
Conditional Functional Dependencies for Data Cleaning

Philip Bohannon1 Wenfei Fan2,3 Floris Geerts3,4 Xibei Jia3 Anastasios Kementsietsidis3

1Yahoo! Research 2Bell Laboratories 3University of Edinburgh 4Hasselt University/
Transnational Univ. of Limburg

plb@yahoo-inc.com {wenfei,fgeerts,xjia,akements}@inf.ed.ac.uk

Abstract

We propose a class of constraints, referred to as condi-
tional functional dependencies (CFDs), and study their ap-
plications in data cleaning. In contrast to traditional func-
tional dependencies (FDs) that were developed mainly for
schema design, CFDs aim at capturing the consistency of
data by incorporating bindings of semantically related val-
ues. For CFDs we provide an inference system analogous to
Armstrong’s axioms for FDs, as well as consistency analy-
sis. Since CFDs allow data bindings, a large number of in-
dividual constraints may hold on a table, complicating de-
tection of constraint violations. We develop techniques for
detecting CFD violations in SQL as well as novel techniques
for checking multiple constraints in a single query. We ex-
perimentally evaluate the performance of our CFD-based
methods for inconsistency detection. This not only yields a
constraint theory for CFDs but is also a step toward a prac-
tical constraint-based method for improving data quality.

1 Introduction
Recent statistics reveals that dirty date costs US busi-

nesses billions of dollars annually (cf. [6]). It is also es-
timated that data cleaning, a labor-intensive and complex
process, accounts for 30%-80% of the development time
in a data warehouse project (cf. [18]). These highlight the
need for data-cleaning tools to automatically detect and ef-
fectively remove inconsistencies and errors in the data.

One of the most important questions in connection with
data cleaning is how to model the consistency of the data,
i.e., how to specify and determine that the data is clean?
This calls for appropriate application-specific integrity con-
straints [16] to model the fundamental semantics of the data.
Unfortunately little previous work has studied this issue.
Commercial ETL (extraction, transformation, loading) tools
have little built-in data cleaning capability, and a significant
portion of the cleaning work has still to be done manually or
by low-level programs that are difficult to write and main-
tain [16]. A bulk of prior research has focused on the merge-
purge problem (e.g., [8, 10, 15, 20]) for the elimination of
approximate duplicates, or on detecting domain discrepan-
cies and structural conflicts (e.g., [17]). There has also been
recent work on constraint repair [2, 5, 7, 19], which speci-

CC AC PN NM STR CT ZIP
t1: 01 908 1111111 Mike Tree Ave. NYC 07974
t2: 01 908 1111111 Rick Tree Ave. NYC 07974
t3: 01 212 2222222 Joe Elm Str. NYC 01202
t4: 01 212 2222222 Jim Elm Str. NYC 01202
t5: 01 215 3333333 Ben Oak Ave. PHI 02394
t6: 44 131 4444444 Ian High St. EDI EH4 1DT

Figure 1. An instance of the cust relation

fies the consistency of data in terms of constraints, and de-
tects inconsistencies in the data as violations of the con-
straints. However, previous work on constraint repair is
mostly based on traditional dependencies (e.g., functional
and full dependencies, etc), which were developed mainly
for schema design, but are often insufficient to capture the
semantics of the data, as illustrated by the example below.

Example 1.1: Consider the following schema, which spec-
ifies a customer in terms of the customer’s phone (coun-
try code (CC), area code (AC), phone number (PN)), name
(NM), and address (street (STR), city (CT), zip code (ZIP)).
An instance of cust is shown in Fig. 1. Traditional func-
tional dependencies (FDs) on a cust relation may include:

f1: [CC, AC, PN] → [STR, CT, ZIP]
f2: [CC, AC] → [CT]

(Recall the semantics of an FD: f2 requires that two cus-
tomer records with the same country- and area-codes also
have the same city name.) Traditional FDs are to hold on
all the tuples in the relation (indeed they do on Fig. 1). In
contrast, the following constraint is supposed to hold only
when the country code is 44. That is, for customers in the
UK, ZIP determines STR:

φ0: [CC = 44, ZIP] → [STR]

In other words, φ0 is an FD that is to hold on the subset of
tuples that satisfies the pattern “CC = 44”, rather than on the
entire cust relation. It is generally not considered an FD in
the standard definition since φ0 includes a pattern with data
values in its specification.

The following constraints are again not considered FDs:
φ1: [CC = 01, AC = 908, PN] → [STR, CT = MH, ZIP]
φ2: [CC = 01, AC = 212, PN] → [STR, CT = NYC, ZIP]
φ3: [CC = 01, AC = 215] → [CT =PHI]

The first constraint φ1 assures that only in the US (country
code 01) and for area code 908, if two tuples have the same
PN, then they must have the same STR and ZIP values and

furthermore, the city must be MH. Similarly, φ2 assures that
if the area code is 212 then the city must be NYC; and φ3

specifies that for all tuples in the US and with area code 215,
their city must be PHI (irrespective of the values of the other
attributes). Observe that φ1 and φ2 refine the standard FD

f1 given above, while φ3 refines the FD f2. This refinement
essentially enforces a binding of semantically related data
values. Note that while tuples t1 and t2 in Fig. 1 do not
violate f1, they violate its refined version φ1, since the city
cannot be NYC if the area code is 908. �

In this example, the constraints φ0, φ1, φ2 and φ3 cap-
ture a fundamental part of the semantics of the data. How-
ever, they cannot be expressed as standard FDs and are not
considered in previous work on data cleaning. Indeed, con-
straints that hold conditionally may arise in a number of
domains. For example, an employee’s pay grade may de-
termine her title in some parts of an organization but not in
others; an individual’s address may determine his tax rate in
some countries while in others it may depend on his salary,
etc. Further, dependencies that apply conditionally appear
to be particularly needed when integrating data, since de-
pendecies that hold only in a subset of sources will hold
only conditionally in the integrated data.

This paper introduces a novel extension of traditional
FDs, referred to as conditional functional dependencies
(CFDs), that are capable of capturing the notion of “correct
data” in these situations. A formal framework for modelling
CFDs is the first contribution of this paper (Section 2).

Our second contribution consists of techniques for rea-
soning about CFDs (Section 3). We show that the analysis
of CFDs introduces new challenges. For example, a set of
CFDs may have conflicts (i.e., inconsistencies), a problem
not encountered when dealing with traditional FDs. We de-
velop techniques for determining the consistency of CFDs.
We also extend Armstrong’s axioms for traditional FDs (see,
e.g., [1]) by providing a sound and complete inference sys-
tem, and give an algorithm to compute a minimal cover for
a set of CFDs. These are not only useful for data cleaning
as an optimization technique by minimizing the input CFDs,
but also yield a CFD theory analogous to the theory of FDs.

Our third contribution is the development of SQL tech-
niques for detecting CFD violations (Section 4). Since CFDs
incorporate data values, they may in some cases be phys-
ically large, and straightforward techiques may lead to a
very large number of detection queries. We develop non-
trivial techniques to merge and efficiently check a set of
CFDs even with a very large number of conditions. These
guarantee: (a) a single pair of SQL queries are generated,
with a bounded size independent of the data values in the
CFDs, and (b) only two passes of the database are needed.

