Automated Discovery of Inductive Theorems

Keywords: theorem proving and knowledge acquisition

Abstract

Inductive mathematical theorems have, as a rule,
historically been quite difficult to prove — both for
mathematics students and for automated theorem
provers. That said, there has been considerable
progress over the past several years, within the
automated reasoning community, towards proving
some of these theorems. However, little work has
been done thus far towards automatically discov-
ering them. In this paper we present our methods
of discovering (as well as proving) inductive theo-
rems, within an automated system. These methods
have been tested over the natural numbers, with re-
gards to addition and multiplication, as well as to
exponents of group elements.

1 Introduction

There have been considerable advances made over the past
fifty years in automated theorem proving, including the prov-
ing of inductive theorems. However, regarding automated
theorem discovery (theorems of any kind), relatively little
has been published, other than works such as [Lenat, 1982;
Colton, 2002; Gao, 2004; McCasland et al., 2006]. More-
over, to our knowledge, there is as yet nothing in the literature
about automated discovery of inductive theorems.

In this paper we briefly describe some of our methods for
discovering (as well as proving) inductive theorems, within
an automated system. We have tested these methods over two
different representations of the natural numbers, each with
respect to the operations of addition and multiplication. In
addition, we have applied these methods to basic group the-
ory, regarding (natural number) exponents of group elements.
Admittedly, our case studies (see Section 5 and Appendix A)
have thus far been rather limited; in particular, they have only
concerned theorems proven from (what many mathematicians
refer to as) the First Principle of Mathematical Induction.
Nevertheless, the results are quite promising. In particular,
we have obtained the usual associativity, commutativity and
distributivity theorems for both of the aforementioned repre-
sentations of natural numbers, and the usual theorems regard-
ing exponents (in group theory).

2 The Main Idea

We should perhaps, at this point, state that we do not claim
to have found, nor indeed, do we ever expect to find, a single
approach for automatically discovering every inductive the-
orem that one could want. Instead, we offer an approach for
discovering a significant number of the more “routine” induc-
tive theorems — particularly theorems involving equality. For
the moment, we only give a rough sketch of our main idea,
which actually is really quite simple. The implementation of
our ideas, however, is arguably not so simple. Details will
follow.

The key to our approach is to first find an “interesting”
proposition P(n) that holds for the “2-case” — bearing in
mind, of course, that “2” might well have any one of sev-
eral representations, depending, in part, on the recursive data-
structure. (We will henceforth use TWO to represent the
generic “2”). Once P(TWO) is established, the remaining
steps obviously are guided by the appropriate induction ax-
iom. That is, determine whether P (base) is also true (where
base runs through the list of base elements), and if so, then
apply the step case(s) of the induction axiom — e.g., try to
prove that P(k) = P(k + 1). If all this succeeds, and im-
portantly, if P(n) is determined to be non-trivial, then P(n)
(for arbitrary n) is added to the database as a Theorem (by
which we mean the sort of result that mathematicians would
call a theorem, lemma, corollary, etc.). If at any point this
process fails, then backtrack, and try again.

We choose to focus initially on the TWO-case, because it
seems, on the whole, to be optimal, in terms of predicting
non-trivial results, whilst keeping the search space relatively
small. As for the 1-case, there are too many statements P(1)
that are true, for which the corresponding P(n) is not true
in general. One could instead try the 3-case (or any k > 2),
but this usually results in a much larger search space, whereas
any additional rewards, for having gone beyond TWO, are typ-
ically minimal.

There are, admittedly, some considerable limitations to this
method; in particular, it will almost certainly not find the
well-known formula of Gauss, that 14 --4+n = n(n+1)/2.
(For this, and similar theorems to be discovered, one might
hope that an examples-based approach, perhaps akin to that
used by Colton [2002], would work). That said, this method
has, in our case studies to date, succeeded in discovering
(and proving) all the inductive Theorems that we were ex-

pecting/wanting it to find.

