On pseudorandom generators in NC%*

Mary Cryan and Peter Bro Miltersen

BRICS, Basic Research in Computer Science, Centre of the Danish National Research
Foundation, Department of Computer Science, University of Aarhus.
{maryc,bromille}@brics.dk.

Abstract. In this paper we consider the question of whether NC? cir-
cuits can generate pseudorandom distributions. While we leave the gen-
eral question unanswered, we show

e Generators computed by NC° circuits where each output bit de-
pends on at most 3 input bits (i.e, NC3 circuits) and with stretch
factor greater than 4 are not pseudorandom.

e A large class of “non-problematic” NC° generators with superlin-
ear stretch (including all NC$ generators with superlinear stretch)
are broken by a statistical test based on a linear dependency test
combined with a pairwise independence test.

o There is an NC§ generator with a super-linear stretch that passes
the linear dependency test as well as k-wise independence tests, for
any constant k.

1 Introduction

The notion of deterministically expanding a short seed into a long string that
looks random to efficient observers, i.e., the notion of a pseudorandom generator,
has been a fundamental idea in complexity as well as cryptography. Nevertheless,
the question of whether strong pseudorandom generators actually exist is a huge
open problem, as their existence (at least with cryptographic parameters) implies
that P # NP: One can prove that a generator G is not pseudorandom by
presenting a polynomial-time algorithm to decide range(G). Therefore if P =
NP, strong pseudorandom generators do not exist.

On the other hand, that G has an NP-hard range does by no means guarantee
or even suggest that G is a strong generator, as there may be statistical regu-
larities in the output of the generator. For this reason, existing pseudorandom
generators are proven to be strong under stronger hardness assumptions than
P # NP. Some of the most important research in this area was presented in a
series of papers by Blum and Micali [2], Yao [18] and Goldreich and Levin [6].
Hastad, Impagliazzo, Levin and Luby [9, 8], building on this research, finally
showed that the existence of a cryptographic one-way function is sufficient (and
trivially necessary) for the existence of a cryptographic pseudorandom genera-
tor. This general construction only depends on a generic one-way function, but

* Full version at http://www.brics.dk/~maryc/publ/psu.ps. Partially supported by
the IST Programme of the EU, contract number IST-1999-14186 (ALCOM-FT).

the resulting generator is quite involved and seems to need the full power of the
complexity class P.

The general construction left open the precise computational power needed
to produce pseudorandomness. Kharitonov [11] showed, under a more specific
hardness assumption, that there is a secure pseudorandom generator in NC?
for any polynomial stretch function. Impagliazzo and Naor [10] showed how to
construct secure pseudorandom generators based on the assumed intractability of
the subset sum problem. In particular, they showed how to construct a generator
with a non-trivial stretch function (expanding n bits to n + ©(log(n)) bits) in
the complexity class AC®. This suggests that even rudimentary computational
resources are sufficient for producing pseudorandomness (it is worth noting that
Linial, Mansour and Nisan [14] proved that there are no pseudorandom function
generators in AC? with very good security parameters).

From both a theoretical and a practical point of view it seems worth finding
out how rudimentary pseudorandom generators can be. There are different in-
terpretations of this question, depending on how we formalise “rudimentary” or
“simple”. In previous work Kharitonov et al. [12] and Yu and Yung [19] proved
strong negative results about the ability of various automata and other severely
space-restricted devices to produce pseudorandomness. In this paper, we inter-
pret “simple” in terms of circuit complexity and ask: Are there pseudorandom
generators in NC°?, that is, are there pseudorandom generators where each out-
put bit depends on only a constant number of input bits? Such generators would
be appealing in practice as they can be evaluated in constant time using only
bounded fan-in hardware. However, it seems that with such a severe constraint
on the generator, there would certainly be statistical regularities in the output,
so that we could construct a sequence of circuits to distinguish between the uni-
form distribution and output from the generator. This is a tempting conjecture,
but we have not been able to prove it without further restrictions.

Our main results are:

Theorem 3 There is no strong pseudorandom generator with a stretch factor
greater than 4 for which every output bit depends on at most 3 input bits (that
is, no NC9-generator).