Our fourth contribution is an experimental study of the
performance of our detection techniques as data size and
constraint complexity vary (Section 5). We find that our

(a) Tableau T1 of ϕ1 = (cust:[CC, ZIP] → [STR], T1)

CC ZIP STR

44

(b) Tableau T2 of ϕ2 = ([CC, AC, PN] → [STR, CT, ZIP], T2)

CC AC PN STR CT ZIP

01 908 MH
01 212 NYC

(c) Tableau T3 of ϕ3 = ([CC, AC] → [CT], T3)

CC AC CT

01 215 PHI
44 141 GLA

Figure 2. Example CFDs

techniques allow violations of CFDs with even a large num-
ber of conditions to be checked efficiently on large data sets.
However, we also find that care must be taken to present the
complicated where clauses generated by our technique to
the optimizer in a way that can be easily optimized.

Finally, we present some observations, including an NP-
completeness result, on constraint repair with CFDs, but de-
fer further development to a later report (Section 6).

Our conclusion is that CFDs are a promising tool for im-
proving data quality. We discuss related and future work in
Section 7.

2. Conditional Functional Dependencies
We next define CFDs. Consider a relation schema R de-

fined over a fixed set of attributes, denoted by attr(R).
Syntax. A CFD ϕ on R is a pair (R : X → Y, Tp), where
(1)X,Y are sets of attributes from attr(R), (2)R : X → Y
is a standard FD, referred to as the FD embedded in ϕ; and
(3) Tp is a tableau with all attributes inX and Y , referred to
as the pattern tableau of ϕ, where for eachA inX or Y and
each tuple t ∈ Tp, t[A] is either a constant ‘a’ in the domain
dom(A) of A, or an unnamed variable ‘ ’. If A appears in
both X and Y , we use t[AL] and t[AR] to indicate the A
field of t corresponding to A in X and Y , respectively. We
write ϕ as (X → Y, Tp) when R is clear from the context.

Example 2.1: The constraints φ0, f1, φ1, φ2, f2, φ3 on cust
given in Example 1.1 can be expressed as CFDs ϕ1 (for φ0),
ϕ2 (for f1, φ1 and φ2, one per line, respectively) and ϕ3

(for f2, φ3 and an additional [CC = 44, AC = 141] → [CT =
GLA] to be used in Section 4), as shown in Fig. 2. �

If we represent both data and constraints in a uniform
tableau format, then at one end of the spectrum are rela-
tional tables which are composed of data values without
logic variables, and at the other end are traditional con-
straints which are defined in terms of logic variables but
without data values, while CFDs are in the between.

Semantics. Intuitively, the pattern tableau Tp of ϕ refines
the standard FD embedded in ϕ by enforcing the binding of
semantically related data values. To define the semantics of
ϕ, we first introduce a notation. For a pattern tuple tc in
Tp, we define an instantiation mapping ρ to be a mapping
from tc to a data tuple with no variables, such that for each
attribute A in X ∪ Y , if tc[A] is ‘ ’, ρ maps it to a constant
in dom(A), and if tc[A] is a constant ‘a’, ρ maps it to the
same value ‘a’. For example, for tc[A,B] = (a,), one
can define an instantiation ρ such that ρ(tc[A,B]) = (a, b),
which maps tc[A] to itself and tc[B] to a value b in dom(B).

A data tuple t is said to match a pattern tuple tc, denoted
by t � tc, if there is an instantiation ρ such that ρ(tc) = t.
For example, t[A,B] = (a, b) � tc[A,B] = (a,).

A relation I of R satisfies the CFD ϕ, denoted by I |= ϕ,
if for each pair of tuples t1, t2 in the relation I , and for each
tuple tc in the pattern tableau Tp of ϕ, if t1[X] = t2[X] �
tc[X], then t1[Y] = t2[Y] � tc[Y]. That is, if t1[X] and
t2[X] are equal and in addition, they both match the pattern
tc[X], then t1[Y] and t2[Y] must also be equal to each other
and both match the pattern tc[Y]. Moreover, if Σ is a set of
CFDs, we write I |= Σ if I |= ϕ for each CFD ϕ ∈ Σ.

Example 2.2: The cust relation in Fig. 1 satisfies ϕ1 and
ϕ3 of Fig. 2. However, it does not satisfy ϕ2. Indeed, tu-
ple t1 violates the pattern tuple tc = (01, 908, , , MH,)
in tableau T2 of ϕ2: t1[CC,AC,PN] = t1[CC,AC,PN] �
(01, 908,), but t1[STR,CT,ZIP] �� (, MH,) since t1[CT]
is NYC rather than MH; similarly for t2. �

This example tells us that while violation of a standard
FD requires two tuples, a single tuple may violate a CFD.

Two special cases of CFDs are worth mentioning. First,
a standard FD X → Y can be expressed as a CFD (X →
Y, Tp) in which Tp contains a single tuple consisting of
‘ ’ only. For example, if we let T3 of ϕ3 in Fig. 2 contain
only (, ,), then it is the CFD representation of the FD f2
given in Example 1.1. Second, an instance-level FD X → Y
studied in [13] is a special CFD (X → Y, Tp), where Tp

consists of a single tuple consisting of only data values.

3 Basic Properties of CFDs
Having seen that CFDs are an extension of standard FDs,

it is natural to ask whether or not we can still effectively rea-
son about CFDs along the same lines as their FD counterpart.
Is there an inference system, analogous to Armstrong’s Ax-
ioms for FDs, to effectively determine whether or not a set
of CFDs implies (entails) another CFD? Does a set of CFDs
make sense, i.e., are the CFDs consistent?

These questions are not only fundamental to CFDs, but
are also important for data cleaning. Indeed, if an input set
Σ of CFDs is found inconsistent, then there is no need to
check (validate) the CFDs against the data at all. Further, it
helps the user discover errors in CFD specification. When Σ
is consistent, an effective implication analysis would allow

us to find a minimal cover Σmc of Σ that is equivalent to
Σ but contains no redundant CFDs, patterns or attributes; it
is typically more efficient to use Σmc instead of Σ when
detecting and removing inconsistencies from the data.

We answer these questions in this section. We show that
as opposed to standard FDs, a set of CFDs can be incon-
sistent. Furthermore, the implication analysis for CFDs is
more complicated than their FD counterpart. However, we
show that in many practical cases the consistency of a set of
CFDs can be determined efficiently. We also provide a sound
and complete inference system for the implication analysis
of CFDs, which is analogous to but is more involved than
Armstrong’s Axioms for FDs. Based on these we present a
technique for computing a minimal cover of a set of CFDs.

3.1 Consistency of CFDs

One can specify any set of standard FDs, without worry-
ing about consistency. This is no longer the case for CFDs.

Example 3.1: Consider CFD ψ1 = (R : [A] → [B], T1),
where T1 consists of two pattern tuples (, b) and (, c).
Then no nonempty instance I of R can possibly satisfy ψ1.
Indeed, for any tuple t in I , while the first pattern tuple says
that t[B] must be b no matter what value t[A] has, the sec-
ond pattern requires t[B] to be c.

