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Abstract. The goal of an Evolutionary Algorithm(EA) is to find the
optimal solution to a given problem by evolving a set of initial potential
solutions. When the problem is multi-modal, an EA will often become
trapped in a suboptimal solution(premature convergence). The Scouting-
Inspired Evolutionary Algorithm(SEA) is a relatively new technique that
avoids premature convergence by determining whether a subspace has
been explored sufficiently, and, if so, directing the search towards other
parts of the system. Previous work has only focused on EAs with point
mutation operators and standard selection techniques. This paper exam-
ines the effect of scouting on EA configurations that, among others, use
crossovers and the Fitness-Uniform Selection Scheme(FUSS), a selection
method that was specifically designed as means to avoid premature con-
vergence. We will experiment with a variety of problems and show that
scouting significantly improves the performance of all EA configurations
presented.

1 Introduction

1.1 Evolutionary Algorithms

Evolutionary Algorithms are a family of optimization techniques that attempt to
solve a given problem by evolving a set of solutions. A typical EA randomly ini-
tializes a population of potential solutions-individuals that are subsequently (a)
assigned a measure of merit(fitness value), (b) selected for reproduction based
on that merit, and (c) varied via crossover(exchange of genes), mutation, and
deletion, to produce a new generation of individuals. The cycle of fitness assign-
ment, selection, reproduction and deletion usually continues for a preset number
of generations, or until the global optimum of a certain objective function is
reached. The goal is to find this global optimum, but often, a typical EA gets
trapped in local optima, a problem this paper suggests a solution for.

Generation-based EAs replace the entire population in each generation, whereas
steady-state EAs replace only one or two individuals. The Fitness-Uniform Se-
lection Scheme, which will be one of the focal points of the work presented here,



has been tested only on steady-state EAs.[5] This work focuses on the use of
generation-based EAs, with future work potentially expanding into the area of
steady-state EAs.

1.2 Scouting-Inspired Evolutionary Algorithm: Previous Work

Scouting was originally introduced as a mechanism for automated exploration
of complex phenomena, using a conservative number of samples. It uses an evo-
lutionary technique, which, instead of focusing on finding an optimum, searches
for regions of the search space that exhibit “surprising” behavior.[2] “Surprise”
is defined as the difference between an estimated sampling result and the actual
returned value. It was apparent from the introduction of the technique, that an
experience database, namely a database of observations, could create a simple
model of a system.

Figure 1 provides an illustration of a Scouting Algorithm(SA), which consists
of an Evolution Strategy(ES) that evaluates individuals, creates new generations
solely through mutation, and selects only the best individual for reproduction.[2]
As observations are made on a given system, the results are saved in an expe-
rience database. A characteristic of an ES is self-adaptation of the mutation
strength.[8] The way the SA achieves that is by adapting the Gaussian distri-
bution of the mutation range based on the surprise value of each individual.
As already mentioned, surprise is defined as the absolute difference of the esti-
mated and the actual fitness values. The estimate is calculated via a weighted
k-nearest neighbor algorithm, which uses the experiences stored in the database.
When the surprise is high, the search continues with a small mutation range
and vice versa. Hence, the technique will explore a subspace until the results
gained are no longer “surprising,” according to the experience the search has
already had in the system at hand. Scouting has also been the focus of two more
recent papers, which presented an SA as means to automated experimentation
in biological systems. [3][4]

Fig. 1. A Scouting Algorithm varies individuals based on their surprise value. x̄ is a
new individual, G(x̄) the actual, and G′(x̄) the estimated objective values. d is their
difference.[1]



Pfaffmann et al.[1] defined the Scouting-Inspired Evolutionary Algorithm as
an evolutionary technique that uses scouting to model a given search space, and
provide a simple way to avoid premature convergence in deceptive and multi-
modal problems. It was defined as an EA that uses the Roulette Wheel selection
scheme, scouting-driven mutation as the only genetic operator, and deletion
of the entire population in each generation (generation-based EA). For each
mutation operation, the mutation strength is randomly chosen from a Gaussian
distribution, the standard deviation(σ) of which changes based on the surprise
value of the parent. Given minimum and maximum standard deviation, σmin

and σmax, the active σ for a given parent with surprise sind, scaled to [0,1], is
chosen by the modulator function

σ(sind) = σmax − sind × (σmax − σmin) . (1)

As one can easily determine in (1), when the surprise is minimal, σ approaches
σmax, whereas when the surprise is close to its maximum value of one, it ap-
proaches σmin.