We can actually prove a weaker version of the theorem above for a more general
class of “non-problematic” generators of which NC$ generators are a special
case, and we do this in Theorem 1. It is interesting to note that deciding the
range of a NCY circuit is, in general, NP-hard (see Proposition 1), so we cannot
use the approach of inverting the generator’s output to prove either of these two
theorems. Instead, in Theorem 1 we show that we can break any such generator
with a statistical test consisting of a linear dependency test and a test for pairwise
independence of the output bits. On the other hand, we show

Theorem 5 There is a generator with a superlinear stretch for which every
output bit depends on at most 4 input bits (i.e., an NCY-generator) so that
that there are no linear dependencies among the output bits and so that for any

constant k and for sufficiently large input size, all bits of the output are k-wise
independent.

The question of whether there are true pseudorandom generators in NCY is
still open. We have no construction that we believe is truly pseudorandom, nor
do we have a general scheme for breaking such generators. We have been able to
reduce the number of boolean functions on 4 variables that could possibly serve
as basis for such a generator to 4, up to isomorphism.

2 Definitions and Background

Definition 1. A circuit C : {0,1}" — {0,1}" is in NC? if every output bit
of C is a function of at most ¢ input bits. The circuit C' is associated with an
induced distribution on {0,1}¥, where the probability of y € {0,1}" is the
probability that C' outputs y when the input to C' is chosen from the uniform
distribution U, on {0,1}". We will be flexible about notation and use C to
denote this induced distribution as well as the circuit itself. We say a sequence
of circuits {Cy, },, : {0,1}" — {0,1}*() is in NC2 if C,, is in NC? for all n. The
function ¢(n) is known as the stretch function of the sequence and the stretch
factor is £(n)/n.

Definition 2. A function f : N — [0, 1] is said to be negligible if for every ¢ > 0,
there is some constant n. such that f(n) < n=¢ for every n > n.. It is said to
be overwhelming if 1 — f is negligible.

Definition 3 (from [10]). A function G : {0,1}" — {0,1}*("™ is a pseudoran-
dom generator if every non-uniform polynomial-time algorithm A has a negligible
probability of distinguishing between outputs of G and truly random sequences;
that is, for every algorithm A,

|Pr[A(G(x)) = 1] — Pr[A(y) = 1]| is negligible,
where x and y are chosen from U,, and Uy(n) respectively.

Deviating slightly from the above definition, we prove, for convenience, our non-
pseudorandomness results for sequences of NC? distributions by using a statis-
tical test to distinguish between several samples of the uniform distribution and
several samples of the NC? distributions, rather than one sample.

Definition 4. An efficient statistical test is a procedure which takes as input a
parameter N and m = m(N) samples (for some m(N) = NOW)) gy, ..., y,, from
{0,1}", runs in polynomial time, and either ACCEPTs or REJECTSs. Further-
more, if y1, ..., Ymn are chosen from the uniform distribution Uy, the probability
of acceptance is overwhelming (that is, the probability of rejection is negligible).

Definition 5. Let A be a statistical test. An ensemble {D,, },en of probability
distributions on {0,1}*™, ¢: N — N is said to fail A if the probability that A
rejects Y1, .. ., Ym(e(n)) chosen independently from D, is not negligible. Otherwise
the ensemble is said to pass A.

Although Definition 3 is the traditional definition of pseudorandomness, it is
well known that an ensemble of distributions generated by a generator fails some
(possibly non-uniform) statistical test in the sense of Definition 5 if and only if
the generator is not pseudorandom in the sense of Definition 3 (see Goldreich [5,
page 81] for details).

Some of the results in Sections 3 and 4 refer to special NC? circuits that we
refer to as non-problematic circuits. We need the following definition:

Definition 6. A function f : {0,1}¢ — {0,1} is affine if f(z1,...,2.) can be
written in the form ay21 + ... Qe + aeq1 (mod 2), for a; € {0,1}. We say that
f is statistically dependent on the input variable x; if either Pr[f(x) =1 | z; =
1] #1/2 or Pr[f(z) = 1| 2 = 0] # 1/2. An NC? circuit is non-problematic if
for every output gate y; = fj(xj1,...,%;), the function f; is either an affine
function or depends statistically on one of its variables.