3 Finding a TWO-Case

Before we proceed further, we remark that, while our work
thus far only involves inducting over the natural numbers, we
shall endeavour to present our methods in a rather more gen-
eral context. Thus, one might think of the TWO-case as a
proposition involving, for example, a list of length two. One
ought, however, to make allowances for the likelihood that
some of our ideas will not (easily) be adaptable to certain set-
tings. That said, we hope that these ideas might provide suf-
ficient stimulation for others to likewise pursue the automatic
discovery of inductive theorems.

3.1 Finding an Appropriate Induction Axiom

In our system!, we build theories in layers, in essentially the
same manner as is done by mathematicians, and more or less
in keeping with the Little Theories approach (see [Farmer et
al., 1992]). This of course implies that, whilst investigating
one theory, the appropriate induction axiom might reside in a
separate theory. Indeed, this is the case in our group theory
example.

Nevertheless, for our system, this does not present any real
difficulty, since the appropriate induction axiom is rather eas-
ily identifiable from the functions/constants in the theory be-
ing investigated. This is so, in part because we require unique
names for all axioms, functions and constants.

We should point out that while the user-provided axiom is
required by the system to determine the nature of the base
and step cases, in addition to the value of TWO, we actually
employ what is usually called “Structural induction”, in order
to produce a (proven) Theorem.

3.2 Finding TWO

In order to find an interesting TWO-case, one ought to first
find a useful representation for TWO. Even though this, along
with most everything else, is to be done as automatically as
possible, the induction axiom provides most of the neces-
sary information. Clearly, TWO is either one or two steps
up from the (last) base element (depending on whether “1”
or “0” is that element), where “step” is of course determined
by the step case(s). For example, in one of our case stud-
ies, where the representation of N (the natural numbers) is
given by the Peano Postulates, we have 0 as the base element.
In our other chosen representation (as found, for example, in
[Dodge, 1975]) of the naturals, which we denote by N*, the
base is 1. It must be said that it is not all that crucial to get
TWO right — “3” will do, but at a cost. (For this reason, we
leave it to the reader to determine how best to automatically
detect whether “0” or “1” is the base element — but obviously,
the name given to this element is quite irrelevant. What is
relevant, is the set of properties it possesses. Suffice it to say
that our means of determining this is tantamount to determin-
ing what “addition” is, and whether the base element is an
identity for this “addition”.) That said, for our purposes, it is
important to use the step representation of TWO. That is, in

'For reasons of anonymity, we do not, for the time being, provide
the name of our system.

N, TWO takes the form s(s(0)), whereas in N*, it looks like
14+ 1.

3.3 Generating Terms

As mentioned previously, we are at present primarily inter-
ested in Theorems about equalities. Thus, for the remainder
of this section, we shall restrict our focus to equational propo-
sitions. This is, admittedly, a considerable restriction; never-
theless, it still allows the possibility of significant achieve-
ments. Equations do, after all, represent a sizable and impor-
tant portion of mathematical theorems. Moreover, given that
our methods only assume the reflexive, symmetric and transi-
tive properties of equality, one could quite reasonably expect
these methods to apply as well to any other equivalence rela-
tion, though we have not yet tested them on such.

Moving on, once our system has completed the above
tasks, it begins generating a sequence of terms (together with
appropriate hypotheses, such as a, b € N, etc.), each of which
potentially represents the left-hand side of an equation (Theo-
rem). This sequence generation is not random — it is based on
an analysis of the given axioms, and an assumption that for
certain situations, one looks for certain properties. For ex-
ample, given a binary operation, one is likely to be interested
in the associativity and commutativity properties, and given a
pair of these operations, the distributive property — provided
that distributivity makes sense.

We remark that in a future version of our system, there
should be much greater flexibility here, since these “proper-
ties of interest” will be dictated more by the axioms provided
by the user, rather than by a set programme. Since the term-
generator is due to change, we are a bit reluctant to go into
great detail about precisely how these terms are at present
generated. We will, however, give a rough idea of our plans
for the future term-generator, and the reader should under-
stand that the present term-generator is based on a rather re-
stricted version of these plans.