1.3 Fitness-Uniform Selection Scheme (FUSS)

The SEA was designed to promote genetic diversity in the overall pool of individ-
uals via regulating mutation. It was hypothesized that this would help find fitter
solutions faster, in multi-modal and deceptive problems. The Fitness-Uniform
Selection Scheme(FUSS), a relatively new selection method, has also been proved
successful in maintaining genetic diversity, and helping an EA perform better in
such problems.[5]

The way FUSS achieves high genetic diversity, is by allowing only a small
number of fitness-similar individuals in a population. Similarity between two
individual fitness values is simply defined as their absolute difference. This par-
ticular selection technique works in two stages. Firstly, a random fitness value f

is selected uniformly from the interval [fmin, fmax], where fmin and fmax are the
minimum and maximum fitness values of the given population. Subsequently, the
individual with fitness nearest to f is selected. FUSS, as opposed to traditional
selection techniques, does not have an inherent goal to achieve populations with
the highest average fitness possible. Hutter et al.[5] show that by focusing selec-
tion pressure towards less represented fitness values, premature convergence can
be avoided and the path towards fitter solutions can remain open.

2 A Closer Look to the SEA

2.1 A New Standard Deviation(σ) Modulator

Reproduction and analysis of the results presented in [1] showed that the vast
majority of all surprise values are in the lowest 10% of the surprise range. Table
1 shows the number of individuals in each surprise level, from the 29, 950, 012



Table 1. The number of individuals in each surprise level throughout a set of experi-
ments. (10 individuals per generation, 5000 generations per experiment)

Surprise Level Number of Individuals Percentage(%)

[0, 0.1] 29,064,234 97.04

(0.1, 0.2] 479,374 1.6

(0.2, 0.3] 211,509 0.71

(0.3, 0.4] 146,481 0.49

(0.4, 0.5] 41,365 0.14

(0.5, 0.6] 5,953 0.02

(0.6, 0.7] 911 0.003

(0.7, 0.8] 128 0.0004

(0.8, 0.9] 48 0.0001

(0.9, 1] 8 0.00002

individuals created throughout a set of experiments that used scouting-driven
mutation.

As one can see in Fig.2, the linear mapping from surprise to standard devia-
tion in (1) makes the SEA behave similarly to a traditional EA with a mutation
standard deviation of σmax. In order to achieve a fairer comparison with an
EA that uses σmin, we ought to regulate the effect of scouting such that when
sind = 0, σ = σmax, when sind = 0.10, σ approaches σmin, and slowly decreases,
to equal σmin when sind = 1. We will therefore introduce a new standard devi-
ation modulator, which, as seen in Fig.2, meets the requirements set above.

σ(sind) = σmax − (sind)γ
× (σmax − σmin) , 0 < γ ≤ 1 . (2)

Based on Table 1, γ = 0.01305 is the optimal value for the new parameter. The
reason is that when sind = 0.1, s0.01305

ind = 0.9704, namely the technique will use
97.04% of the σ range on 97.04% of the individuals. Note that (1) is a case of
(2) for γ = 1.

2.2 Crossovers

A traditional EA usually uses both crossovers and mutation as its genetic op-
erators. As mentioned earlier, previous work has focused on EAs that only use
point mutation. We want to show that scouting can improve an EA, and any
evidence for this claim would not be complete without the examination of its
effect on a configuration that uses crossovers.

In this paper, we examine the effect scouting has on EA configurations
with and without single-point crossovers. Crossover and mutation are applied
with certain crossover and mutation rates. When an EA configuration uses the
crossover operator, and crossover is not chosen for a given pair of parents, mu-
tation is always applied, in order to ensure that the parents are not cloned.

