derivation of the Gillespie’s simulation model is straightforward and not re-
ported here.

The simulation results are depicted in Figure 12. We consider both deterministic
and stochastic simulation. The two simulation graphs show the same behaviour
(with the exception of some noise in the Gillespie’s simulation), as expected.

Fig. 8. ODE and Gillespie simulation results. In the case of Gillespie we consider 10 runs.
In both cases the rates are as in the original paper.
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8.2.3.3 PRISM The full translation of the model into PRISM is reported in
Appendix B. Each species is represented by a PRISM module and the reactions
in which it is involved are captured by commands. In the following we report the
definition of the modules representing the protein in the monomer and dimer form
respectively.

module p

p : [0..N p] init 0;

[a2] p < N p→ (p′ = p + 1);

[a4] p > 0→ (p′ = p − 1);

[a5] p > 0→ (p′ = p − 2);

[a5i] p < N p→ (p′ = p + 2);

endmodule

module pd

pd : [0..N pd] init 0;

[a5i] pd > 0→ (pd′ = pd − 1);

[a5] pd < N pd → (pd′ = pd + 1);

endmodule

The variables p and pd are local with respect to each of the two modules and
represent the species “protein in monomer form” and “protein in dimer form”, re-
spectively. The possible values are [0..N p] for p and [0..N pd] for pd, while the
initial values are 0. The monomer P is involved in four different reactions while the
dimer form P2 in just two. We have an additional module with the functional rates.

Properties of the system can be expressed formally in CSL and analysed against the
constructed model. Two examples of possible queries are considered below. A first
query considers the probability that the monomer is at level i at time T. The property
is expressed by the form “P =?[...]”, that returns a numerical value representing the
probability of the proposition inside the square brackets. In our case the query is
P =?[true U[T,T ] p = i], where U is the bounded until operator and [T,T ]
indicates a single time instant. A property of the form “prop1 U[time] prop2”
is true for a path if time defines an interval of real values and the path is such that
prop2 becomes true at a time instant which falls within the interval and prop1 is true
in all time instants up to that point. The second query concerns the proportion of the
protein in monomer form (P) relative to the total quantity of the protein (i.e. P+P2).
In order to define this property, we need a reward structure. State rewards can be
specified using multiple reward items, each of the form “guard:reward;”, where
guard is a predicate and reward is an expression. States of the model which satisfy
the predicate in the guard are assigned the corresponding reward. Specifically, in
our case we define the reward:

rewards

true : p
(p+pd) ;

endrewards
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This reward assigns the value p
(p+pd) to each state of the system. We can ask for the

frequency of P by using the query R =?[I = T ]. This is an instantaneous reward
property, i.e. it refers to the reward of a model at a particular instant in time T . The
property “I = T” associates with a path the reward in the state of that path when
exactly T time units have elapsed. The letter “R” indicates that the property refers
to a reward structure. The results of the two queries are reported in Fig. 9.

Fig. 9. PRISM query results. In the figure on the left reports the graph of the proportion
of monomer P over the total protein with respect to time. On the right it is depicted the
probability that the monomer protein is at level 1 and 2, with respect to time.

8.3 The repressilator

The repressilator is a synthetic genetic regulatory network with oscillating be-
haviour reported in [22]. The repressilator consists of three genes connected in
a feedback loop, such that the transcription of a gene is inhibited by one of the
other proteins. In the following we present the translation of the original model
into Bio-PEPA and we report some analysis results.

8.3.1 The biological model

A schema of network is reported in Figure 10.

 

 P2 mRNA2             G2 

            G3  mRNA3 P3             G1  mRNA1  P1

trl2tr2 d2 d5

tr1 trl1
d2d1d6trl3tr3 d3

Fig. 10. Repressilator model.

The species involved are:
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• three kinds of genes, hereafter denoted G1, G2, G3. These represent the genes
lacl, tetR and cI, respectively;

• the mRNAs transcribed from the three genes, hereafter denoted mRNA1, mRNA2,
mRNA3, respectively;

• the proteins corresponding to the three genes, denoted P1, P2, P3, respectively.
These represents the protein associated with the previous genes and are Lacl,
TetR, CI.

The reactions are:

• the transcription of the three mRNAs with inhibition by one of the proteins.
These reactions are indicated as tr1, tr2, tr3. The genes are constant and are kept
implicit;

• the translation of mRNAs into the proteins, indicated as trl1, trl2, trl3;
• degradation of both mRNAs and proteins, indicated as di with i = 1, ..., 6.

The transcription reactions are described by Hill kinetics, while the other reactions
have mass-action kinetic laws.

8.3.2 The Bio-PEPA system

The definition of the Bio-PEPA corresponding to the repressilator model is reported
below. The parameters and the initial concentrations are one of the possibilities
defined in the paper [22].