The idea is to collect, for each operation/function to be
investigated, the equational axioms/definitions for all of the
properties that are relevant/applicable, either to one of these
operations/functions, or to a combination (preferably having
no more than two distinct ones) of them — at least, the com-
binations that make sense. The term-generator should then
produce the left (or perhaps the right) hand side of the rele-
vant equation in each of the collected axioms/definitions, as
adapted to the appropriate setting. For example, suppose that
the operations + and -, and the properties of associativity,
commutativity, and distributivity (both left-hand and right-
hand), have all previously been defined. In this case, the term-
generator should produce the terms: a+ (b+c), a-(b-c), a+b,
a-b, a-(b+c), (b+c)-a, a+(b-¢c) and (b-c)+a, where a, b and
c belong to the appropriate set. Moreover, if a constant C' has
been declared, then the term-generator should also produce
terms in which each relevant operation/function has been ap-
plied to C' (along with however many variables are needed).
For example, given the constant 0, then the term-generator
should also produce the terms: a + 0,0+ a, a-0and 0 - a.

Note that, in some cases, not all of the terms mentioned
above need be investigated. For instance, included in our ax-
ioms for N (see Appendix A.1), is the statement that a4+-0 = a

(for any a € N). One would not, therefore, expect to find
any Theorem specifically about a + 0, and thus, this term
can be discarded. On the other hand, axioms which involve
a combination of a (binary) operation with a (unary) func-
tion, offer an opportunity for further exploration. Note that
axiom 8 (respectively, 10) in Appendix A.1, combines + (re-
spectively, -) with the successor function. Comparing 8 with
axiom 7 (respectively, 9), the successor function effectively
replaces 0. This begs the question, what if the variable in-
side the successor function were replaced with 0? (Note that
axiom 13 in Appendix A.3 has a similar combination of the
exponent operation and the successor function). Hence, our
term-generator of the future will (as the present version al-
ready does, to some extent) take into account all the relevant
axioms and Theorems in the database, in determining which
terms to investigate.

The reader can see most of the terms generated in our stud-
ies, as the successful ones (in terms of producing a Theorem,
that is) appear as the left-hand side in the inductive Theo-
rems found in Section 5. Note that each term involves one
or more operations and/or other functions described in the
axioms, along with an appropriate number (at least one) of
“fixed, but arbitrary” variables (to borrow a mathematicians’
expression), and occasionally includes one or more constants.
One such term that does not appear below, although it was
generated by our system, is the term (a * b)™, where a,b € G
and n € N (see Section 5.3). Since the group in question is
not necessarily abelian, then there is essentially nothing that
can be proven about this term. Indeed, our system tries to find
something interesting to prove in this case, but gives up (as it
should) after a few seconds.

This last example helps point out that the ordering of this
sequence of terms is not, contrary to what one might think, all
that critical. We agree that, in order to prove certain inductive
theorems, it is important (if not essential) to already have cer-
tain lemmas at hand. And indeed, our system would not be
able to prove, for example, commutativity of multiplication,
without having discovered most of the previously found The-
orems. Nevertheless, if the given ordering of the sequence of
terms does not produce, for example, this commutativity re-
sult, then one may simply run the system again (and perhaps
repeatedly), until all the necessary lemmas have been found.

We should point out that not all of the Theorems found by
our system are inductive — one ought not expect them to be.
The reader should understand that the process for generating
these non-inductive Theorems is quite different from what we
have been describing here; enough so that another paper? is
required to fully explain it. Suffice it to say that the non-
inductive-type process, like the inductive one, is automatic.

3.4 Finding an Interesting Case

For each generated term ¢, one of the variables (call it v) in ¢
is chosen as the induction variable, and is replaced through-
out the term (allowing for more than one occurrence of this
variable in ¢) by TWO. The system then uses forward chain-
ing, applying whatever axioms and Theorems are at hand, to

“We indeed have written such a paper, but again, for reasons of
anonymity, we are unable to provide a reference here.

find another term ¢', different from ¢, but such that ¢ con-
tains TWO and ¢(TWO) = t'(TWO). As stated earlier, once
such a term ¢’ is found, then the system attempts to prove
that t(base) = t'(base), and if this succeeds, then it tries to
prove the appropriate step case(s), as determined by the rele-
vant induction axiom. (We shall have more to say about the
step case, and its proof, in the next section). Even should all
this succeed, there is still one more hurdle to clear, before this
result is declared to be a Theorem; namely, that ¢(v) = ¢/(v)
should be a non-trivial result. As indicated earlier, if any stage
should fail, then the system backtracks, including to the point
where v was chosen.