Now assume that dom(A) is bool. Consider two CFDs
ψ2 = ([A] → [B], T2) and ψ3 = ([B] → [A], T3), where
T2 has two patterns (true, b1), (false, b2), and T3 contains
(b1, false) and (b2, true). Whileψ2 andψ3 can be separately
satisfied by a nonempty instance, there exists no nonempty
instance I such that I |= {ψ2, ψ3}. Indeed, for any tuple
t in I , no matter what Boolean value t[A] has, ψ2 and ψ3

together force t[A] to take the other value from the finite do-
main bool. This tells us that attributes with a finite domain
may complicate the consistency analysis. �

The consistency problem for CFDs is to determine, given
a set Σ of CFDs defined on a relation schema R, whether
there exists a nonempty instance I of R such that I |= Σ.

This is a nontrivial problem that is not encountered when
dealing with standard FDs. It is intractable (by reduction
from the non-tautology problem), due to finite-domain at-
tributes involved in CFDs which, as Example 3.1 shows,
complicate the consistency analysis.

Theorem 3.1: The consistency problem is NP-complete. �

For data cleaning in practice, the relation schema is often
fixed, and only CFDs vary and are treated as the input. To
this end we develop an efficient algorithm for checking the
consistency of a given set of CFDs, by generalizing the chase
process for FDs (see, e.g., [1] for chase).

Theorem 3.2: Given any set Σ of CFDs on a relation
schema R, the consistency of Σ can be determined in
O(|Σ|2) time, if either the schema R is predefined, or no
attributes in Σ have a finite domain. �

FD1: If A ∈ X, then (X → A, tp), where tp[B] = ‘ ’ for all
B ∈ X ∪ {A}.

FD2: If (R : X → A, tp) and B ∈ attr(R), then (R :
[X, B] → A, t′p), where t′p[B] = ‘ ’ and t′p[C] = tp[C]
for each C ∈ X ∪ {A}.

FD3: If (1) (X → Ai, ti) such that ti[X] = tj [X] for all
i, j ∈ [1, k], (2) ([A1, . . . , Ak] → B, tp) and more-
over, (3) (t1[A1], . . . , tk[Ak]) � tp[A1, . . . , Ak], then
(X → B, t′p), where t′p[X] = t1[X] and t′p[B] = tp[B].

FD4: If ([B, X] → A, tp), tp[B] =‘ ’, and tp[A] is a constant,
then (X → A, t′p), where t′p[X ∪ {A}] = tp[X ∪ {A}].

FD5: If ([B, X] → A, tp) and tp[B] =‘ ’, then ([B, X] →
A, t′p), where t′p[C] = tp[C] for each C ∈ X∪{A}−{B},
and t′p[B] = ‘b’ for some ‘b’ ∈ dom(B).

FD6: If (X → A, tp) and tp[A] = ‘a’, then (X → A, t′p), where
t′p[A] = ‘ ’ and t′p[X] = tp[X].

FD7: If (1) Σ �I ([X, B] → A, ti) for i ∈ [1, k], (2) dom(B) =
{b1, . . . , bk, bk+1, bm}, and (Σ, B = bl) is not consistent
except for l ∈ [1, k], and (3) for i, j ∈ [1, k], ti[X] =
tj [X], and ti[B] = bi, then Σ �I ([X, B] → A, tp) where
tp[B] =‘ ’ and tp[X] = t1[X].

FD8: If B ∈ attr(R), dom(B) = {bi | i ∈ [1, m]}, and
(Σ, B = bl) is consistent only for b1, then Σ �I (R :
B → B, (, b1)).

Figure 3. Inference Rules for CFDs

3.2 An Inference System for CFDs

Armstrong’s Axioms for FDs are found in almost every
database textbook, and are fundamental to the implication
analysis of FDs. We next provide an inference system for
CFDs, analogous to Armstrong’s Axioms for FDs.

The implication problem for CFDs is to determine, given
a set Σ of CFDs and a single CFD ϕ on a relation schema R,
whether or not Σ entails ϕ, denoted by Σ |= ϕ, i.e., whether
or not for all instances I of R, if I |= Σ then I |= ϕ.

Two sets Σ1 and Σ2 of CFDs are equivalent, denoted by
Σ1 ≡ Σ2, if for any instance I , I |= Σ1 iff I |= Σ2.

For the implication analysis of CFDs, we provide a set
of inference rules, denoted by I, in Fig. 3. To simplify the
discussion we consider CFDs of the form (R : X → A, Tp),
where A is a single attribute and Tp consists of a single
pattern tuple tp, written as (R : X → A, tp). This does
not lose generality since a CFD of the general form ϕ =
(R : X → Y, Tp) is equivalent to a set Σϕ of CFDs of
the form above such that for each A ∈ Y and tp ∈ Tp,
(R : X → A, tp[X ∪A]) is in Σϕ. That is, Σϕ ≡ ϕ.

Given a finite set Σ ∪ {ϕ} of CFDs, we use Σ �I ϕ to
denote that ϕ is provable from Σ using I.

Example 3.2: Consider a set Σ of CFDs consisting of ψ1 =
(A → B, (, b)) and ψ2 = (B → C, (, c)), and a single
CFD ϕ = (A → C, (a,)), all defined on the same relation
schema. Then Σ �I ϕ can be proved as follows:

(1) (A→ B, (, b)) ψ1

(2) (B → C, (, c)) ψ2

(3) (A→ C, (, c)) (1), (2) and FD3
(4) (A→ C, (a, c)) (3) and FD5
(5) (A→ C, (a,)) (4) and FD6 �

The theorem below tells us that analogous to Arm-
strong’s Axioms for FDs, the inference rules of I charac-
terize the implication analysis of CFDs, i.e., for any set Σ of
CFDs and a single CFD ϕ, if Σ |= ϕ then Σ �I ϕ (complete-
ness), and vice versa (soundness).

Theorem 3.3: The inference system I is sound and com-
plete for implication of CFDs. �

While the rules FD1, FD2 and FD3 in I are extensions
of Armstrong’s Axioms for FDs, FD4—FD8 do not find a
counterpart in Armstrong’s Axioms. Below we briefly il-
lustrate the inference rules in I.

FD1 and FD2 extend Armstrong’s Axioms reflexivity and
augmentation, respectively, and are self-explanatory. A
subtle issue arises when B = A, when B appears in both
the LHS and RHS of the embedded FD [X,B] → A. If so,
we use t′p[BL] = ‘ ’ instead of t′p[B] = ‘ ’ to refer to theB at-
tribute in [X,B] (recall from Section 2 that in a tuple tp, the
occurrences of B in the LHS and RHS can be distinguished
by using tp[BL] and tp[BR], respectively).

FD3 extends transitivity of Armstrong’s Axioms. To cope
with pattern tuples which are not found in FDs, it em-
ploys an order relation �, defined as follows. For a pair
η1, η2 of constants or ‘ ’, we say that η1 � η2 if either
η1 = η2 = a where a is a constant, or η2 = ‘ ’. The � re-
lation is naturally extended to pattern tuples. For instance,
(a, b) � (, b). Intuitively, the use of � in FD3 assures that
(t1[A1], . . . , tk[Ak]) is in the “scope” of tp[A1, . . . , Ak],
i.e., the pattern tp[A1, . . . , Ak] is applicable. In Exam-
ple 3.2, FD3 can be applied because t1[B] = b � t2[B] = ,
where t1, t2 are the pattern tuples in ψ1, ψ2, respectively.