The introduction of crossover does not significantly affect the way scouting
controls mutation standard deviation. When scouting-driven mutation is used
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Fig. 2. Standard deviation vs. surprise using the old (1) and new (2) modulators with
γ = 0.01305, σmin = 0.0107 and σmax = 0.5. The majority of the individuals created
throughout an experiment has surprise sind ≤ 0.1.

together with the crossover operator, there arises the issue of determining a sind

to use in (2), without calculating fitness and surprise for intermediate individuals.
In the techniques presented here, we use the average surprise values of the two
parents used for the crossover.

We will therefore examine the effect of scouting on EAs with crossover and
show that the improvement incurred is equivalent to the one observed in a
mutation-only EA.

2.3 FUSS and the SEA

Another focal point of this paper is FUSS, mainly because of its similarities to
the SEA. Firstly, both techniques aim to avoid premature convergence, by main-
taining genetic diversity. Secondly, they have both been designed for deceptive
and multi-modal domains, where traditional evolutionary techniques tend to be-
come trapped in suboptimal solutions. Finally, the goal of both FUSS and the
SEA is not to explicitly find higher fitness individuals, but to avoid premature
convergence allowing for greater fitness levels to be achieved. The first technique
succeeds by favoring the least-represented individuals in a population, whereas
the latter succeeds by directing the search towards surprising parts of the search
space of interest via mutation strength regulation.

One of the goals of this paper is to examine the effect a combination of
the two techniques could have on a traditional EA when attempting to solve
deceptive and multi-modal problems. We will show that scouting can improve
an EA that also uses FUSS, and that even higher fitness levels could potentially
be reached when these two techniques work together.



3 Implementation

The EA framework was written in C/C++. The random number generators
used are the “Mersenne Twister”[9], and the two versions of the “luxury random
number generator” algorithm[10], which are all included in the GNU Scientific
Library (gsl)[7]. The problems used to test and compare the techniques were
generated by Schmidt and Michalewicz’s TCG-2 test-case generator.[6]

3.1 Test Cases and the TCG-2 Package

The problem domain and the reasons for using TCG-2 are fully outlined in [1].
Briefly, TCG-2 is a very configurable C++ software package that can generate a
vast variety of nonlinear constrained parameter optimization problems with dif-
ferent levels of complexity. The fitness function used here follows the suggestion
by Schmidt and Michalewicz[6] for a static penalty approach:

Fit(x̄) = G(x̄) − W × CV (x̄) , (3)

where G(x̄) is the objective function, W the static penalty, and CV (x̄) is the
constraint violation function for the given test case.

The test cases generated were varied in the number and width of peaks, in
an attempt to get a better idea of the kind of problems the SEA is particularly
effective at. We will refer to the width of peaks as σpeak to differentiate it from
the standard deviation σ used in mutation. We used the TCG-2 parameters
shown in Table 2, and created the test landscapes by setting the parameter
σpeak to 0.02, 0.1 and 0.2, and the number of peaks p to 10, 50, 100 and 150.
Consequently, twelve different two-dimensional test-case problems were created,
as illustrated in Fig. 3.

The number of dimensions was mainly kept to two, for visualization purposes
and easier understanding of the behavior of the new techniques. After analysis
of the results on the two-dimensional problems, a set of experiments was also
run in three dimensions with the parameters outlined in Table 2, for the case of
10 peaks and σpeak = 0.02, as an example of a higher-dimension, multi-modal
and deceptive problem.

3.2 The Evolutionary Algorithm

The implemented Evolutionary Algorithm follows the guidelines provided in the
introductory SEA paper, with the necessary changes for the goals of this paper.
Selection for parenthood uses either Roulette Wheel or FUSS, and the parents
are varied via crossover and/or mutation to create the next generation of individ-
uals. The process loops for a set number of generations—5000 for all experiments
presented here.