As for precisely what is meant by “non-trivial” (and for that
matter, “trivial”), this is an interesting study in itself, and is
well beyond the scope of this paper. We tend to equate “triv-
ial” with what [McCasland et al., 2006] refer to as “already-
known”. In more practical terms, for our purposes, “trivial”
effectively means, that which the system can prove, by us-
ing only a specific, limited subset of prescribed procedures
and Theorems, along with all the given axioms. The exact
makeup of this specific subset can, and perhaps should, vary,
depending upon one’s objectives. For instance, if the sys-
tem’s main goal is to emulate, as much as possible, the hu-
man mathematical process, then “trivial” should mean what
mathematicians think it means. Alternatively, if the system
is trying to automatically discover lemmas that might prove
useful for an automated theorem prover (ATP), then “trivial”
might well mean something quite different. (In future work,
we hope to combine our system with various ATP’s, for this
very purpose. Hence, we intend to parameterize our specifi-
cation of “trivial”, in order to make it more adaptable to this,
and other situations).

Leaving further discussion of trivialities aside, we return
our attention to finding a suitable term #'. As we suggested
earlier, it is important that we use the step representation
of TWO. One reason for this is that otherwise, the system
might not be able to make best use of the necessary axioms,
required to find ¢’. Case in point, consider the associativ-
ity of addition in N*. In this situation, TWO = 1 + 1, and
t(Two) = (a + b) + (1 + 1). By repeated application of
Axiom 5 (see Appendix A.2), one can obtain (by hand) the
following string of equalities:

(a+b)+(1+1)=((a+d)+1)+1
=(a+(b+1)+1
=a+((b+1)+1)
=a+ b+ (1+1)).

Observe that the last term is the only other term in the se-
quence (besides t) that contains TWO, and thus is the term we
seek. Note that, had we replaced TWO with 2, say, then we
would have been stuck. Note also, that the above string of
equalities effectively shows the way for proving the step case
— another (potential) reason for using the step representation
of TwWO. This last observation, however, will not necessar-
ily hold in all situations. Hence, we have implemented other
means of proving the step case, which we will describe in
some detail later.

Not surprisingly, our system does not typically arrive at the
term ¢’ nearly so easily as might be suggested by the above

equations. Indeed, particularly whenever there is an iden-
tity involved, the search space can be literally overwhelming.
One method we use to limit this search space, is to put a cap
C on the size of allowable terms, as measured by the follow-
ing variant (denoted m(t)) on the standard size measurement
of terms:

m(v) ::= 0; where v is a variable or constant

n
m(f(s1,..-,8,)) i= 1+ > m(s;); where f is a function .
i=1
(Note that each term ¢ is quantifier-free, because we rely on
fixed, but arbitrary variables). This cap is set at

C =M+ m(Two) + 2,
where M is initially set at
M ::=mf(t).

The extra cushion of m(TWO) + 2 is allowed, in order to ac-
commodate such results as distributivity, wherein the sought-
after right-hand side might be larger than the given left-hand
side, and moreover, the induction variable (and hence, TWO)
might appear twice.

As for the search itself, we have found that a two-stage
approach works quite well. In the first stage, we limit the
reach of the forward chaining process, in much the same way
as discussed previously, regarding “trivialities”. In particu-
lar, we collect all “promising” terms s, reachable (subject to
our imposed limitations) from ¢, such that ¢(TWO) = s and
m(s) < C. If this does not produce the desired term ¢, then
we add to our collection whatever “promising” terms can be
reached from each of the terms s already in our collection,
and so on. Along the way, each of these “promising” terms is
sent to the second stage, which uses a directed (but still lim-
ited) search to see if it is “close to” a term s’ that contains
TWO. That is, can a term s’ be (quickly) found that contains
TWO and such that s'(TWO) = s. Moreover, for any promis-
ing term s, if m(s) < M, then M is reset to M ::= m(s),
further restricting the search space.