FD4 tells us that for a CFD ϕ = ([B,X] → A, tp), if
tp[B] = ‘ ’ and tp[A] is a constant ‘a’, then it can be sim-
plified by dropping the B attribute from the LHS of the em-
bedded FD. To see this, consider a relation I and any tuple
t in I . Note that since tp[B] = ‘ ’, if t[X] � tp[X] then
t[B,X] � tp[B,X] and t[A] has to be a regardless of what
value t[B] has. Thus ϕ entails (X → A, tp).

FD5 says that in a CFD ϕ = ([B,X] → A, tp) one can
substitute a constant b for ‘ ’ in tp[B]. To see this, consider
a relation I and any tuples t1, t2 in I . If t1[X] = t2[X] �
t′p[X] and moreover, t′p[B] = t1[B] = t2[B] = b, then
certainly t1[B,X] = t2[B,X] � tp[B,X], and hence ϕ
still applies. Thus ϕ implies ([B,X] → A, t′p).

FD6 tells us that in a CFD ϕ = ([B,X] → A, tp) we can
substitute ‘ ’ for a constant a in tp[A]. This is because, for
any tuples t1, t2 in a relation I , if t1[A] = t2[A] � tp[A] =

a, then t1[A] = t2[A] � t′p[A] = ‘ ’. Thus ϕ |= ([B,X] →
A, t′p). Example 3.2 shows how FD6 is applied.

FD7 and FD8 deal with attributes of finite domains, which
are not an issue for standard FDs since FDs have no pattern
tuples. They are given w.r.t. a set Σ of CFDs. Specifically
one needs to determine, given Σ on a relation schema R, an
attribute B in attr(R) with a finite domain and a constant
b ∈ dom(B), whether or not there exists an instance I of
R such that I |= Σ and moreover, there is a tuple t in I
such that t[B] = b. We say that (Σ, B = b) is consistent
if and only if such an instance I exists. That is, since the
values of B have finitely many choices, we need to find out
for which b ∈ dom(B), Σ and B = b make sense when
put together. For example, consider the set Σ = {ψ2, ψ3}
given in Example 3.1, and the bool attributeA. Then neither
(Σ, A = true) nor (Σ, A = false) is consistent.

FD7 says that for an attribute B of a finite domain and
w.r.t. a given set Σ of CFDs, if Σ �I (X → A, ti) when
ti[B] ranges over all b ∈ dom(B) such that (Σ, B = b)
is consistent, then ti[B] can be “upgraded” to ‘ ’. That is,
for any instance I , if I |= Σ, then I |= (X → A, tp),
where tp[B] = ‘ ’. This is because for all sensible values of
dom(B) that ‘ ’ in tp[B] may take, I |= (X → A, ti).

FD8 handles a special case: w.r.t. a given set Σ of CFDs and
for an attribute B of a finite domain, if there is a unique
value b ∈ dom(B) such that (Σ, B = b) is consistent, then
for any instance I , if I |= Σ, we have that t[B] = b for each
tuple t in I; this can be expressed as a CFD (B → B, (, b)).

From these one can see that due to the richer semantics
of CFDs, I is more complicated than Armstrong’s Axioms.
It is thus not surprising that the implication analysis of CFDs
is more intriguing than their standard FD counterpart. The
intractability of the theorem below is verified by reduction
from the non-tautology problem to the complement of the
implication problem.

Theorem 3.4: The implication problem for CFDs is coNP-
complete. �

The good news is that when the relation schema is prede-
fined as commonly found in data cleaning applications, the
implication analysis of CFDs can be conducted efficiently,
as stated by the next theorem. The implication checking al-
gorithm is based on a generalization of the chase process
for FD implication.

Theorem 3.5: Given a set Σ of CFDs and a single CFD

ϕ defined on a schema R, whether or not Σ |= ϕ can be
decided in O((|Σ| + |ϕ|)2) time, if either the schema R is
predefined, or no attributes in Σ have a finite domain. �

3.3 Computing Minimal Covers of CFDs

As an application of consistency and implication analy-
ses of CFDs, we present an algorithm for computing a mini-

Input: A set Σ of CFDs.
Output: A minimal cover of Σ.

1. if Σ is not consistent
2. then return ∅;
3. for each CFD ϕ = (X → A, tp) ∈ Σ
4. for each attribute B ∈ X
5. if Σ |= (X − {B} → A, (tp[X − {B}], tp(A)))
6. then Σ := Σ − {ϕ} ∪ {(X − {B} → A, (tp[X − {B}], tp(A)))};
7. mincover := Σ;
8. for each CFD ϕ = (X → A, tp) ∈ Σ
9. if Σ − {ϕ} |= ϕ
10. then remove ϕ from mincover;
11. return mincover;

Figure 4. Algorithm MinCover

mal cover Σmc of a set Σ of CFDs. The cover Σmc is equiv-
alent to Σ but does not contain redundancies, and thus is
often smaller than Σ. Since the costs of checking and re-
pairing CFDs are dominated by the size of the CFDs to be
checked along with the size of the relational data, a non-
redundant and smaller Σmc typically leads to less validating
and repairing costs. Thus finding a minimal cover of input
CFDs serves as an optimization strategy for data cleaning.

A minimal cover Σmc of a set Σ of CFDs is a set of CFDs
such that (1) each CFD in Σmc is of the form (R : X →
A, tp) as mentioned earlier, (2) Σmc ≡ Σ, (3) no proper
subset of Σmc implies Σmc, and (4) for each ϕ = (R :
X → A, tp) in Σmc, there exists no ϕ = (R : X ′ →
A, tp[X ′ ∪A]) in Σmc such that X ⊂ X ′. Intuitively, Σmc

contains no redundant CFDs, attributes or patterns.

Example 3.3: Let Σ consist of ψ1, ψ2 and ϕ given in Ex-
ample 3.2. A minimal cover Σmc of Σ consists of ψ′

1 =
(∅ → B, (b)) and ψ′

2 = (∅ → C, (c)). This is because
(1) {ψ1, ψ2} |= ϕ (Example 3.2), (2) ψ1 can be simplified
to ψ′

1 by removing the redundant attribute A (by the rule
FD4 in I), and (3) similarly, ψ2 can be simplified to ψ′

2. �

We give an algorithm, MinCover, for computing a min-
imal cover in Fig. 4. It is an extension of its standard FD

counterpart [14]. First, MinCover checks whether or not Σ
is consistent (lines 1-2). If Σ is consistent, it proceeds to
remove redundant attributes in the CFDs of Σ (lines 3–6).
We use (tp[X − {B}], tp(A)) to denote the pattern tuple
t′p such that t′p[A] = tp[A] and t′p[C] = tp[C] for each
C ∈ X − {B}. Next, it removes redundant CFDs from Σ
(lines 8–10). From Theorems 3.2 and 3.5 it follows that
MinCover is able to compute a minimal cover efficiently
when the schema is predefined, in O(|Σ|3) time.

