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Abstract— Recent advances in machine learning and adaptive ~ Our approach will formulate a probabilistic model that
motor control have enabled efficient techniques for online represents the context as a latent (switching or continu-
learning of stationary plant dynamics and it's use for robust 5y variable. This framework allows us to estimate the

predictive control. However, in realistic domains, systemdy- text online b d onl the | di d .
namics often change based on unobserved external contexts context online based only on the learned inverse dynamics

such as work load or contact conditions with other objects. Mmodels using Markovian filtering. Further, an Expectation-
Previous multiple model approaches to solving this problenrare  Maximization procedure is used to bootstrap the distimctio
restricted to finite, discrete contexts without any generatation  of contexts from context-unlabeled data. In Section I, we
and have been tested only on linear systems. We present ayjefly discuss single model learning and control under a
framework for estimation of context through hidden latent vari- inal text using LWPR fficient onli lgorithm. W
able extraction — solely from experienced (non-linear) dyamics. Single context using o an eificien 9“ ine a 99” m. we
This work refines the multiple model formalism to bootstrap ~ then talk about the multiple model paradigm and discuss con-
context separation from context-unlabeled data and enabfe text estimation, control and data separation under maeltipl
simultaneous online context estimation, dynamics learning and  discrete contexts in Section Ill. We then show in Section 1V,
_control base_d on a consistent probabilistic form_ulatlon. Most using knowledge about analytical dynamics, that it is gesi
importantly, it extends the framework to a continuous latent ¢ f late the di t text o t fi
model representation of context under specific assumptionsf 0 reformulate the |scr§ € context scenario 9 a _con lauou
load distribution. latent model representation where the generalizationswo n
contexts (outwith the already learned models) holds under
|. INTRODUCTION specific assumptions of the load distribution. To the best of
The dynamics of a system often depend on an unobservedr knowledge, this is the first work that deals with learning
external context. An example of unobserved external contegontrol undercontinuouslyvarying contexts.
that results in non-stationary dynamics is the work load of

a robot manipulator. The resultant dynamics of the robot Il. LEARNING DYNAMICS FOR CONTROL

arm change as it manipulates objects with different physica anthropomorphic robotic systems have complex kinematic
properties, e.g. mass, shape or mass distribution. Thg efud and dynamic structure, significant non-linearities anddhar
adaptive control [8] has provided a multitude of method$ thag model non-rigid body dynamics; hence, deriving reliable
could be used in cases of non-stationary dynamics. Howevehalytical models of their dynamics can be cumbersome
if the dynamics switch back and forth, e.g. if manipulatingand/or inaccurate. We take the approach of learning dyramic
a set of tools for executing various tasks, classic adapti¥gr control from movement data (see Fig. 1 for a graphical
control methods are inadequate since they result in larggggel representation); typically theversedynamics model
errors and instability during the period of adaptation; &ior for predicting desired torques. The inverse model maps
over, readapting every time is a suboptimal and inefficierfrrent state®); and the next desired stat€¥_; to the

strategy that unlearns the dynamics of the previous catextommandr; that results in the transition between these
A proposed solution is the use of multiple models, eachates:

of_w_h|ch is appropriate _for a different cqntext. However, 7 = (04, Ors1) Q)
existing work on the multiple models paradigm [3], [10],,[5]

[7] does not cope well with issues concerning the choice of

correct number of models, detection of novel contexts and

use of knowledge from previously learned models to new

contexts. Furthermore, the actual number of discrete gtite

may grow indefinitely with time as new situations appear. \ \
Most prior work on estimating contexts from movement data
rely heavily on analytical rigid body dynamics and estiroati 0
of a few, heavily constrained parameters of the full body

dynamics[4]. This approach fails when deriving analytical

. . . Fig. 1. The forward and inverse model
dynamics is complicated or not feasible.
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where A is the gain matrix. This is a combination of a .|
feedforward command that uses the inverse model and
feedback command that takes into account the actual st
of the system. The more accurate the inverse model is, ti2
lower the feedback component of the command will be, i.e
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measure of the accuracy of the inverse model. Furthermol 03r
good predictive models allow us to use low feedback gain: sl 1 oal 150
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Fig. 3. Results on learning single context dynamics. Left error. Middle:
contribution of error-correcting feedback command. Rigfracking error

and employs Partial Least Squares (PLS) to deal with high
dimensional inputs. For more details about LWPR, see [9].