• Definition of compartments. There are no compartments defined explicitly in the
model. We consider the default compartment:

vCell : 1;

• Definition of the set N It is defined as:

mRNA1 : 1, 1, 0, , vCell, ; mRNA2 : 1, 1, 0, , vCell, ; mRNA3 : 1, 1, 0, , vCell, ;

P1 : 1, 1, 5, , vCell, ; P2 : 1, 1, 0, , vCell, ; P3 : 1, 1, 15, , vCell, ;

Res : 1, 1, , , vCell, ; CF : 1, 1, , , vCell, ;

It is worth noting that in the original model the genes are not represented
explicitly. In Bio-PEPA we introduce CF to define the transcription. For all the
species we consider two levels (high and low) and step h = 1. The initial values
(third components) are the ones reported in the paper.

• Definition of the set FR and of the set of parameters. The set of functional rates
is:
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ftr1 = f I((α, α0), [P3], 2) = α
1+P32 + α0;

ftr2 = f I((α, α0), [P1], 2) = α
1+P12 + α0;

ftr3 = f I((α, α0), [P2], 2) = α
1+P22 + α0;

ftrl1 = f MA(β)

ftrl2 = f MA(β)

ftrl3 = f MA(β)

fdi = f MA(1), i = 1, 2, 3, 4, 5, 6;

All the three repressors have same behaviour except for their DNA-binding
specificities. We assume that all the degradation reactions have rate 1.

The other parameters are:
α = 250; α0 = 0; β = 5

These parameters have the following meaning:
· α0 is the number of protein copies per cell produced from a given promoter

type during growth in the presence of saturating amounts of the repressor. In
the case of the absence of the repressor this number is α0 + α;
· β is the ratio of the protein decay rate to the mRNA decay rate.

• Definition of the species components. The species components are:

mRNA1 def
= (d1, 1)↓mRNA1 + (tr1, 1)↑mRNA1 + (trl1, 1) ⊕ mRNA1;

mRNA2 def
= (d2, 1)↓mRNA2 + (tr2, 1)↑mRNA2 + (trl2, 1) ⊕ mRNA2;

mRNA3 def
= (d3, 1)↓mRNA3 + (tr3, 1)↑mRNA3 + (trl3, 1) ⊕ mRNA3;

P1 def
= (d4, 1)↓P1 + (trl1, 1)↑P1 + (tr3, 1) 	 P1;

P2 def
= (d5, 1)↓P2 + (trl2, 1)↑P2 + (tr1, 1) 	 P2;

P3 def
= (d6, 1)↓P3 + (trl3, 1)↑P3 + (tr2, 1) 	 P3;

CF
def
= (tr1, 1) �CF + (tr1, 1) �CF + (tr1, 1) �CF;

Res
def
= (d1, 1) � Res + (d2, 1) � Res + (d3, 1) � Res

+(d4, 1) � Res + (d5, 1) � Res + (d6, 1) � Res;

• Definition of the model component. The model is defined as:

((((((M1(lM10) <> M2(lM20)) BCM3(lM30)) BC
{trl1,tr3}

P1(lP10)) BC
{trl2,tr1}

P2(lP20)) BC
{trl3,tr2}

P3(lP30)) BC
{tr1,tr2,tr3}

BC
{tr1,tr2,tr3}

CF(1)) BC
{d1,d2,d3,d4,d5,d6}

Res(0)

The initial levels are defined according to the initial values of the model.
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8.3.3 Analysis

We consider both ODEs and stochastic simulation using Gillespie’s algorithm. The
analysis results are reported in Figures 11 and 12. In Figure 11 we have used the pa-
rameters reported in the paper. On the left, the ODE simulation results are reported.
An oscillating behaviour is shown by all the three proteins. The figure on the right
shows a run by using Gillespie’s algorithm. We have an oscillating behaviour also
in this case, but the trajectories are different with respect to the deterministic sim-
ulation. The difference between determistic and stochastic simulations is probably
due to the use of Hill kinetics with Gillespie. Indeed, as discussed in Section 7.3 the
use of this kinetic law with Gillespie can lead to different results from the expected
ones. Note that varying the values of α and β for the different elements we obtain
different amplitudes for the oscillations. In the case of Figure 12, the three proteins
reach a steady state, both with ODE and stochastic simulation.

Fig. 11. Analysis of the model: ODE (on the left) and Gillespie (on the right). The pa-
rameters are the ones reported in the text. In the case of Gillespie’s simulation 1 run is
considered.