4 Detecting CFD Violations
A first step for data cleaning is the efficient detection of

constraint violations in the data. In this section we develop
techniques to detect violations of CFDs. Given an instance I
of a relation schemaR and a set Σ of CFDs onR, it is to find
all the inconsistent tuples in I , i.e., the tuples that (perhaps

QC
ϕ2

select t from cust t, T2 tp
where t[CC] � tp[CC] AND t[AC] � tp[AC] AND

t[PN] � tp[PN] AND

(t[STR] �� tp[STR] OR t[CT] �� tp[CT] OR t[ZIP] �� tp[ZIP])

QV
ϕ2

select distinct t[CC], t[AC], t[PN] from cust t, T2 tp
where t[CC] � tp[CC] AND t[AC] � tp[AC] AND t[PN] � tp[PN]
group by t[CC], t[AC], t[PN]
having count(distinct t[STR], t[CT], t[ZIP])> 1

Figure 5. SQL queries for checking CFD ϕ2

together with other tuples in I) violate some CFD in Σ. We
first provide an SQL technique for finding violations of a
single CFD, and then generalize it to validate multiple CFDs.

4.1 Checking a Single CFD with SQL

Consider a CFD ϕ = (X → Y, Tp). The following two
SQL queries suffice to find the tuples that violate ϕ:

QC
ϕ select t from R t, Tp tp

where t[X1] � tp[X1] AND . . . AND t[Xn] � tp[Xn] AND

(t[Y1] �� tp[Y1] OR . . . OR t[Yn] �� tp[Yn])

QV
ϕ select distinct t.X from R t, Tp tp

where t[X1] � tp[X1] AND . . . AND t[Xn] � tp[Xn]
group by t.X having count(distinct Y)> 1

where Xi (resp. Yj) ranges over attributes in X (resp. Y);
t[Xi] � tp[Xi] is a short-hand for the SQL expression (t[Xi]
= tp[Xi] OR tp[Xi] = ‘ ’), while t[Yj] �� tp[Yj] is a short-
hand for (t[Yj] �= tp[Yj] AND tp[Yj] �= ‘ ’).

Intuitively, detection is a two-step process, each con-
ducted by a query. Initially, query QC

ϕ detects single-tuple
violations, i.e., the tuples t in I that match some pattern tu-
ple tp ∈ Tp on the X attributes, but t does not match tp in
the Y attributes due to a constant value tp[Yi] different from
value t[Yi]. That is, QC

ϕ finds inconsistent tuples based on
differences in the constants in the tuples and Tp patterns.

On the other hand, query QV
ϕ finds multi-tuple viola-

tions, i.e., tuples t in I for which there exists a tuple t′ in
I such that t[X] = t′[X] and moreover, both t and t′ match
a pattern tp on the X attributes, but t[Yj] �= t′[Yj] for some
attribute Yj in Y . Query QV

ϕ uses the group by clause to
group tuples with the same value on X and it counts the
number of distinct instantiations in Y . If there is more than
one instantiation, then there is a violation. It catches both
tuples t and t′ mentioned above as violations, although it is
possible that both pass the test of query QC

ϕ .
To be precise,QV

ϕ returns only theX attributes of incon-
sistent tuples (this is caused by the group by). However,
this has the advantage that the ouput is more concise than
when we would return the complete tuples. Moreover, the
complete tuples can be easily obtained from the result of the
two queries by means of a simple SQL query.

Example 4.1: Recall CFD ϕ2 given in Fig. 2. Over a cust
instance I , the SQL queries QC

ϕ2
and QV

ϕ2
shown in Fig. 5

determine whether or not I satisfies ϕ2. Executing these
queries over the instance of Fig. 1, it returns tuples t1, t2
(due to QC

ϕ2
), and t3 and t4 (due to QV

ϕ2
). �

ϕ4 = (cust:[CC, AC, PN] → [STR, CT, ZIP], T4), where T4 is
CC AC PN STR CT ZIP

01 908 MH
01 212 NYC

@ @ @
01 215 @ @ PHI @

Figure 6. Merged ϕ2 and ϕ3 CFDs

A salient feature of our SQL translation is that tableau Tp

is treated an ordinary data table. Therefore, each query is
bounded by the size of the embedded FD X → Y in the
CFD, and is independent of the size (and contents) of the
(possibly large) tableau Tp.

4.2 Validating Multiple CFDs
A naive way to validate a set Σ of CFDs is to use one

query pair for each CFD ϕ in Σ. This approach requires
2 × |Σ| passes of the underlying relation. We next present
an alternative approach that only requires two passes. The
key idea is to generate a single query pair to check all the
constrains in Σ. The proposed solution works in two phases.
In its first phase, it performs a linear scan of all the tableaux
belonging to CFDs in Σ and merges them, generating a sin-
gle tableau called TΣ. Intuitively, tableau TΣ is such that it
captures the constraints expressed by all the tableaux of the
CFDs in Σ. Then, in its second phase, it generates a query
pair that finds inconsistent tuples violating CFDs in Σ.

4.2.1 Merging Multiple CFDs

Consider a set Σ which, without loss of generality, contains
just two CFDs ϕ and ϕ′ on R, where ϕ = (X → Y, T) and
ϕ′ = (X ′ → Y ′, T ′). There are two main challenges for
the generation of the merged tableau TΣ. The first challenge
is that tableaux T and T ′ may not be union-compatible,
i.e., X �= X ′ or Y �= Y ′. We thus need to extend tableau T
(resp. T ′) with all the attributes in Z = (X∪Y)−(X ′∪Y ′)
(resp. (X ′ ∪ Y ′) − (X ∪ Y) for T ′). For each attribute A
in Z and each tuple tc in the original tableau T , we set the
value of tc[A] to be a special symbol denoted by ‘@’, which
denotes intuitively a don’t care value. After this extension,
the resulted tableaux are union-compatible. Then, tableau
TΣ is defined to be their union. Figure 6 shows how the
CFDs ϕ2 and ϕ3 of Fig. 2 can be made union-compatible.

Given the presence of “@”, we need to reformulate CFD

satisfaction. Consider a tuple tc[X,Y] in a tableau that in-
cludes ‘@’. We use Xfree

tc
and Y free

tc
to denote the sub-

set of X and Y attributes of tc that is ‘@’-free, i.e., it
has no ‘@’ symbol. A relation I of R satisfies the CFD

ϕ, denoted by I |= ϕ, if for each pair of tuples t1, t2 in
the relation I , and for each tuple tc in the pattern tableau
Tp of ϕ, if t1[X

free
tc

] = t2[X
free
tc

] � tc[X
free
tc

], then

t1[Y
free
tc

] = t2[Y
free
tc

] � tc[Y
free
tc

].
For the second challenge, consider the translation of a

single CFD into an SQL query pair. Note that the translation
assumes implicit knowledge of which attributes are in the

id CC AC CT
1 @
2 01 215 @
3 44 141 @
4 @ @

(a) Tableau T X
Σ

id CT AC
1 @
2 PHI @
3 GLA @
4 @
(b) Tableau T Y

Σ

Figure 7. TΣ for CFDs ϕ3 and ϕ5

X and Y sets and treats the translation of each attribute set
differently. Now, consider two simple CFDs on R, namely,
ϕ = (A → B, T) and ϕ′ = (B → A, T ′). Suppose that
we have made the tableaux of the CFDs union-compatible.
One might want to take the union of these two tableaux to
generate TΣ. How can we translate tableau TΣ into an SQL

query pair? Clearly, we cannot directly use the translation
given earlier since we do not know how to treat the join
of an attribute like, say, A. Attribute A is in X for tuples
coming from ϕ, while it is part of Y for tuples coming from
ϕ′. Thus we need to distinguish the two sets of tuples and
treat the translation of each set separately.