A. Experiments in Learning Dynamics for Single Context

We verify the ability to learn the inverse model online
with LWPR and show that the model can successfully be
used for control. We demonstrated this for a simulated
3 DOF robot arm! (see Fig. 2(a)) as well as on the
7 DOF anthropomorphic SARCOS robot arm (Fig. 2(b)).

(b) The statistics are accumulated and shown briefly for the

Fig. 2. (a) Simulated 3DOF arm (b) 7DOF SARCOS dextrous arm Simulated arm, for more details please see [2]. The task

of the arm was to follow a simple trajectory planned in

Typically, in robotic systems with proprioceptive andjoint angle space, consisting of a superposition of sirdssoi
torque sensing, at each time stepve “observe” a state with different phase shifts. 20 iterations of the trajegtor
transition and an applied torque signal summarized in theere repeated: during the first four iterations, pure feeklba
triplet (©¢,0.+1,7), i.e., we have access to the true ap{PD) control was used to control the arm, while at the
plied control command (which was generated via compositeext 16 iterations, a composite controller using the invers
control). To learn the inverse dynamics, we needian- model being learned was used. The gains were lowered as
linear, onlineregression technique which also provides errotraining proceeded. The procedure was executed six times
bounds that we may use for context identification. We usand repeated for six different contexts for accumulatire th
the Locally Weighted Projection Regression (LWPR) [9] -statistics. Fig. 3(left) plots the normalized mean squared
an algorithm which is extremely robust and efficient for in-error between the torques predicted by the LWPR model
cremental learning of non-linear models in high dimensionsand the true torques experienced on the test data (i.e., the
An LWPR model uses a set of linear models, each of whictiata that was held out from the training), which shows a
is accompanied by a locality kernel (usually a gaussiart) thguick drop as training proceeds and settles at a very low
defines the area of validity of the linear model. For an inputalue averaged over all trials. The contribution of the erro
x, if the output of thek*” local model is written ag(x) correcting feedback command to the feedforward command
and the locality kernel activation iy (x), the combined (see Fig. 3(middle)) is low, vouching for the accuracy of
prediction of the LWPR mode}, is the learnt model while being used for control. Furthermore,

1 the tracking error (Fig. 3(right)) is very low and improves

i) = 3 > wi(x) yr(x), W= wi(@). (3) significantly when we switch to composite control. For the

k k detailed statistics on the online dynamics learning of the 7
The parameters of the local linear models and locality KerneDOF SARCOS robot arm and tracking results on a pattern
are adapted online and also local models are added on eight task, readers are referred to [9].
as needed basis. Furthermore, LWPR provides statistically
sound input dependent confidence bounds on its predictiongSimulations performed using ODE and OpenGL




IIl. THE MULTIPLE MODEL PARADIGM 0

Although we have verified the ability to learn dynamic
models and perform control under a single context, the main
emphasis of this work is the ability to cope with varying e

contexts. The multiple model paradigm copes with the issue
of non-stationary dynamics by using a set of models, each
of which is specialized to a different context. A schemafic o o
a generic multiple model paradigm is shown in Fig. 4. The
(@) (b)
Dynamics models Learnin
Control yrem g Fig. 5. Multiple models and hidden contexts
Context 1
Commands comext  state contexts h_ave equa! prior probabillitiq,s{.ct).. Under this
Context Dynamics probabilistic formulation, context estimation is justenfing
Estimates Predictions the posterior of; given a state transition and the command
‘ Switch / Mix H Context estimator sme‘ System that resulted in this transition:
‘ T 1 P(Ct:i|@t7@t+1,7})O(P(Tt|Ct:i7@t,@t+1)P(Ct:i). (4)

Applied Command
Context estimates are very sensitive to the accuracy of the
inverse models. They can be improved by acknowledging

observed dvnamics of the svstem are compared to the redtlrggt contexts do not change too frequently. We can introduce
y Y P P temporal dependency between contexts. 1 |c:) with

T e o e s ert cort. approptte tansion probabiy betueen contexat
o o 9t reflects our prior belief on the switching frequency to achie
use fqr control and for training. All existing multiple mddg much more robust context estimation. The graphical model
paradigms roughly follow the same plot. Some of the emstmgan be reformulated as the Dynamic Bayesian Network
models are Modular Selection and Identification for Contro - . ; L
(MOSAIC) [3], Multiple Paired Forward and Inverse ModeIsShown in Fig. 5(b) to achieve this. Application of standard
)’ P . : Hidden Markov Model (HMM) techniques is straightforward
[10] and Multiple Model Switching and Tuning (MMST) [5], by using (4) as the observation likelihood in the HMM
[7]. The main issues that have to be tackled for using meaitipl_: en the hidden state, — i. A low transition probabilit '
discrete models for control are: given : =0 A IOW ion p Yy
’ _ ~ penalizes too frequent transitions and using smoothing or
1) Infer the current context for selecting the appropriatgjerp; alignment produces more stable context estimates.