Before we present our results, we discuss previous negative results on genera-
tion of pseudorandomness. Lower bounds for pseudorandom function generators
were studied in [14,16,13]. The only papers we are aware of that give impossi-
bility results or lower bounds for “plain” pseudorandom generators as defined
above, are the papers by Kharitonov et al. [12] and Yu and Yung [19].

Kharitonov et al. [12] proved that no generator that is either a one-way
logspace machine or a one-way pushdown machine is a strong generator, even
when the generator is only required to extend the input by a single bit. They also
considered the question of whether sublinear-space generators exist and related
this issue to the L vs P question. It is worth noting that the proofs of non-
pseudorandomness that Kharitonov et al. obtain for one-way logspace machines
and one-way pushdown machines (and for finite reversal logspace machines)
depend on showing that the range of these generators can be recognized in
polynomial time.

Yu and Yung [19] considered bidirectional finite state automata and bidirec-
tional machines with sublogarithmic space (o(logn) space) as generators. They
proved that bidirectional finite state automata are not strong pseudorandom
generators, even when the generator only extends the input by one bit. For
these generators, they also showed that the tester for distinguishing between the
generator’s output and the uniform distribution can be assumed to lie in L2.
For bidirectional machines with o(logn)-space, they showed that any generator
in this class with superlinear stretch is not pseudorandom. All the impossibility
results of Yu and Yung are again obtained by showing that the range of the
generator can be recognized in polynomial time.

We can use a similar strategy to show that pseudorandom generators in NC9
do mnot exist: Note that for all uniform sequences {C,}, of circuits in NC3,
range(C,) is in P. This follows because the problem is a special case of 2-SAT.
However, this is a strategy we cannot use (in general) for distributions generated
by NCP-circuits, because we now show that there are sequences {C,, },, of circuits
in NCY such that deciding range(C,,) is NP-complete. The proposition below is
an improvement of a result due to Agrawal et al. [1, Proposition 1], who showed

that there is a function f in NC$ such that that is NP-complete to invert f. It
also improves an unpublished theorem of Valiant (Garey and Johnson [4], page
251), stating that inverting multinomials over GF(2) is NP-hard: we prove that
this is the case even for a specific sequence of multinomials.

Proposition 1. There is a uniform sequence {Cp}nen of NC9 circuits such
that range(Cy,) is NP-complete. Also, every output gate in every circuit in the
sequence is a degree-2 multinomial over GF(2).

Proof. The reduction is from the NP-complete problem 3-SAT . For every n €
N we construct a NC9 circuit to model 3-SAT problem on n variables. The
circuit has an input gate x; for 1 < i < n for each logical variable, and three
helper inputs hj1,hj 2, hj3 for every possible three-literal clause ¢; (there are
8(73‘) ¢;8). The circuit has four output gates y;0, ¥;,1,¥;,2, y;,3 for every c;. Let
N = Yn(n —1)(n — 2) denote the total number of output gates.

The gates are connected to form a NC9 circuit as follows: for every possible

clause ¢;, we connect h;1,h;2 and hj3 (the “helper” inputs) to y, o as follows:
Y3,0 =def (1 + hjﬁl + hjﬁg + hjyg) (mOd 2) (1)

It is easy to check that y;o = 1 iff an even number (0 or 2) of the helper
inputs {hj1,h;2,h;3} are switched on. Let the literals in clause ¢; be €1, £;2
and ¢; 3. Each of the output gates {y, 1, Y2, y;3} is the disjunction of one helper
input and one of the literals in c;:

yj,i =def 1-— (1 — fj,l)(l — hjﬂ') (mod 2) 1= 1,2,3 (2)
Two facts:

(i) If all of the helper inputs for ¢; are 1 then y;0 = 0 and y;1y;,2y;,3 = 111
both hold.

(ii) Suppose the x; inputs are fixed but the helper inputs are not. Then we can
set values for hj 1, hj2,h;3 to give y;0¥;,1Y;,2y;5,3 = 1111 iff at least one of
the literals in ¢; is true under the truth assignment given by the z; input
variables.