In the above associativity example, this second stage finds
that the term (a + (b4 1)) + 1 is indeed “close to” the desired
term a + (b+ (1 + 1)), and in effect bypasses the last but one
term.

The process continues in this vein, until either a suitable
term ¢’ is found, or no more promising terms s can be found.
Note that the transitivity of equals insures the soundness of
this approach.

4 Proving the Step Case

Once we reach the stage of trying to prove the step case, we
could hand the proof off to one of the ATP’s that are designed
to handle induction proofs. However, our design philosophy,
together with a strong desire to keep everything in-house, re-
quired that we built our own equation-prover. Besides, there
is still the question of whether the resulting general equation
is non-trivial, and ATP’s, quite understandably, were sim-
ply not designed to answer this question. We admit that our
own equation-prover could stand some improvement; never-
theless, it has, thus far, succeeded in proving everything we
wanted it to.

We built the induction-proof portion of our equation-prover
on the (fairly obvious) assumption that, in order to prove the
“k+ 1-case”, one is almost certainly going to make use of the
knowledge provided in the “k-case”. Note that, in our situa-
tion, both cases are, in fact, equations. Hence, both the “k-
equation” and the “k+ 1-equation” are passed to the equation-
prover. Taking the left-hand side of the “k + 1-equation”,
which we will denote by lhs(k + 1), the prover first uses a
process much like the second stage process described above,
in order to see if this term is “close to” a term ¢ that contains
lhs(k). If so, then rhs(k) (i.e., the right-hand side of the
“k-equation”) is substituted in the appropriate place in ¢ (pro-
vided that substitution is allowable), and an attempt is made
to prove that the resulting term equals rhs(k + 1). Should all
this succeed, then, of course, the proof is complete.

If each step in this process succeeds quickly, then well and
good. If not, then we use a piece-wise search, which is cer-
tainly reminiscent of, but somewhat different from, rippling
(see, for example, [Bundy et al., 2005]). Here, the target term
(e.g., lhs(k)) is broken down into subterms (to begin with,
just one level down, in terms of the tree structure). A search
is then made for a term that is equal to the given term (e.g.,
lhs(k 4 1)), but that contains the first subterm of the target
term. If this succeeds (including, of course, the case that the
given term already contains this subterm), then a subsequent
search is made, regarding the next subterm, with the proviso
that the previous subterm not be lost. If any search fails, then
the relevant subterm is broken down into its subterms, and we
proceed as before. These searches continue, until the desired
target term is found, or until all searches fail.

Should this still fail, then the prover begins again, but start-
ing from the respective right-hand sides, moving to the left.
Should this last attempt fail, then the proof fails.

As an example of the piece-wise search, consider the (left-
hand) distributivity Theorem, again in N*. The equation-
prover receives the (assumed) “k-equation”

a-(b+k)=(a-b)+(a-k),
along with the (to-be-proved) “k + 1-equation”
a-(b+(k+1)=(a-b)+ (a-(k+1)).

In order to make use of the given equation, the prover needs
to find a term ¢ such thatt = a - (b+ (k + 1)) and ¢ contains
a-(b+ k). It could, of course, stumble around, until it (hope-
fully) eventually succeeded. However, using the piece-wise
search, it successively searches for terms ¢; and ¢ such that:

t = t1 and ¢; contains a
t1 = t9 and ¢5 contains a and b + k.
Clearly ¢ already contains a, but does not contain b+ k. Thus,
a search is made for ¢, and in fairly short order, it finds that

ta = (a- (b+k)) + a satisfies the requirements. Now rhs(k)
can be applied, which gives

(a-(b+k)+a=((a-b)+ (a-k))+a.