Fig. 4. Schematic of a multiple model paradigm

model to use forcontrol. . ~ the experiments, we will assume a fixed transition matrix
2) Infer the cu_rren_t context for_selectmg the appropnatg;(ct = jle; = i) with high value .999 fori = j and
model totrain with the experienced data. _ .001 otherwise and use the HMM model only for filtering or
3) Figure out the appropriateumber of model§possibly  moothing, depending on whether we investigate an online
using a novelty detection mechanism). or batch estimation scenario, respectively.
Hence, it is clear that context estimation is of critical
importance in the multiple model scenario. B. Data Separation

Context estimates are used for guiding online control and
for further training of the models. However, to get these

It is appropriate to formulate context estimation in aontext estimates we need a mechanism for getting relgtivel
probabilistic setting to account for inaccuracies of the¢  accurate (initial) models to bootstrap the context esiionat
models as well as handle transitions. The graphical model B‘rocedure. Most of the existing multiple model paradigms do
Fig. 5(a) represents a set of inverse models corresponaingrot give a satisfying answer to this issue. MMST assumes
a SpecifiC number of contexts. The hidden contextual V(':Eiabihat re|ative|y good models are available from the beg|gn|n
¢ is discrete and indexes the different models. The inversghereas MPFIM does not address this issue at all.
model in this formulation can be written as: The problem of bootstrapping the context separation from

o i i context-unlabeled data is very similar to clustering peots

P(r |01, 0,0 =0) = N1 (0141,01). 0 (6141,61) using mixture of Gaussians. In fact, the context variable
wherer( is the command predicted by the LWPR modekan be interpreted as a latent mixture indicator and each
corresponding to thé” context andr() is some estimate of inverse model contributes a mixture component to give
the variance, which can be either set to a predetermined caise to the mixture model of the for®(r; | 0, 0:41) =
stant or based upon the input dependent confidence bourdds P(r; | ©¢, ©¢41,¢¢ = i) P(c; = ). Clustering with
provided by LWPR. Also, if there is no knowledge about themixtures of Gaussians is usually trained using Expectation
prior probability of contexts, we can assume that differer¥aximization (EM), where initially the data are labeled

A. Context Estimation



the best context estimation method that we have, the HMM

Hwv,  Viteroi

alignment Models' predictions
. 6F :}fgﬁ!ﬁ.ﬁ;ﬂﬁ:gid filtering using LWPR’s confidence bounds, performs when
095} JrJr used for online context estimation and control. Sometimes
sl o 1 the context estimation lags behind a few time steps when
there are context switches, which is a natural effect ofnanli
j filtering (as opposed to retrospect smoothing). Fig. 6€igh
4 4r

presents an example of the predictions of the six models
along with the actually applied command.

The performance of online context estimation and control
is close to the control performance we achieved for the singl
context displayed in Fig. 3. Using the HMM filtering based
on LWPR’s confidence bounds, the average tracking error
over the 10 cycles was 0.0019 and the ratio of feedback PD
control was 0.074.

Datapoint In another analysis, automatic separation of data to con-
2 4 6 100020003000 40005000 mbozD&Jtosdo?mbosooo texts was tested. We ran the simulation switching randomly
s between two different contexts, collected the data and exe-
Fig. 6. Discrete context estimation under randomly switghilynamics ~ cuted 6 iterations of the EM-like algorithm described in Sec
tion 1lI-B. The evolution of the assignment of datapoints to
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with random responsibilities Then every mixture component
is trained on its assigned (weighted) data (M-step) and
afterwards the responsibilities for each data point is meco
puted by setting them proportional to the likelihoods for
each mixture component (E-step). Iterating this procedure
each mixture component will specialize on different pafts o
the data and the responsibilities encode the learned cluste
assignments.