We accommodate this by splitting the tableau T of each
CFD ϕ = (R : X → Y, T) into two parts, namely, TX

and T Y , one tableau for the X and one for Y attributes of
ϕ. Then, tableaux TX

Σ (and similarly T Y
Σ) is generated by

making all the TX tableaux in Σ union-compatible. Note
that an attribute can appear in both TX

Σ and T Y
Σ . To be able

to restore pattern tuples from TX
Σ and T Y

Σ , we create a dis-
tinct tuple id t.id for each pattern tuple t, and associates it
with the corresponding tuples in TX

Σ and T Y
Σ . For example,

consider CFD ϕ3 shown in Fig. 2 and ϕ5 = (cust : [CT] →
[AC], T5), where T5 consists of a single tuple (,). Fig-
ure 7 shows their merged TX

Σ and T Y
Σ tableaux. Note that

attributes CT and AC appear in both tableaux.

4.2.2 Query Generation

During the second phase of our approach, we translate
tableau TΣ into a single SQL query pair. This translation,
however, introduces new challenges. Recall that queryQV

ϕ ,
for some CFD ϕ = (R : X → Y, T), requires a group by
clause over all the X attributes. Now, consider tableau TX

Σ

in Fig. 7. It is not hard to see that if we use the group by
clause over all the attributes in TX

Σ , we are not going to de-
tect all (if any) inconsistencies since, for example, for the
first three tuples in TX

Σ the ‘@’ in attribute CT indicates
that, while detecting inconsistencies, we should only group
by the first two attributes and ignore the value of attribute
CT. Similarly for the last tuple in TX

Σ , the ‘@’ in attributes
CC and AC indicates that while detecting inconsistencies for
these tuples, we should only consider the value of CT. The
example suggests that our SQL query should change the set
of group by attributes, based on the contents of each tu-
ple. In what follows, we show how this can be achieved
while still keeping the query size bounded by the size of
the embedded FD X → Y and independent of the size of
the tableau. Central to our approach is the use of the case

clause of SQL (supported by commercial DBMS like DB2).
Consider the merged tableaux TX

Σ and T Y
Σ from a set Σ

of CFDs over a relation schema R and let I be an instance
of R. Then, the following two SQL queries can be used to
detect inconsistent tuples of I violating ϕ:
QC

Σ select t from R t, T X
Σ tXp , T Y

Σ tYp
wheretXp .id = tYp .id AND

t[X1] � tXp [X1] AND . . . t[Xn] � tXp [Xn] AND

(t[Y1] �� tYp [Y1] OR . . . t[Yn] �� tYp [Yn])

QV
Σ select distinct tM .X from Macro tM

group by tM .X
having count(distinct Y)> 1

where Macro is:

select (case tXp [Xi] when “@” then “@” else t[Xi] end)AS Xi . . .
(case tYp [Yj] when “@” then “@” else t[Yj] end)AS Yj . . .

from R t, T X
Σ tXp , T Y

Σ tYp
wheretXp .id = tYp .id AND

t[X1] � tXp [X1] AND . . . AND t[Xn] � tXp [Xn]

where t[Xi] � tp[Xi] now accounts for the ‘@’ and is a
short-hand for (t[Xi] = tp[Xi] OR tp[Xi] = ‘ ’ OR tp[Xi]
= ‘@’), while t[Yj] �� tp[Yj] is a short-hand for (t[Yj] �=
tp[Yj] AND tp[Yj] �= ‘ ’ AND tp[Yj] �= ‘@’).

More specifically, query QC
Σ is similar in spirit to the

SQL query that checks for inconsistencies of constants be-
tween the relation and the tableau, for a single CFD. The
only difference is that now the query has to account for the
presence of the ‘@ ’symbol in the tableau. Now, we turn our
attention to relation Macro which is of the same sort as TX

Σ

and T Y
Σ (we rename attributes that appear in both tableaux

so as not to appear twice). Relation Marco is essentially the
join on X of relation I with the result of the join on tuple
id t.id of the two tableaux. The value of each attribute, for
each tuple tM in Marco, is determined by the case clause.
In more detail, tM [Xi] is set to be ‘@’ if tXp [Xi] is ‘@’, and
is t[Xi] otherwise; similarly for tM [Yj]. Note that relation
I is not joined on Y with the tableaux. Thus if for some
tuple t with t[X] � tXp [X], there exists an attribute Yj with
tYp [Yj] a constant and t[Yj] �= tYp [Yj] (i.e., t is inconsistent
w.r.t. tp) then tM [Yj] is set to be t[Yj]. This creates no prob-
lems since this inconsistent tuple is already detected byQC

Σ .
Intuitively, Macro considers each tuple in the tableau,

and uses it as a mask over the tuples of the relation. If the
tableau tuple indicates a don’t care value for an attribute, all
the (possibly different) attribute values in the relation tuples
are masked and replaced by an ‘@’ in Macro. Figure 8
shows the result of joining the fourth tuple of tableaux TX

Σ

and T Y
Σ in Fig. 7 with the cust relation of Fig. 1. Note

that the query masks the attributes values of CC and AC.
This masking allows the subsequent group by over X to
essentially consider, for each tuple, only the subset of X
that does not have any don’t care values. Note that although
X = {CC,AC,CT}, the group by by queryQV

Σ essentially
performs a group by over only attribute CT. The query
returns the NYC tuples which violate ϕ5.

CC AC CT CT′ AC′
@ @ NYC @ 908
@ @ NYC @ 212
@ @ PHI @ 215
@ @ EDI @ 131

Figure 8. Marco relation instance

In this way we generate a single pair of SQL queries to
validate a set Σ of CFDs, while guaranteeing that the queries
are bounded by the size of the embedded FDs in Σ, inde-
pendent of the size of the tableaux in Σ. Furthermore, to
validate Σ only two passes of the database is required.

5 Experimental Study
In this section, we present our findings about the perfor-

mance of our schemes for detecting CFD violations over a
variety of data sizes, and number and complexity of CFDs.

Setup: For the experiments, we used DB2 on an Apple
Xserve with 2.3GHz PowerPC dual CPU and 4GB of RAM.

Data: Our experiments used an extension of the relation in
Fig. 1. Specifically, the relation used models individual’s
tax-records and includes 8 additional attributes, namely, the
state ST a person resides in, her marital status MR, whether
she has dependents CH, her salary SA, tax rate TX on her
salary, and 3 attributes recording tax exemptions, based on
marital status and the existence of dependents.

To populate the relation we collected real-life data: the
zip and area codes for major cities and towns for all US
states. Further, we collected the tax rates, tax and income
brackets, and exemptions for each state. Using these data,
we wrote a program that generates synthetic tax records.