For any instance (X, C) of 3-SAT with n = | X| variables, define a € {0, 1}"
by Setting aj0051052053 = 1111 for Eevery c; € C' and a;5,0045,1052053 = 0111 for
every ¢; € C. By fact (i), we can imagine that all the helper inputs for clauses
outside C' are set to 1. Then by fact (ii), a € range(C,,) iff there is some truth
assignment for the x; variables that satisfies some literal of every clause in C.

Note that the functions defined for the output gates (Equations 1 and 2) are
all degree 2 multinomials.

3 Lower Bounds

In this section we prove that sequences of non-problematic NC? circuits with a
“large enough” (constant) stretch factor are not pseudorandom generators.

The particular statistical test that we use to detect non-pseudorandomness is
the LINPAIR test, which tests for non-trivial linear dependencies in the output
(Step (i)) and also tests that the distribution on every pair of indices is close to
uniform. We also use a generalization of the LINPAIR test called the LIN(k) test,
which instead of merely checking that the distribution on every pair of outputs
is close to uniform, checks that the distribution on every group of k indices is
close to uniform (Step (ii)). Note that Step (i) of LIN(k) can be computed in
polynomial-time by Gaussian elimination. Also for any constant k& € N, Step (ii)
of LIN(k)[m, N] is polynomial in m and N, because there are only 2% (ZZ) different
Fj .. julb1,. .., bg] values to calculate and test.

Throughout the paper we will use LINPAIR[m, N] to denote LIN(2)[m, N].

Algorithm 1 LIN(k)[m, N]

input: m samples a1, . .., an, € {0, 1}N. Each a; is writtenas a; 1 ... a; N.
output: ACCEPT or REJECT

(i) Check the linear system) _; zja;,; = zn+1(mod 2) (1 < i <m) for a
non-trivial solution;
If there is a non-trivial solution then REJECT;
else
(ii) For every set of k indices j1,...,jk (1 < j1 < ...jk < N), calculate
Fj ,,,,, jk[blv .. .,bk] =def %H S) S m: agg; .- Q4 5, = bl .. bk],
for every tuple by ...b; € {0,1}%;
if |[Fj, . julbr, ... bk — (1/2F)] > & for any ji,...,j, and by, ..., by
then
REJECT;
else
ACCEPT;
end
end

Now we show that LIN(k) is a statistical test for any & (it accepts the uniform
distribution):

Lemma 1. Let m : N — N be any function satisfying m(N) > N2log® N.
Then if the LIN(k) algorithm is run with m samples from Uy, the probability
that LIN(k) accepts is overwhelming.

Proof. First consider Step (i). First note that since we are working with binary
arithmetic modulo 2, any non-trivial solution to the linear system Z;il Zja;5 =
zN+1(mod 2) corresponds to a non-empty subset S C {1,..., N} such that either
(a) > jes @i = 0 holds for all 1 <4 < mor (b) 3, ga;; =1 holds for all i.
For any fixed set S of indices, the probability that > jes @iy =0 holds for a
single a; chosen from the uniform distribution is 1/2. The probability that (a)
holds for all 1 <4 <m is 1/2™, and the probability that either (a) holds or (b)

holds is 1/2™~1. There are only 2V subsets of {1,..., N}, so we can bound the

probability of finding any non-trivial solution to Zj\]:l
2V /2m=1"which is at most 2=~ when m > N2 log® N.
Next we bound the probability that Step (ii) rejects. For any k indices
J1s- .-, Jjx, and any k-tuple of bits by, ... by € {0, 1}*, the probability that ji, .. ., ji
reads by ...bg in a sample from Uy is 1/2%. By Hoeffding’s Inequality (see Mc-
Diarmid [15, Corollaries (5.5) and (5.6)]), if we take m samples from Uy, then

zja;; = zn+1(mod 2) by

Pr (|, b1, .. bk — 1/2%] > 1/N] < 2exp[—1/3(2% /N)2m(1/2%)]
< 2exp[—2*/3(log N)?]

which is at most 2N~(10eM2" There are 28 N* different tests in Step (i), so
the probability that any one of these fails is at most 2k+1 Nk—(1og N)2°7% " hich
is at most N~1°8N/2 for large N.