We will apply a common variant of the EM-algorithm
where responsibilities are computed greedily, i.e., where
the data is hard assigned to the mixture component with
maximal likelihood instead of weighted continuously with = — '
the component’s likelihood in the M-step. In our case, the e’ Ctesion” © oo e terain®© o

likelihood of a data triplet(©;,0;1,7¢) under thei'" , i ) i
Fig. 7. Automatic separation of datapoints to contexts.t:Ltife non-

'n_VerS_e mOd_eI '3D(Tt | O, 0141, ¢ :i)_' Wh|Ch_|S a Gaussian temporal model is used for the E-step. Right: the temporadlehs used
with either fixed variance or the variance given by LWPR’Sn the E-step

confidence bounds.

Datapoints
Datapoints

. . . contexts can be seen in Fig. 7. On the left, the non-temporal
C. Experiments With Multiple Discrete Models model has been used for context estimation, whereas on

The context estimation methods described in Section lithe right, the temporal model has been used. The first
A were used for online estimation and control with sixcolumn displays the random initial assignment of dataoint
separately learnt contexts. Random switches betweenxhe 8 contexts, whereas the last column displays the correct
contexts were performed in the simulation, where at everyssignment. As can be seen in the plot on the right, at the
time step we switch to a random context with probabilityend of the last iteration, most of the datapoints are grouped
.001 and stay in the current context otherwise. The contegbrrectly (84% of the data was classified correctly). The
estimates were used online for selecting the model that wikarned models were then used for online control and further
provide the feed-forward commands. online training. Twelve iterations of the trajectory were

We have two classes of experiments: one where we usgecuted, with random switches between the two contexts.
HMM filtering of the contextual variable and the other whereAccuracy in context estimation was 88% while the tracking
it is not used. We also have two choices for the variance @frror was 0.0051 and the ratio of feedback PD control was
the observation model: one where we use a constant (foud®3. The errors are slightly higher than in the case where
empirically) and the other, where we use the more principleshodels were trained using labeled data, but this is satigfyi
confidence bounds provided by LWPR. The simulation wasonsidering the fact that we started with unlabeled data.
run for 10 iterations.

The percentage of accurate online context estimates fd- AUGMENTED MODEL FORCONTINUOUS CONTEXTS
the four cases along with offline Viterbi alignment are shown The multiple model paradigm has several limitations. First
in the Fig. 6(left). Fig. 6(middle) gives an example of howof all, the right number of discrete models needs to be known



TABLE |
LINEARITY OF THE DYNAMICS MODEL IN THE INERTIAL PARAMETERS

If 7 is the kinetic energyi/ is the potential energy of the system and we define a Lagmangia- 7 — U/, the dynamics of the system is given by
d oL oL _
dt 0qg;  Oq;

whereqi, ¢2...qn is a set of generalized coordinates (here, the joint angled)r;, ...7, denote the so called generalized forces associated with the

corresponding joint angleg;. The generalized force; is the sum of joint actuator torques, joint friction torque®d other forces acting on the joint (e.g.

forces induced by contact with the environment). The toirsétic energyZ” and the total potential energy is just the sum of the kinetic energy and potential
energies of all the links of the manipulator respectively,, I = 27:1 T, U= 27:1 U; The kinetic and potential energy of thié" link is given by:

Ti (5)

1 p. . 1
T; = 5mjp?pj + mjlijTS(wj) + ijTijj , Uy, = —mjggpj — mjgglj (6)

wherem; is the totalmass of link j, p; is the position vector of the center of mass of lijikw; is the rotational velocity of linkj, S(w;) is a3 x 3
skew-symmetric matrix that depends on, [; is the position vector of the center of mass of the link frora drigin of the frame of the linkgg is the
gravity acceleration vectoi,; is theinertia tensor of link j measured at the origin of the reference frame of the link.sSiting (6) in the Lagrangian
and with some rearrangement, we can see that the Lagrangiaa linear relationship to the set of inertial parameters:

™= [mlymlllaumlllyymlllzyllwamle‘y, ---7mn7mnlnzymnlnyymnlnzylnzzy ~~~7Inzz}

In short, the Lagrangian can be written in the form:
L=g(gqm

Since the inertial parameters indo not depend on time aj then the dynamics equation for jointis:

4 99(a,d) 99(a,4)
dt  9q; 9q;

Thus, the dynamics can be written in the form
7 =yi(q, 4, §)m ]

and estimating this is non-trivial. Realistically, novelhtexts For the case of manipulation of objects with a robot arm,
appear quite often and to cope with this, a novelty detectidhis is possible. It can be shown that the dynamics of a robot
mechanism is needed. However, even with a very robuatm have a linear relationship to the inertial propertiethef
novelty detection mechanism, we may end up with a vergnanipulator links. In other words, the inverse dynamics can
large number of models, since in theory, possible contagts abe written in the form:
infinite. Moreover, it is better if we can generalize between
contexts and most multiple model paradigms do not provide T=Y(q,¢,§)m (10)
an obvious way to do this.