9 Conclusions

In this paper we have presented Bio-PEPA, a modification of the process alge-
bra PEPA for the modelling and the analysis of biochemical networks. Bio-PEPA
allows us to represent explicitly some features of biochemical networks, such as
stoichiometry and general kinetic laws. Thus not only elementary reactions with
constant rates, but also complex reactions described by general kinetic laws can
be considered. Indeed each reaction in the model is associated with an action type
and with a functional rate. The potential to consider various kinds of kinetic laws
permits us to model a vast number of biochemical networks. Indeed complex re-
actions are frequently found in models as abstractions of sequences of elementary
steps and reducing to elementary reactions is often impossible and undesirable.
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Fig. 12. Analysis of the model: ODE (on the left) and Gillespie (on the right). The param-
eters are different from the ones reported in the text. The parameter α0 is 25 and the initial
values are P1 = 5, P2 = 10 and P3 = 15. In Gillespie, 100 runs are considered.

Bio-PEPA is in enriched with some notions of equivalence. We have presented def-
initions of isomorphism and strong bisimulation which are similar to the relations
defined for PEPA in [29]. These equivalences are quite strict. A further investiga-
tion concerns the definition of other forms of equivalence, more appropriate for
studying biological systems.

A principal feature of Bio-PEPA is the possibility of mapping the system to differ-
ent kinds of analysis. In this work we have shown how to derive a CTMC from a
Bio-PEPA model and we have discussed the derivation of ODEs, stochastic simu-
lation and PRISM models. Indeed Bio-PEPA has been defined as an intermediate
language for the formal representation of the model. We have extended the defini-
tion of CTMC with levels, defined in [11], to the case of general kinetic laws and
to different levels for the species. The main benefit of this approach is a reduction
in the state space. Some assumptions are made. First of all all the species must
have a finite maximum concentration. This is to ensure a finite state space in the
corresponding CTMC, making numerical solution feasible. However, we can have
a species without a limiting value. In these cases we can consider a maximum level
for the values greater than a certain (high) value. A second point concerns the as-
sumption that all the species have the same step size. This may be a problem when
the species can have maximum concentrations belonging to different concentration
scales. In this case some species can have only few levels whereas other can have
many. Furthermore, some species (for instance genes) are present in the system
only in few copies and in this case the representation in terms of continuous con-
centration is wrong. In order to handle this situation, Bio-PEPA could be enriched
with discrete variables. The possibility to consider different step sizes and discrete
variables is a topic for future work.

The different kinds of analysis proposed for Bio-PEPA are strongly related. An
area for further work will concern a deeper study of these relationships, in partic-
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ular for the CTMC with levels and Gillespie models. An outstanding problem is
the application of Gillespie’s stochastic simulation with general kinetic laws. The
approach proposed in this work is to use Gillespie simulation also in this context,
but to be careful about the interpretation of the results. An important topic for the
future will be deeper investigation of the relation between Gillespie simulation and
general kinetic laws. Another aspect that needs further study is the determination
of the number of concentration levels for each species. The definition of these num-
bers is critical for the definition of the CTMC and must be done carefully. Indeed
for some analyses (ODEs and Gillespie simulation) two levels are enough to cap-
ture the behaviour of some systems, but for numerical analysis of the CTMC and
PRISM model checking a finer granularity for levels is necessary to capture the full
behaviour of the system.

Another aspect that we will consider in further work is the possibility of incor-
porating SBML-like events. SBML events describe the time and the form of ex-
plicit instantaneous state changes in the model. For example, an event may describe
that one species quantity is halved when another species quantity exceeds a given
threshold value. An Event object defines when the event can occur, the variables
that are affected by the event, and how the variables are affected. The idea is to add
the definition of the events to the system and to investigate some possible analyses
that can be carried out.

Finally, a tool for the analysis of biochemical networks using Bio-PEPA is under
implementation and a translation from SBML into Bio-PEPA is planned.

A Appendix A: PRISM specification of the Goldbeter’s model

//Kind of model

stochastic

//Volume

const double cell = 1;

// Levels

const int Nc = 1;

const int Nm = 1;

const int Nx = 1;

const int Nxi = 1;

const int Nmi = 1;

//Steps

const double Hc = 0.01;

const double Hm = 0.01;

const double Hx = 0.01;
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const double Hxi = 0.01;

const double Hmi = 0.01;

//Parameters

const double vi = 0.05;

const double vd = 0.025;

const double kd = 0.01;

const double Kc = 0.5;

const double V1 = 3;

const double V3 = 1;

const double Kd = 0.2;

const double V2 = 1.5;

const double V4 = 0.5;

const double K1 = 0.005;

const double K2 = 0.005;

const double K3 = 0.005;

const double K4 = 0.005;

//Modules

//module Cyclin

module cyclin

cyclin : [0..Nc] init 0;

[creationC] cyclin<Nc --> 1: (cyclin’ = cyclin+1);