Mutation varies individual genes with a Gaussian distribution centered around
mean µ = 0. The number of genes changed for each individual during mutation is



Table 2. TCG-2 parameters for the two-dimensional experiments.

Number of dimensions (n) : 2
Number of feasible components (m) : 10

Search space feasibility (ρ) : 0.5
Search space complexity (c) : 0

Active constraints at global optimum (a) : 0
Number of peaks (p) : 10, 50, 100, 150

Peak width (σ) : 0.02, 0.1, 0.2
Peak decay (α) : 0.1

Component minimum distance (d) : 0.01
Penalty (W) : 10

(a) 10 peaks, σpeak=0.02 (b) 10 peaks, σpeak=0.1 (c) 10 peaks, σpeak=0.2
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Fig. 3. The objective functions for each two-dimensional test case



configurable, but all genes of an individual are varied during mutation in the ex-
periments presented. New individuals that are created out of range are rejected,
and mutation recreates individuals, until one is within bounds.

Both mutation and crossover rates are set to 0.5 for all experiments, due to
the same configuration in the FUSS paper [5]. This is also in accordance with the
basis of the original SA, the traditional ES, which uses crossover and mutation
with equal importance.[8]

Minimum standard deviation for scouting-driven mutation is set equal to the
standard deviation for Random Mutation, σmin = 0.0107, whereas the maximum
one is σmax = 0.5. The constant parameter γ is set, for reasons explained in the
previous section, to γ = 0.01305 for all experiments.

4 Results and Analysis

4.1 Two-dimensional test cases

We ran all experiments with eight different EA configurations, as shown in Table
3, for each of the twelve different two-dimensional test cases generated by TCG-
2. The experiments were repeated 150 times per set (50 seeds with 3 random-
number generator techniques, as suggested in [1]). Different experiment sets were
run for a population size of 10, 20, 30 and 100 individuals per generation and
it was found, similarly to the results presented in [1], that the results scaled
accordingly, as the population size increased.

Table 3. The eight different EA configurations.

Configuration Selection Mutation Crossover

EA Roulette Wheel Random None
SEA Roulette Wheel Scouting-driven None
EAC Roulette Wheel Random Single-point

SEAC Roulette Wheel Scouting-driven Single-point

EAF FUSS Random None
SEAF FUSS Scouting-driven None
EAFC FUSS Random Single-point

SEAFC FUSS Scouting-driven Single-point

The results obtained clearly show that scouting improved all EA configura-
tions used. The more deceptive the problem, the bigger the improvement of the
performance exhibited by the SEAxx methods. More specifically, it was observed
that there was a larger average improvement of performance, as the landscape
contained less and narrower peaks. Figures 4 and 5 display the fitness level
reached by generation, for, due to lack of space, only a few representative sets
of experiments, and only for population size of 20 individuals. As mentioned
above, however, the results scale accordingly as we change the population size.
It is particularly important to note, that in all sets of experiments, the worst



performance of an SEAxx was always better than the average performance of
the equivalent EAxx, and very close to the global optimum, as one can clearly
see in the figures mentioned above.
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(b) 50 peaks, σpeak=0.1
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(c) 100 peaks, σpeak=0.2
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(d) 10 peaks, σpeak=0.02
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(e) 50 peaks, σpeak=0.1
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(f) 100 peaks, σpeak=0.2

Fig. 4. Fitness level achieved per generation by EA vs SEA(first row), and by EAC
vs SEAC(second row), for few of the experiment sets. It is clear that as the peaks and
their width decrease, the improvement scouting achieves is more impressive.

SEAC had similar performance with SEA, as it was originally hypothesized.
The crossovers did not seem to have a negative effect in the way scouting affected
the EA, and the improvement of the equivalent simple EA configurations was
similar. (see Fig.4)

Scouting has also managed to significantly enhance the techniques that used
FUSS. The effect of scouting overpowered the effect of FUSS (see Fig.5), the
performance of which was not particularly impressive in these problems and EA
configurations. For example, EAF and EAFC had the lowest average and worst
fitness level reached for the test case of 10 peaks and σpeak = 0.02. While it
did enhance the performance of the traditional EA, in certain test cases, the
improvement was not significant. However, it is important to note that FUSS
was originally designed for steady-state EAs and for larger population sizes.