We vary two parameters of the data instance in our ex-
periments, denoted by SZ and NOISE. SZ determines the
tuple number in the tax-records relation and NOISE the per-
centage of dirty tuples. As the data is generated, with prob-
ability NOISE, an attribute on the RHS of a CFD is changed
from a correct to incorrect value (e.g., a tax record for a NYC

resident with a Chicago area code).

CFDs: We used CFDs that represent real-world constraints
such as (a) zip codes determine states, (b) zip codes and
cities determine states (a city by itself does not suffice since
many states have cities with the same name), (c) states
and salary brackets determine tax rates (a tax rate depends
on both the state and employee salary), etc. We varied
our CFDs using the following parameters: NUMCFDs deter-
mined the number of CFDs considered in an experimental
setup, NUMATTRs the (max) attribute number in the CFDs,
TABSZ the (max) tuple number in the CFDs, and NUM-
CONSTs the percentage of tuples with constants vs. tuples
with variables in each CFD.

SQL query evaluation: There are two alternative evalu-
ation strategies for the SQL detection queries of Section 4.
Key distinction between these two strategies is how we eval-
uate the where clause in each detection query. Specifically,

note that the where clause of our SQL detection queries is
in conjunctive normal form (CNF). It is known that database
systems do not execute efficiently queries in CNF since the
presence of the OR operator leads the optimizer to select
inefficient plans that do not leverage the available indexes.
A solution to this problem is to convert conditions in the
where clause into disjunctive normal form (DNF). This
conversion might cause an exponential blow-up in the num-
ber of conjuncts, but in this case, the blow-up is w.r.t. the
number of attributes in the CFD, which is usually very small.

CNF vs. DNF: In this experiment We considered both eval-
uation strategies, under various settings, to determine the
most efficient one. In more detail, we considered relations
with SZ from 10K to 100K tuples, in 10K increments, and
5% NOISE. We considered two representative CFDs, each
with NUMATTRs 3, where the first CFD had NUMCONSTs
100% (tuples with only constant) while the second had
NUMCONSTs 50% (half the tuples had variables). In terms
of CFD size, we set TABSZ to 1K. Figures 9(a) and 9(b)
show the evaluation times for both evaluation strategies, for
each of the two CFDs. As both graphs show, irrespective of
data size and the presence of constants or variables, the DNF

strategy clearly out-performs the CNF one. Furthermore, the
figures illustrate the scalability of our detection queries SZ.

QC
ϕ vs. QV

ϕ : In this experiment, we investigated how the
detection time is split between the QC

ϕ and QV
ϕ queries. We

considered relations with SZ from 10K to 100K tuples, in
10K increments, and 5% NOISE. For the CFD, we con-
sider one with NUMATTRs equal to 3, TABSZ to 1K and
NUMCONSTs 100% (we made similar observations for other
values of NUMCONSTs). Figure 9(c) shows the evaluation
times for each query in isolation and shows that both queries
have similar loads and they follow the same execution trend.

Scalability in TABSZ: This was to study the scalability of
the detection queries with respect to TABSZ. In more de-
tail, we fixed SZ to 500K with 5% NOISE. We considered
two CFDs whose sizes varied from 1K to 10K, in 1K incre-
ments. The NUMATTRs was 3 for the first, and 4 for the sec-
ond CFD considered. For all CFDs, NUMCONSTs was 50%.
Figure9(d) shows the detection times for the 2 CFDs. As is
obvious from the figure, TABSZ has little impact on the de-
tection times and dominant factors here are (a) the size of
the relation, which is much larger than the tableaux, and (b)
the number of attributes in the tableau, since these result in
more complicated join conditions in the detection queries.

Scalability in NUMCONSTs: We studied the impact of vari-
ables on the detection times. We considered a relation with
SZ 100K and NOISE 5% and a CFDs with TABSZ 1K, and
NUMATTRs = 3. We varied NUMCONSTs between 100% (all
constants) and 10% and we measured the detection times
over the relation. Figure 9(e) shows that variables do affect
detection times and (not shown in the figure) moreover, as

10K 20K 30K 40K 50K 60K 70K 80K 90K 100k

Number of tuples in relation (SZ)

0

1

2

3

Ti
m

e
(s

ec
s)

CNF
DNF

(a) CNF vs DNF (NUMCONSTs =
100%)

10K 20K 30K 40K 50K 60K 70K 80K 90K 100k

Number of tuples in relation (SZ)

0

1

2

3

4

T
im

e
 (

s
e

c
s
)

CNF
DNF

(b) CNF vs DNF (NUMCONSTs =
50%)

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Number of tuples in relation (SZ)

0

0.05

0.1

0.15

0.2

T
im

e
 (

s
e

c
s
)

Q^V
Q^C

(c) QC
ϕ vs. QV

ϕ

1K 2K 3K 4K 5K 6K 7K 8K 9K 10K

Number of tuples in CFD (TABSZ)

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 (

s
e

c
s
)

NumAttrs=4
NumAttrs=3

(d) Scalability in TABSZ

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

NUMCONSTs

0

0.1

0.2

0.3

0.4

0.5

0.6

T
im

e
 (

s
e

c
s
)

(e) Scalability in NUMCONSTs

0% 1% 2% 3% 4% 5% 6% 7% 8% 9%

NOISE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
 (

s
e

c
s
)

(f) Scalability in NOISE

Figure 9. Experimental results

we increased both the percentage of variables and the num-
ber of attributes with variables, detection times increased
noticeably. This is apparent, given that variables restrict the
use of indexes while joining the relation with the tableau.

Scalability in NOISE: Here, we varied NOISE between 0%
and 9% in a relation with SZ 100K, and we measured detec-
tion time, for a CFD with TABSZ 30K (we used all possible
zip to state pairs, so as not to miss a violation), NUMATTRs
2, and NUMCONSTs 100%. As we can see in Fig.9(f), the
level of NOISE has negligable effects on detection times.

Merging CFDs: Our experiments indicate (not shown) that
CFD merging is mainly beneficial for highly-related CFDs,
as might be expected. However, the performance of the
merged scheme is hampered by the difficulty faced by our
optimizers when handling where clauses in CNF. The con-
version to DNF is not an option here, because each disjunct
in CNF consists of 3 terms, and thus the translation of CNF

to DNF results in a where clause with 3k conjuncts, where
k is the number of attributes in the CFD. In practice this is
much worse than the 2k increase that results from translat-
ing QC

ϕ or QV
ϕ into DNF. We speculate that improvements

in CNF evaluation may make the merge technique more use-
ful. Also, we are investigating techniques to factor out work
from multiple CFD violation detections in a manner similar
to [4], and expect the merged representation to be a conve-
nient basis for optimizations of this form.

6 CFD Repairing: Discussion
To clean data, an effective method should be in place

for removing inconsistencies from the data, in addition to
inconsistency detection. That is, if a database I of a relation
schema R violates a set Σ of CFDs on R, we want to find a
minimal repair I ′ of I such that I ′ |= Σ and I ′ minimally
differs from the original database I , obtained by performing

repair operations on I [2]. Following [3, 7, 19] we allow
attribute-value modifications as repair operations.