At this point, the piece-wise search can again be used, with
rhs(k + 1) as the target term. The sought-after subterms are
a - b, which ((a-b) + (a-k)) + a has, and a - (k + 1), which

it does not have. Once again, the search rather quickly finds
the following sequence of equations:

((a-b)+(a-k)+a=(a-b)+ ((a-k)+a)
=(a-b)+(a-(k+1)),

and the proof is complete.

5 Theorems

We include the Theorems found by our system, for both of the
aforementioned representations of the natural numbers, and
for group theory. The inductive Theorems are designated by
*. We remark that our system is programmed to determine,
for each binary operation, whether the operation is closed.
(Of course, if there is an axiom that provides this informa-
tion, then nothing else need be done.) Hence, in addition
to the following results, the system also discovered that, for
a,b € Nandforg € G,thena+b,a-b € Nand g" € G.
These results were indeed added to the database, but were not
recorded as “Theorems”.

The code for our system is written in two languages. All of
what one might consider the “mathematics”, is done in Pro-
log; everything else is handled in Java. For these experiments,
we ran our system on a Pentium 4 CPU, 2.40GHz machine,
with 512MB RAM. The time taken, rounded to the nearest
second, to generate each list of Theorems (including the non-
inductive, as well as the inductive results) is provided at the
end of each list.

For the convenience of the reader, the data here have been
rewritten in standard mathematical notation.

5.1 Theorems in the Natural Numbers

The axioms, from which these Theorems (and the Theorems
in the remainder of this section) are derived, can be found in
Appendix A.

Assume throughout that a, b, ¢ € N.

Theorems:

I. a+s(0)=s(a)

2% (a+b)+c=a+(b+c)
3 * 0+a=a

4* sb)+a=s(b+a)

5% a+b=0b+a

6. a-s(0)=a

7* a-(b+c)=(a-b)+(a-c)
8* (b+c)-a=(b-a)+(c-a)
9% (a-b)-c=a-(b-c)

10.* 0-a=0

11.* s(0)-a=a

12*% a-b=b-a

The above list of Theorems was generated in 84 seconds.

5.2 Theorems in the Positive Naturals

Assume throughout that a, b, c € N*.

Theorems:

1. (a+b)+c=a+(b+¢)
2% a+1=1+a

3 a+b=b+a

4% a-(b+c)=(a-b)+(a-c)
5 (b+c)-a=(b-a)+(c-a)
6* (a-b)-c=a-(b-c)

7* l-a=a

8* a-b=b-a

The above list of Theorems was generated in 14 seconds.

5.3 Theorems in Group Theory

Assume throughout that a, b, ¢ € G and that m,n € N. Note
that inv(a) denotes the inverse of a, and that for this study,
we do not consider negative exponents.

Theorems:

1. dnv(inv(a)) =a

2. bxa=a = b=e

3. axb=a = b=c¢

4. bxa=e = inv(a) =b
5. axb=e = inv(a) =b
6. inv(a) *inv(b) = inv(b* a)
7. cxa=cxb = a=5b

8. axc=bxc = a=0b

9. a0 =g

10.* e"=e

11.* g™ % a™ = g™t"
2% (a™)" =a™"

The above list of Theorems was generated in 90 seconds.
Of that time, only 19 seconds were spent on the “exponent”
Theorems (i.e., beginning with Theorem 9, which includes all
the inductive results). This includes the discovery/proof that
a™ € G, along with the (laudable, but futile) attempt to find
something interesting to prove about (a * b)"™.

5.4 Significance of These Theorems

The reader might not be fully aware of the difficulties in au-
tomatically proving some of the above Theorems. Particu-
larly, the commutativity Theorem for multiplication in N has
been notoriously hard for conventional induction provers to
prove. One reason, several intermediate lemmas are normally
required to be on hand, before trying to prove the commuta-
tivity result. Even with these lemmas provided, some provers
still cannot succeed in the proof, without human intervention.

These difficulties exist, even when the provers are told
what to prove! The fact that our system was not told what
to prove, but had to first discover each Theorem, and then
prove it, — including the commutativity Theorem — seems to
be a rather significant achievement.