All these issues can be circumvented if we replace the B
of models Wlth a single umque_model_that_ takes as input 7 = Yi(q, 4, §)7r (11)
continuoushidden contextual variables, i.e., instead of a set

of g;s corresponding to different contexts, a single inversghereq, ¢ and¢ denote joint angles, velocities and accelera-
model G is used: tions respectively. This relationship can be derived based
fundamentals of robot dynamics [6], [1] as shown in Table I.
This equation splits the dynamics in two term¥.q, ¢, §) is
F\term that depends on kinematics properties of the arm such

Here, ¢; is not a discrete variable that indexes different . . . . . L
) . . as link lengths, direction of axis of rotation of joints amal s
models but a set of continuous variables that describe the

o . ._on. This is a very complicated and highly non-linear funetio
@%r:%x:he-rnhiep_)mbab'l'St'C model of the inverse dynamlcgf joint angles, velocities and accelerations. The teris a

high dimensional vector containing all inertial parametef
P(7]0¢,0141,¢1) = N(G(Or, Ou41, 1), 0(Or, Ors1,cr)) - all links of the arm (see Table I).
9 Now, lets consider that we model the dynamics of the

A possibility for learning the augmented model is to followarm as the manipulated object being the last link of the
the same procedure as in the discrete case for learning ten. Then, manipulating different objects is equivalent to
models, i.e., apply an EM like procedure. However, thehanging the physical properties of the last link of the arm.
relationship of the contextual variables to the output & thUnder the assumption that.(q, ¢, ) is constant between
augmented model could be arbitrary, making learning in sudtifferent models, we could use a set of learned models, with
a setting a very difficult task. It is imperative to exploityan known inertial parameters,. to infer an augmented model
prior knowledge about the relationship of the inverse modé¢hat predicts the dynamics for any possible contex8ince
to appropriate contextual variables. Y. (q, 4, ) is constant between contexts, then the augmented

f for a specific context:

Tt = G(@t,®t+1,ct) . (8)



TABLE Il
INFERRING THE HIDDEN CONTINUOUS CONTEXT IN THE TEMPORAL MODE

In our probabilistic setting, the augmented inverse maoslel i
Tt = G(O1, 0141, ¢t) = A(Ot, O14+1) + B(O1, Or1)ce +1 (12)

where A(©¢,0+41) and B(O, ©¢41) are estimated from the models used for forming the augmemtsdel andn = N(0, X,ps). Xops IS estimated
from the confidence bounds of the inverse models that formatiggnented model. Also, the transition model for the contedds to be defined. Since
we believe that the context does not change too often, théstigo:

ci+1=ct +¢ (13)

where¢ = N (0, 2¢,) with X4, set to a very small value.

Based on the defined model, we can write down the inferencéhfotemporal Bayesian network using the augmented inversdeinFor control, only
filtered estimates (a la Kalman filtering) can be used.

We want to compute(ct | 71:¢4+1, ©1:¢+1) Using the estimate at the previous time spdp:—1 | 71:¢, ©1:¢) and the new evidence;+; and©;1. The
previous estimate(ct—1 | 71:¢, ©1:¢) is defined as:

plet—1171:4,©1:6) = N(py—1 4, Be—11t) (14)

Estimates for the next time stefc: | T1.++1, ©1.¢+1) are obtained in a recursive way in two steps. The first isptleeliction step wherep(c; | 71:¢, ©1:¢)
is computed using the filtered estimate on the previous tiee and the transition modglc:+1 | ¢¢), without taking into account evidence at time- 1:

plee | T1it, ©1:6) = N (1 45 ¢ | ¢) (15)

wherep, |, = py_1 |, andXt |t = Xy |, + Z¢r. Then, thefiltered estimate modifies the predicted estimates using the observationeatitie ¢ + 1 as
(dependency ofA and B on the state transition is omitted for compactness):

plet | T1t4+1, O1:641) :N(ﬂt\t+172t\t+1) (16)
where,
Bt t41 = Bt |t + B¢ BT (B%, \ ¢BT 4+ S0ps) " (1641 — A — By It) (7
Stpe1 = Sepe = Se BT (BEy BT + Tops) By (18)
model G(©y, ©,41,¢;) is simply: any manipulated object. In practice, however, since lghrne
) dynamic models will not be perfect and due to the presence
G(O4,0111,¢) =Y (g, ¢, §)mr =7 (19)  of noise in the sensor measurements, a larger number of