So LIN(k) succeeds with probability at least 1 — 2=~ — N~ logN/2,

Theorem 1. For any constant ¢ > 2 there is a constant d € N so that the
following holds: If {Cy,}nen is a family of non-problematic NCQ circuits whose
stretch function satisfies €(n) > dn, then {Cp}nen fails LINPAIR[m, £(n)] for
any function m with m(£(n)) > log® £(n). Hence {Cy, }nen is not pseudorandom.

Proof. The constant d = (2(¢~12°(¢—1)!)+1 is large enough for this theorem. We
will show that for all such circuits, LINPAIR[m, £(n)] fails for all m > log? (n)
(for large enough n).

There are two cases. The circuits are non-problematic, so every output bit of
C,, is either an affine bit or is statistically dependent on one of its input variables.

Case (i): First we prove the theorem for the case when C), has at least n + 1
affine outputs. Without loss of generality, let the affine outputs be y1,...,ynt1.
Since there are only n input variables, and each output y; is an affine combination
of some input variables, there is a non-trivial affine dependence among the y;’s.
That is, we can find constants ai,...,an+1 € {0,1} such that not all of the
a; are 0 and such that either Y. | a;y; = O(mod 2) or i ; yy; = 1(mod 2)
holds for all 1,...,2, € {0,1}. Therefore, Step (i) of the LINPAIR algorithm
will always find a non-trivial solution (regardless of the number m of samples),
and the algorithm will reject.

Case (ii): If there are less than n+ 1 affine output bits, then there are at least
n(d—1) output bits that are statistically dependent on at least one of their input
variables. Therefore there is at least one input bit such that (d — 1) different
output bits are all statistically dependent on z. Assume wlog that these output
bits are y1,...,yq—1. We will prove that the distribution on some pair of these
bits deviates from the uniform distribution Us, and therefore will fail Step (ii)
of LINPAIR.

We use the Erdés-Rado sunflower lemma (see Papadimitriou[17, page 345]),
which gives conditions that are sufficient to ensure that a family F of sets con-
tains a sunflower of size p, where a sunflower is a subfamily F' C F of size p,
where every pair of subsets in F’ has the same intersection. The family F that

we consider contains a set I; for every 1 < i < d — 1, where I; contains all the
input variables feeding y; except x. By the sunflower lemma, our definition of d
ensures that there is a sunflower of size d’ = 22" + 1 in F. That is, we have d’
special output bits y1, ...,y , such that each y; depends on the bit x, on some
additional input bits u = (u1,...,u,) common to yi, ...,y , and on some extra
input bits z; not shared by any two outputs in y1,...,yq .

There are only 22° different functions on ¢ variables, so if we take the most
common function f among the output bits y1, ...,y (with the input bits ordered
as x first, then u, then the private input bits), then we can find at least 2 output
bits with the same function. Assume these are y; and y2. So we have

y1 = f(zyu,.. . up,21) and yo = f(2,u1,. .., U, 22)
where z; and 2z are vectors of input bits, and z; and 2o are disjoint and of

the same length. We can now show that the distribution on (y1,y2) is not Us.
Calculating, we have

Priyiys = 11] = %(Pf[ylm = 11]z = 1] + Pr[y1y2 = 11|z = 0])
= 5 (Ave (Prlynye = 11fru = 1) + Ave, (Pelyryz = 11w = 0j]))
= 5 (Ave (Prlyy = 1lzu = 1j]%) + Av (Prlys = 1w = 057))
= %(Ang (8;)* + Avg;(v)%)

where Avg,; denotes the average of its argument over all j € {0,1}", and f; =
Prly; = 1|zu = 15] and ~; = Pr[y; = 1|zu = 05]. We know that the output y; is
statistically dependent on x, so we assume wlog that Pry; = 1|z = 1] = 1/2+¢,
where € > 1/2¢ (since y; is a function on ¢ inputs). Then, assuming Pry; = 1] =
1/2, we have Pr[y; = 1|z = 0] = 1/2 — € (if we have Pr[y; = 1] # 1/2, then we
are already finished).