The most impressive achievement of scouting was exhibited in the test case
with 10 peaks and σpeak = 0.02. The landscape can be imagined as an almost
completely flat surface of objective values of zero, with 10 narrow cones that rise
up to 10 different optima, the global of which is at the objective value of 1. One
can clearly see the plateaus of the zero fitness level in Fig. 6, which displays the
fitness function for this test case—generated using (3). All EAxx configurations
performed rather poorly with the EA and EAC getting stuck in a local optimum,
and the EAF and EAFC performing even worse, fitness-wise, but showing signs
of slow improvement. (See Figs.4(a), 4(d), 5(a) and 5(d).) All four techniques,
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(b) 50 peaks, σpeak=0.1
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(c) 100 peaks, σpeak=0.2
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(d) 10 peaks, σpeak=0.02
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(e) 50 peaks, σpeak=0.1
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Fig. 5. Same as Fig. 4 but for EAF vs SEAF(first row), and EAFC vs SEAFC(second
row).

once enhanced with scouting, got very close to the global optimum, even from
the early stages of the evolution process.

We speculate that the reason the simple EA techniques performed better as
the number and width of peaks increased, is because the EAxx small-σ mutation
can more easily avoid premature convergence, when the landscape contains more
and wider peaks, in which case individuals can “push” their offspring to other
peaks with weaker mutation.

Fig. 6. The fitness landscape for the two-dimensional test case with 10 peaks and
σpeak = 0.02. This test case (see Fig. 3(a) for the objective function) is particularly
deceptive for a traditional EA, because of its large plateaus of 0.



4.2 A three-dimensional example

After examining the above results for the two-dimensional test cases generated
by the TCG-2, we decided to try the SEAxx techniques on a three-dimensional
example. As outlined in Sect.3.1, we used the TCG-2 parameters for the test case
of 10 peaks and σpeak = 0.02, and increased the dimensionality of the problem
to three.

The results for this three-dimensional deceptive problem are similar to the
ones for the two-dimensional cases. The only difference is that the scouting-
aided techniques are a little slower in reaching higher levels of fitness. Figure 7
shows the different fitness levels achieved per generation by the EAC and the
SEAC. One can clearly see the improvement scouting has on the EAC. The
SEAC catches up with the EAC at ca. 500 generations and continues reaching
better fitness levels at a steady pace, whereas the EAC on average converges
prematurely.

The behaviors of the EA and the SEA are very similar to the EAC and
the SEAC. However, the EAFx techniques performed very poorly, whereas the
SEAFx ones performed similarly to the SEA techniques that used Roulette
Wheel selection.
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Fig. 7. Fitness level achieved per generation by the EAC and the SEAC with a popu-
lation size of 20 individuals, for the 3-dimensional case of 10 peaks and σpeak = 0.02.

5 Conclusion-Future Work

The results obtained by all experiments prove that scouting can make a signif-
icant positive difference to the performance of an EA in the domain of NLP
problems with rugged landscapes and multiple peaks. We have suggested a new
mutation strength modulator and shown that scouting improves a variety of
different EA configurations for twelve two-dimensional, multi-modal and decep-
tive problems, and one three-dimensional example. These configurations, among



others, include crossover, and the Fitness-Uniform Selection Scheme(FUSS), a
scheme specifically designed to improve performance in such problems. We have
also examined the kind of problems SEA is particularly good at, and found that
it exhibits particularly impressive performance when dealing with landscapes
that contain large plateaus.

Future work will extensively examine the performance of the SEAxx tech-
niques on multi-dimensional problems. Another research direction could be the
effect of different crossover and mutation rates on SEAxx techniques. Scouting-
driven adaptation of these rates is also an interesting path. Finally, another
avenue of exploration could include steady-state EAs and higher population
sizes, namely configurations that would favor FUSS. Additional testing could
also include some of the problems FUSS was originally tested on.[5]
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