Repairing CFDs is nontrivial. Indeed, consider the CFD

repairing problem, which is to determine, given I , Σ and a
positive integer k, whether or not there exists an instance I ′

of R such that (1) I ′ |= Σ and (2) I ′ is obtained from I by
at most k repair operations. This problem is intractable (by
reduction from the set cover problem).

Theorem 6.1: The repairing problem is NP-complete. �

Repairing CFDs introduces challenges not encountered
when repairing standard FDs. For example, it is known [3]
that if a pair t1, t2 of tuples violate an FD X → A, one can
resolve the inconsistency by modifying t1[A] or t2[A] such
that t1[A] = t2[A]. That is, FD violations can always be
resolved by modifying values of some t1 (or t2) attributes in
the RHS of FDs, without changing the LHS such that t1[X] �=
t2[X]. In contrast, this strategy no longer works for CFDs.
To see this, consider a schema R with attr(R) = (A,B,C),
an instance I ofR consisting of (a1, b1, c1) and (a1, b2, c2),
and a set Σ of CFDs including (A → B, (,)) and (C →
B, {(c1, b1), (c2, b2)}). Then I �|= Σ and moreover, any
repair I ′ has to modify values of some attributes in the LHS

of the FDs embedded in the CFDs.
In light of Theorem 6.1 we have developed a heuristic

algorithm for finding a repair of a database, overcoming the
new challenges. We defer report on the heuristic pending
the completion of implementation and experimental study.

7 Concluding Remarks
We have introduced CFDs and shown that CFDs can ex-

press semantics of data fundamental to data cleaning. For
reasoning about CFDs we have provided techniques and a
sound and complete inference system for their consistency
and implication analyses. For applications of CFDs in data

cleaning, we have developed SQL-based techniques for de-
tecting inconsistencies as violations of CFDs. We have also
experimentally evaluated our detection techniques.

There has been work on data cleaning based on con-
straints (e.g., [2, 5, 7, 19]). Research in this area has mostly
focused on two topics, both introduced in [2]: repair is to
find another database that is consistent and minimally dif-
fers from the original database (e.g., [2, 5, 7]); and consis-
tent query answer is to find an answer to a given query in
every repair of the original database (e.g., [2, 19]). Most ear-
lier work (except [7, 19]) considers traditional full (subsum-
ing functional) dependencies and denial constraints, which
do not allow patterns with data values and are quite dif-
ferent from CFDs. Beyond traditional dependencies, logic
programming is studied in [7] for fixing census data. Closer
to CFDs is the tableau representation of full dependencies,
which also allow data values [19]. The work of [19] differs
from ours in that it focuses on condensed representation of
repairs and consistent query answers. As remarked in Sec-
tion 2, a class of instance-level FDs is studied in [13], which
are a special case of CFDs. [13, 7, 19] consider neither con-
sistency analysis and inference system, nor detection of in-
consistencies by means of SQL queries.

Codd tables, variable tables and conditional tables have
been traditionally used in the context of incomplete infor-
mation [11, 9]. The key difference between these table
formalisms and pattern tableaux in CFDs is that each of
these tables is used as a representation of possibly infinitely
many relation instances, one instance for each instantiation
of variables. No instance represented by these table for-
malisms can include two tuples that result from different
instantiations of a table tuple. In contrast, a pattern tableau
is used to constrain–as part of a CFD–a single relation in-
stance, which can contain any number of tuples that are all
instantiations of the same pattern tuple. Closer to our pat-
tern tableau is the notion of mapping tables studied for data
sharing [12], for which no inference system is developed.

As remarked in Section 1, there have been ETL tools
(see [16] for a comprehensive survey) and merge-purge al-
gorithms (e.g., [8, 10, 15, 20]) for data cleaning. Related
to our work are also the AJAX system [8] which proposes a
declarative language for specifying data cleaning programs,
and the Potter’s Wheel system [17] that extracts structure
for attribute values and uses these to flag discrepancies in
the data. While a constraint repair facility will logically be-
come part of the cleaning process supported by these tools
and systems, we are not aware of analogous functionality
currently in any of the systems mentioned.

There is naturally much more to be done. First, as re-
marked in Section 6 we are implementing our CFD-based
algorithms for repairing CFDs. Second, to clean data, con-
straints beyond CFDs are certainly needed. We are studying
data cleaning based on both CFDs and conditional inclusion

dependencies. Third, we are developing automated meth-
ods for discovering CFDs and repairing inconsistent CFDs.

Acknowledgment.Wenfei Fan is supported in part by EP-
SRC GR/S63205/01, GR/T27433/01 and BBSRC BB/D006473/1.
Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen.

References

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[2] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent
query answers in inconsistent databases. In PODS, 1999.

[3] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-
based model and effective heuristic for repairing constraints
by value modification. In SIGMOD, 2005.

[4] Z. Chen and V. Narasayya. Efficient computation of multiple
group by queries. In SIGMOD, 2005.

[5] J. Chomicki and J. Marcinkowski. “Minimal-Change In-
tegrity Maintenance Using Tuple Deletions”. Information
and Computation, 197(1-2):90–121, 2004.

[6] W. W. Eckerson. Data Quality and the Bottom Line: Achiev-
ing Business Success through a Commitment to High Qual-
ity Data. Technical report, The Data Warehousing Institute,
2002. http://www.tdwi.org/research/display.aspx?ID=6064.

[7] E. Franconi, A. L. Palma, N. Leone, S. Perri, and F. Scar-
cello. Census data repair: a challenging application of dis-
junctive logic programming. In LPAR, 2001.

[8] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and
C. Saita. “AJAX: An Extensible Data Cleaning Tool”. In
SIGMOD, 2001.

[9] G. Grahne. The Problem of Incomplete Information in Rela-
tional Databases. Springer, 1991.

[10] M. A. Hernandez and S. Stolfo. “Real-World Data is Dirty:
Data Cleansing and the Merge/Purge Problem”. Data Min-
ing and Knowledge Discovery, 2(1):9–37, 1998.

[11] T. Imieliński and W. L. Jr. Incomplete information in rela-
tional databases. JACM, 31(4):761–791, 1984.

[12] A. Kementsietsidis, M. Arenas, and R. J. Miller. Data map-
ping in P2P systems: Semantics and algorithmic issues. In
SIGMOD, 2003.

[13] E. Lim and S. Prabhakar. Entity identification in database
integration. In ICDE, 1993.

[14] D. Maier. Minimum covers in relational database model.
J. ACM, 27(4):664–674, 1980.

[15] A. Monge. Matching algorithm within a duplicate detection
system. IEEE Data Engineering Bulletin, 23(4), 2000.

[16] E. Rahm and H. H. Do. Data cleaning: Problems and current
approaches. IEEE Data Engineering Bulletin, 23(4), 2000.

[17] V. Raman and J. M. Hellerstein. “Potter’s Wheel: An Inter-
active Data Cleaning System”. In VLDB, 2001.

[18] C. C. Shilakes and J. Tylman. Enterprise information portals,
Nov. 1998.

[19] J. Wijsen. Condensed representation of database repairs for
consistent query answering. In ICDT, 2003.

[20] W. Winkler. Advanced methods for record linkage. Techni-
cal report, Statistical Research Division, U.S. Bureau of the
Census., 1994.