For any sequence of numbers {t;}, Avg;(t;)*> > (Avg;t;)®. Also, Prly; =
l|z = 1] = Avg,;$3; and Prly; = 1|z = 0] = Avg;~;. Therefore

1
5 Prlyr =1jz = 12 + Prly; = 1|z = 0]?)

= %((1/2 +e)2 4 (1/2—¢)?)

Priyiye = 11] >

= %(1/2 + 2€%)

Now consider the calculation of Fj[1,1] in Step (ii). The expected value of
Fi2[1,1] is at least 1/4 + 1/2%¢. Therefore, if the deviation of Fj 2[1,1] from its
expectation is bounded by 1/22¢T1) we have |F} 5[1,1] — 0.25] > 1/22¢T1, Using
Chernoff Bounds (see McDiarmid [15]), the probability that Fj 2[1, 1] deviates
from its expectation by 1/22¢t1 is at most 2 exp[—2m(£(n))/22(2¢+V)]. Thus for
m(£(n)) > log® £(n) and large enough n, we have |Fy o[1,1] — 0.25] > 1/22°+1 >

1/6(n) with probability at least 1 — 2exp[—2(log#(n))3/2]. Therefore for suffi-
ciently large ¢(n), Step (ii) fails and LINPAIR[m, £(n)] rejects with probability
at least 1 — 20(n) 208" ((n))

One of our referees has pointed out that the bound on d in Theorem 1
can be improved by testing the variance of sums of output variables. For any
discrete random variable X, the variance of X, denoted var(X), is defined as the
expectation of (X — E[X])2. In case (ii) of Theorem 1, we find a set of output
variables y1,...,yq—1 such that each y; is statistically dependent on the same
variable x. Suppose d > 22¢ 4+ 1. Then var(zglz_l1 z;) is at least d — 1 for some
choice of z; € {y;,7:} : i =1,...d — 1, whereas the variance is (d — 1)/4 when
the z; are independent uniform random bits (see Grimmett and Stirzaker [7]).
The following statistical test distinguishes between the NC? circuits of case (ii)

and the uniform distribution: for every z;,...,z;,_, where z;; € {;, ¥:} and

the i; are distinct indices, calculate the average of (Z‘j;ll 2z, — (d—1)/2)? over

the set of samples. If any of these estimates is greater than (d—1)/2, then reject.
The following observation can be easily verified by computer.

Observation 2 Every NCY circuit is non-problematic.

By Observation 2, Theorem 1 holds for all sequences of NC9 circuits. By a
more careful analysis of NC$ circuits, we can prove a stronger result:

Theorem 3. Let {Cy,}nen be any ensemble of NC circuits which has a stretch
function £(n) with £(n) > 4n+1. Then {Cy }nen fails LIN(4)[m, £(n)] for any m
satisfying m(£(n)) > log® £(n) and therefore is not pseudorandom.

4 A generator that passes LIN(k)

Our original goal was to prove that for all ¢ € N there exists some constant
d € N such that any sequence of NC? circuits with stretch factor at least d is
not pseudorandom. So far we have only been able to prove this for sequences of
non-problematic circuits. For the set of NC9 circuits, we can classify the number
of different problematic output gate functions in the following way:

Observation 4 Consider the set of all problematic functions f : {0,1}* —
{0,1} on four variables. Define an equivalence relation on this set by saying

f=gif
f(x1, 29,23, 24) = b5 + g(m(z1+ b1, ..., 24+ bg))(mod 2)

for some permutation ™ and some five boolean values by, ..., bs € {0,1}. That is,
two functions are equivalent if one can be obtained from the other by permuting
and possibly negating input variables and possibly negating the output. Then,
there are only four problematic non-equivalent functions on 4 inputs, namely

filxy, ... 24) = 21 + 22 + 2374 (mMod 2)

falxr, ... 24) = 21 + 2223 + 324 + 2224 (mod 2)
f3(z1,. .o, 24) = 21 + T2 + 24(T2 + 23) (MO 2)
fa(x1, ..., 24) = 21 + 22 + (21 + 24) (22 + x3) (mo0d 2)

Proof. Case analysis (by computer).