. _ ‘context models’ is necessary to give accurate estimates.
where state transitions have been appropriately replaged b

joint angles, velocities and accelerations and the conééxt A. Experiments with the augmented model
variables by the inertial parameters. @oquire the model, The augmented model proposed for extracting the con-

we need to have an estimate Bf(g, ¢, G). If we have an tinuous context/latent variable was empirically evaldate
appropriate number of models (that is, at least as many &gparate models for the dynamics of the arm manipulating
the cardinality ofr,), we can simply estimaté&(q,¢,§) seven different objects with theame shapéut different
using least squares due to the linearity property.d¢emtrol masses were trained and labeled. Masses were uniformly
purposes, if we have an estimaterof at timet, given the distributed between 0 and 0.06 where zero mass means
desired transition for the next time step, we can compuigad-free arm movement. Since all 10 inertial parameters
Y(q¢*,q*,q*) and hence, the feedforward command. Fopf the manipulated object change linearly as the mass of
robust context estimation, we can use temporal dependgncighe manipulated object changes between the contexts, just
similar to the principles used in the multiple model scemari two known (labeled) contexts can be used to obtain the
However, since we now have a set of continuous hiddesugmented model. While the scenario is less complicated
variables as opposed to a single discrete context variabt@an estimating the full moment of inertia matrix , succebsf
the inference is slightly more involved (refer to Table Il). estimation of the mass of the other five contexts and control
But what does it mean for the quantity,(¢,q¢,4) to using the augmented model can be used to validate the
remain constant in different contexts? Basically, it meansoncept.
that all kinematic quantities of the arm remain the same First, the accuracy of the augmented model was tested
between different contexts — this is clearly true in the caseased on how well it can approximate other contexts’ dynam-
of manipulating different objects. ics. We trained the augmented model using data from masses
Each link of the arm typically has ten inertial parame-of 0.01 and 0.03. After parameter estimation, the learned
ters. This implies that, ideally, if we have the prereqeisit model was used to predict the dynamic torques required to
number of ’labeled’ context models (for e.g., more than temanipulate the other five contexts over a subset of the tlaine
independent and perfect models corresponding to differetrjectory but for loads which have not been trained with.
scenarios), then, one can infer all the dynamic paramefersdhe error for the novel loads were computed by comparing
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Fig. 8. Continuous context estimation: (a) Accuracy of thgraented inverse model (b) Temporal vs. Non temporal (c)t&orestimates in control

the results of the augmented model with the torques learata result comparable to one we had for control with learned
by the multiple, discrete models for the other five contextsnodels under a single context.

Fig. 8 (a) shows the nMSE of the torques _pr_ed|cted _by the V. DISCUSSION

augmented model, averaged over all the joints. While the
interpolated torques for the load of 0.02 is almost perfect, We have described a method of using a learned set of
the extrapolated torques (outside the trained model of 0.d@odels for control of a system with non-linear dynamics
and 0.03) for other loads also show excellent performanceindercontinuouslyvarying contexts. In addition , we have

Next, we investigate whether the augmented model c4ffined the mu_ltiple mo_del pafadigm to be ablestmulta-
be used for accurate context estimation. The augmentgaquswde_al W'th learning dynamic r_n_odels, use them for
model (learned using the same two contexts) was used fpline switching control and also efficiently bootstrapadat

context estimation under pure feedback control, where tfgParation for context unlabeled data. An important asplect

mass of the manipulated object changed randomly during thdS Work is that we manage to infer the continuous hidden

simulation. Note that in this case, the context estimatag weCONExt that contains dynamic properties of the manipdlate

not used for computing the control commands. We comparé)(PjeCt’ e.g. the mass of the object as illustrated in therexpe

the non-temporal and temporal formulation for context-estiments. While in this research, we have focused on estimating

mation, results for which are plotted in the Fig. 8 (b). Th&ontext purely from the predictive and experienced dynamic

results for the non-temporal case are not that accurate afigm™ Mmanipulation, we are investigating avenues of incor-
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