[degradationC] cyclin>0 --> 1: (cyclin’ = cyclin-1);

[activationM] cyclin>0 --> 1: (cyclin’ = cyclin);

[degradationCX] cyclin>0 --> 1: (cyclin’ = cyclin-1);

endmodule

//module kinase inactive

module kinasei

kinasei : [0..Nmi] init 1;

[activationM] kinasei>0 --> 1: (kinasei’ = kinasei-1);

[deactivationM] kinasei<Nmi --> 1: (kinasei’= kinasei+1);

endmodule

//module kinase active

module kinase

kinase : [0..Nm] init 0;

[activationM] kinase<Nm --> 1: (kinase’= kinase+1);

[deactivationM] kinase>0 --> 1: (kinase’ = kinase-1);

[activationX] kinase>0 --> 1: (kinase’ = kinase);

endmodule

//module protease inactive

module proteasei

proteasei : [0..Nxi] init 1;
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[activationX] proteasei>0 --> 1: (proteasei’= proteasei-1);

[deactivationX] proteasei<Nxi --> 1: (proteasei’= proteasei+1);

endmodule

//module protease active

module protease

protease : [0..Nx] init 0;

[activationX] protease<Nx --> 1: (protease’ = protease+1);

[deactivationX] protease>0 --> 1: (protease’ = protease-1);

[degradationCX] protease>0 --> 1: (protease’ = protease);

endmodule

module Functional_rates

dummy: bool init true;

[creationC] cyclin<Nc --> vi/Hc: (dummy’=dummy);

[degradationC] cyclin<Nc --> (kd*cyclin*Hc)/Hc: (dummy’=dummy);

[activationM] cyclin>0 & kinasei>0 -->

((cyclin*Hc*V1 )/(Kc + cyclin*Hc))*((kinasei*Hmi)/(K1+kinasei*Hmi))

*(1/Hmi): (dummy’=dummy);

[activationX] kinase>0 & proteasei>0 -->

(kinase*Hm*proteasei*Hxi*V3/(K3+proteasei*Hxi))*(1/Hxi):

(dummy’=dummy);

[deactivationM] kinase>0 --> ((kinase*Hm*V2)/(K2 +kinase*Hm))*(1/Hm):

(dummy’=dummy);

[deactivationX] protease>0 --> (protease*Hx*V4/(K4 + protease*Hx))

*(1/Hx): (dummy’=dummy);

[degradationCX] cyclin>0 & protease>0 -->

((cyclin*Hc*vd *protease*Hx)/(cyclin*Hc + Kd))*(1/Hc): (dummy’=dummy);

endmodule

B AppendixB: PRISM specification of the genetic network model

//Kind of model

stochastic

//Volume

const double cell = 1*10ˆ{-6};

//Levels

const int NCF = 1;

const int Nm = 1;

const int Np = 2;

const int Npd = 6;

//Steps
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const double HCF = 1;

const double Hm = 1.0;

const double Hp = 30.0;

const double Hpd = 30.0;

//Parameters

const double v = 2.19;

const double KM = 356;

const double k3 = 0.0039;

const double k2 = 0.043;

const double k4 = 0.0007;

const double k5 = 0.025;

const double k5i = 0.5;

//Modules

module CF

CF: [0..NCF] init NCF;

[a1] CF>0 --> 1: (CF’=CF);

endmodule

module p

p: [0..Np] init 0;

[a2] p<Np --> 1: (p’=p+1);

[a4] p>0 --> 1: (p’=p-1);

[a5] p>0 --> 1: (p’=p-2);

[a5i] p<Np --> 1: (p’=p+2);

endmodule

module pd

pd: [0..Npd] init 0;

[a5i] pd>0 --> 1: (pd’=pd-1);

[a5] pd<Npd --> 1: (pd’=pd+1);

endmodule

module m

m: [0..Nm] init 0;

[a1] m<Nm --> 1: (m’=m+1);

[a2] m>0 --> 1: (m’=m);

[a3] m>0 --> 1: (m’=m-1);

endmodule

module Functional_rates

dummy: bool init true;

[a1] dummy = true --> (v/(KM + pd*Hpd))*(1/Hm): (dummy’ = dummy);

[a2] dummy = true --> (k2*m*Hm)/Hm: (dummy’ = dummy);

[a3] dummy = true --> (k3*m*Hm)/Hm: (dummy’ = dummy);

[a4] dummy = true --> (k4*p*Hp)/Hp: (dummy’ = dummy);
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[a5] dummy = true --> (k5*(p*Hp)ˆ2)/Hp: (dummy’ = dummy);

[a5i] dummy = true --> (k5i*pd*Hpd)/Hpd: (dummy’ = dummy);

endmodule
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