Any NCY circuit with a large enough stretch factor is guaranteed to either
(a) contain enough non-problematic output gates to allow us to use Theorem 1
to prove non-pseudorandomness, or (b) contain a large number of output gates
of the form f;, for one of the fi,..., f4 functions. So when we consider candidates
for pseudorandom generators in NC9 with superlinear stretch, we only have to
consider generators using gates of the form of one of fi, fo, f3, fa.

We show that Theorem 1 cannot be extended to non-problematic functions
by exhibiting an NC$ generator using only output gates of the form f; and
passing LIN(k) for all constants k. We need the following lemma (a variation of
the well-known Schwartz-Zippel lemma):

Lemma 2. For any r-variable multilinear polynomial f of degree at most 2 over
GF(2) which is not a constant function, Prp[f(z) = 0] € [1/4,3/4] when z is
chosen uniformly at random from {0,1}".

Theorem 5. Let k : N — N be any function satisfying 2 < k(n) < logn.
Then there is a generator in NC9 with stretch function {(n) = n*TO/®) such
that for any function m satisfying m > €(n)?(log” £(n)), the generator passes
LIN(k(n))[m, £(n)] with overwhelming probability.

Proof. In this proof we will informally use k to denote k(n) and ¢ to denote £(n).
Our construction uses the following result from extremal graph theory (see Bol-
labés [3, page 104)): For all n there exists a graph G on n/2 nodes with ¢ edges,
such that the girth of G (i.e., the length of the shortest cycle of G) is at least k.
We use this graph to construct a circuit, with an output gate for every edge
in G: the input bits of the generator are split into two sets, the set {zq,. .. ,Zn/g}
which will represent the nodes of G, and another set {x1,...,z, /2}. We assume
some arbitrary enumeration {(u;,v;) : @ = 1,...,£} of the edges of the graph,
and we also choose any ¢ different ordered pairs {(i1,i2) : ¢ = 1,...,¢} from
{1,...,n/2}2 Then, for every output bit y;, we define

Yi =def Tiy Tiy + Zu, + 2o, (mod 2),

where z,, and z,, are the inputs from {21,...,2,/2} representing u; and v;
respectively. Note that Pr[y; = 1] = 1/2 for every .

We show that the generator passes the linear dependency test of LIN(k)
with high probability and also that the output bits are k-wise independent, and
therefore pass Step (ii) of LIN(k).

First consider the test for linear dependence among the outputs yi,...,ye
(Step (i)). By definition of the y; functions, no two y; share the same x;, x;,
term. Then for every sequence ag,...,ap € {0,1} containing some non-zero

term, Zle a;y; is not a constant function. Step (i) rejects (given m samples
ai,...,am € {0,1}%) iff there exist ay,...,ay € {0,1} not all zero such that

¢
Z ajaj; is constant for all 1 <7 <m
i=1

For any particular sequence ay, ..., ap € {0,1}, Lemma 2 implies that the prob-
ability that m samples satisfy the equation above is at most 2(3/4)™. There are
2¢ different a-sequences, so the total probability that Step (i) rejects is at most
209(3/4)™ = 202(3/4)¢ 18" €(n) < (3/4)*/2 which is negligible.

For Step (ii), we show that any k outputs are mutually independent. Let
k' be the minimum &’ for which k' output bits are mutually dependent. As-

sume wlog that these output bits are yi,...,yr . Now, suppose there is some
y; with 1 <4 < K’ such that one of z,,, z,, does not appear in any other out-
put function for yi,...,yr . If this is the case, then regardless of the values

along the output gates y1 ...¥;—1¥it1 ... yx, the probability that y; = 1 is al-
ways 1/2 (y; is mutually independent of all the other y;’s). Therefore the set
of outputs yi1,...¥i—1,%i+1-..yr must be mutually dependent and we obtain
a contradiction. Therefore if k&’ is the minimum value for which &’ outputs are
mutually dependent, then for every y;, z,, and z,, appear in at least one other
output from yi,...,yr. In terms of the original graph that we used to con-
struct our circuit, we find that in the subgraph consisting of the set of edges
for yy,...,yr, each vertex has degree at least 2. Then this subgraph contains a
cycle of length at most k', so k' > k, as required.

Then an argument similar to the argument for LIN(k) in Lemma 1 shows
that Step (ii) rejects with negligible probability.