While there has been some work by other groups, towards
automated discovery of (non-inductive) Theorems, no one
else, to our knowledge, has published any work on automat-
ically discovering inductive Theorems. Thus, there is no one
to whom we can effectively compare our work.

6 Conclusions and Future Work

We have described our methods, and to some extent, our im-
plementation of these methods, for automatically discovering

and proving inductive theorems. We have tested our methods,
albeit in somewhat limited fashion, and have included the re-
sults of our tests. While our work is still ongoing, the results
to date are quite promising.

Besides the previous references to future work, we are
quite keen to try out these methods in other theories — par-
ticularly for lists, as well as over the integers (including inte-
ger exponents of group elements). We anticipate the need for
at least some (perhaps only minor) adjustments to our imple-
mentation, if not to our methods.

A Axioms

We include the axioms provided to our system, for two ver-
sions of the natural numbers and for group theory. For the
convenience of the reader, the data here have been rewritten
in standard mathematical notation.

A.1 The Natural Numbers

The following are the axioms/definitions provided to our sys-
tem, for the natural numbers (based on the Peano Postulates).

Axioms: Given thata,b € N ;
1. N is aset

2.0eN

3.s(a) €N

4. s(a) =s(b) <= a=b
5

6

.s(a) £0
. If S C N such that:

(1) 0 € S; and

(i) k e S=s(k)esS;

then S =N

7.a+0=a
8.a+ s(b) =s(a+0)
9.a-0=0
10.a-s(b)=(a-b)+a

A.2 The Positive Natural Numbers

The following are the axioms/definitions provided to our sys-
tem, for the positive natural numbers (N*) (as found, for ex-
ample, in [Dodge, 1975]).

Axioms: Given that a,b € N*

1. N* is a set
2.1 N*
3.a+beN*
4.a-beN*
5.(a+b)+1=a+(b+1)
6.a-1=a
7.a-(b+1)=(a-b)+a
8. If S C N* such that:
(1) 1€ S;and
iYkeS=k+1€S5;
then S = N*

A.3 Group Theory

The following are the axioms/definitions provided to our sys-
tem, for group theory. Note that inv(a) denotes the inverse

of a, and that for this study, we do not consider negative ex-
ponents.

Axioms: Given that a,b,c € Gandn € N;
. G isaset

.axbedG

.a=b = cxa=cxb
a=b=axc=bxc
(axb)yxc=ax(bxc)
.eeG

.axe=a

.exa=a

.inw(a) € G

10. inv(a) xa =e

11. a xinv(a) = e
12.a°=e

13. a*™ = a" x q

References

[Bundy et al., 2005] A. Bundy, D. Basin, D. Hutter, and
A. Ireland. Rippling: Meta-level Guidance for Mathemat-
ical Reasoning, volume 56 of Cambridge Tracts in The-

oretical Computer Science. Cambridge University Press,
2005.

[Colton, 2002] S Colton. Automated Theory Formation in
Pure Mathematics. Springer-Verlag, 2002.

[Dodge, 1975] C. W. Dodge. Numbers & Mathematics.
Prindle, Weber & Schmidt, Inc. , 2nd edition, 1975.

[Farmer ef al., 1992] W. M. Farmer, J. D. Guttman, and F. J.
Thayer. Little theories. In D. Kapur, editor, CADEI,
pages 567-581, 1992.

[Gao, 2004] Y Gao. Automated generation of interesting
theorems. Master’s thesis, University of Miami, 2004.

[Lenat, 1982] D. B. Lenat. AM: An artificial intelligence
approach to discovery in mathematics as heuristic search.
In Knowledge-based systems in artificial intelligence. Mc-
Graw Hill, 1982. Also available from Stanford as TechRe-
port AIM 286.

[McCasland et al., 2006] R. L. McCasland, A. Bundy, and
P. F. Smith. Ascertaining mathematical theorems. Elec-
tronic Notes in Theoretical Computer Science, 151(1):21-
38, 2006.