5 Open problems

The main open problem is of course whether NC? circuits in general can be
pseudorandom generators. We believe this may turn out to be a difficult question.
Some, perhaps, easier subquestions are the following:

We have been able to show that there is no pseudorandom generator in NC$
that expands n bits to 4n+1 bits. It would be interesting to optimise this to show
the non-existence of generators in NC$ expanding n bits to n+ 1 bits. . Another
goal that may be within reach is to prove that NC9 generators with superlinear
stretch cannot be pseudorandom generators. There is no reason to believe that
the construction of Theorem 5 is unbreakable. Indeed, note that the generator
is not specified completely as the graph and the exact enumeration of pairs is
unspecified. It is easy to give examples of specific graphs and enumerations where
the resulting generator can be easily broken by testing whether a particular
linear combination of the output bits yields an unbiased random variable. If
one believes that NC§ generators in general are breakable (as we tend to do),
Observation 4 suggests that a limited number of ad hoc tests may be sufficient
to deal with all cases. For instance, it is conceivable that every such generator

is broken by testing whether a particular linear combination of the output bits
yields an unbiased random variable.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. Agrawal, E. Allender and S. Rudich, “Reductions in Circuit Complexity: An
Isomorphism Theorem and a Gap Theorem”; Journal of Computer and System
Sciences, Vol 57(2): pages 127-143, 1998.

M. Blum and S. Micali, “How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits”; SIAM Journal on Computing, Vol 13: pages 850-864, 1984.
B. Bollabés, Extremal Graph Theory; Academic Press Inc (London), 1978.

M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-completeness, W.H. Freeman and Company (1979).

O. Goldreich, Modern Cryptography, Probabilistic Proofs and Pseudo-randomness;
Vol 17 of series on Algorithms and Combinatorics, Springer-Verlag, 1999.

O. Goldreich and L.A. Levin, “Hard-Core Predicates for any One-Way Func-
tion”; Proceedings of the 21st Annual ACM Symposium on Theory of Computing,
pages 25-32; 1989.

G.R. Grimmett and D.R. Stirzaker, Probability and Random Processes, Oxford
University Press, 1992.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby, “A Pseudorandom Generator
from any One-way Function”; STAM Journal on Computing, Vol 28(4): pages 1364-
1396, 1999.

R. Impagliazzo, L.A. Levin and M. Luby, “Pseudo-random Generation from One-
way Functions”; Proceedings of the 21st Annual ACM Symposium on Theory of
Computing, pages 12-24, 1989.

R. Impagliazzo, M. Naor, “Efficient Cryptographic Schemes Provably as Secure as
Subset Sum”; Journal of Cryptology, 9(4): pages 199-216, 1996.

M. Kharitonov, “Cryptographic Hardness of Distribution-specific Learning”; Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 372-
381, 1993.

M. Kharitonov, A.V. Goldberg and M. Yung, “Lower Bounds for Pseudorandom
Number Generators”; Proceedings of the 30th Annual Symposium on Foundations
of Computer Science, pages 242-247, 1989.

M. Krause and S. Lucks, “On the minimal Hardware Complexity of Pseudorandom
Function Generators”, Proceedings of the 18th Symposium on Theoretical Aspects
of Computer Science, 2001.

N. Linial, Y. Mansour and N. Nisan, “Constant Depth Circuits, Fourier Transform,
and Learnability”, Journal of the ACM, Vol 40(3): pages 607-620, 1993.

C. McDiarmid, “On the method of bounded differences”, London Mathematical
Society Lecture Note Series 141, Cambridge University Press, 1989, 148-188.

M. Naor and O. Reingold, “Synthesizers and Their Application to the Parallel
Construction of Pseudorandom Functions”, Journal of Computer and Systems Sci-
ences, 58(2): pages 336-375, 1999.

C.H. Papadimitriou, Computational Complezity; Addison-Wesley, 1994.

A.C-C. Yao, “Theory and Applications of Trapdoor Functions”; Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, pages 80-91, 1982.
X. Yu and M. Yung, “Space Lower-Bounds for Pseudorandom-Generators”;
Proceedings of the Ninth Annual Structure in Complexity Theory Conference,
pages 186-197, 1994.

