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Abstract

We present a Bayesian formulation of locally
weighted learning (LWL) using the novel concept
of a randomly varying coefficient model. Based
on this, we propose a mechanism for multivariate
non-linear regression using spatially localised lin-
ear models that learns completelyindependentof
each other, uses onlylocal information and adapts
the local model complexity in a data driven fashion.
We deriveonlineupdates for the model parameters
based on variational Bayesian EM. The evaluation
of the proposed algorithm against other state-of-
the-art methods reveal the excellent, robust gener-
alization performance beside surprisingly efficient
time and space complexity properties. This paper,
for the first time, brings together the computational
efficiency and the adaptability of ’non-competitive’
locally weighted learning schemes and the mod-
elling guarantees of the Bayesian formulation.

1 Introduction
Locally weighted projection regression (LWPR)[Vijayaku-
maret al., 2005] is a prime example of recent developments
in the area of localised learning schemes that have resulted in
powerful non-linear regression algorithms capable of operat-
ing in real-time, high dimensional, online learning scenarios.
They have been proven to work on many real world applica-
tions including, for e.g., supervised learning of sensorimotor
dynamics in multiple degree of freedom anthropomorphic ro-
botic systems[Vijayakumaret al., 2002].

All locally weighted schemes (including LWPR) have to
determine a region of validity of the local models, i.e., an
adaptive local distance metric, in a data driven fashion. This
is usually achieved by minimising some sort of cross vali-
dation cost on the fit using gradient descent methods. How-
ever, the initialization of the local complexity parameter or
distance metric, the forgetting factor and the learning rates
involved in the gradient method necessitate careful hand tun-
ing of multiple open parameters in existing methods. This
may not be trivially achieved in many real world problems
with limited prior domain knowledge. Also, there exists no
proper probabilistic formulation of the local weighted learn-
ing framework – a necessary development in order to exploit

the model selection guarantees that Bayesian methods pro-
vide while retaining the flexibility provided by nonparametric
localised learning.

One of the most attractive characteristics of LWPR-like lo-
calised learning schemes is its independent learning rules for
each individual local model, which combines or blends the
outputs only at the stage of prediction. In addition to avoid-
ing negative interference[Schaal and Atkeson, 1998], this
property also allows asynchronous learning of local models
leading to improved efficiency. We preserve this property in
our model by building a generative probabilistic model for
each individual local model and derive corresponding learn-
ing rules. We show that our novel formulation performs ro-
bustly in estimating local model complexity, competes with
the state-of-the-art methods in generalization capability, can
be extended to learn intruly incremental fashion, i.e., without
storing data and is surprisingly efficient in both computational
complexity and space.

2 Randomly Varying Coefficient model
Modelling spatially localized linear models using a proba-
bilistic framework involves deriving a formulation that allows
to model thefit, in our case a linear fit, and thebandwidthat
a particular location in the input space. Each of these local
models can then be combined to provide a prediction for a
novel data. Additionally, in order for the local models to be
independent, each of them should be capable of modelling
the entire data by learning the correct bandwidth that parti-
tions the data into two parts – one which corresponds to the
linear region of interest and the other which does not. In
this paper, we accomplish this by formulating a probabilis-
tic model called Randomly Varying Coefficient(RVC) model
which builds upon the idea of a random coefficient model
[Longford, 1993].

For a locally linear region centered aroundxc a generative
model for the data points can be written as:

yi = βT
i xi + ε (1)

where xi ≡ [(x′i − xc)T , 1]T represents the center sub-

tracted, bias augmented input vector,βi ≡ [β(1)
i . . . β

(d+1)
i ]T

represents the corresponding regression coefficient andε ∼
N (0, σ2) is the Gaussian mean zero noise with a standard de-
viation σ. The data is assumed to have been generated in an
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Figure 1: Variation of prior with the location of the input

Figure 2: The ‘local’ generative model

IID fashion. Crucially, we allow the regression coefficient to
be a random variable with a prior distribution given by:

βi ∼ N (β̂, Ci) (2)

where we have assumed that eachβi is generated from a
Gaussian centered around̂β with the confidence being repre-
sented by the covarianceCi. The covariance itself is defined
to be proportional to the distance ofx′i from the center. This
has the effect that for points that lie close to the center, the dis-
tribution ofβi is peaked around̂β resulting in a linear region
around the center. This has been illustrated schematically in
Fig. 1 where pointc is the center of the local model: for a
pointa that lies close toc we assign a prior that is fairly tight
around the mean whereas for a pointb that lies away fromc
the prior is much broader. One can consider various distance
functions to index the variation of the covariance matrixC.
Here, we restrict ourselves to a diagonal version, each diago-
nal element varying quadratically withx as:

Ci(j, j) = ((x′i − xc)
T (x′i − xc) + 1)/h2

j = xT
i xi/h2

j (3)

wherehj is the bandwidthparameter of the kernel, which
defines the extent of the locality along thej-th dimension.
This choice of the kernel parametrization allows us to use a
conjugate Gamma prior overhj . The higher values ofhj im-
ply lesser variation amongst the coefficientsβi and hence,
larger regions of linearity. Although the bandwidth modu-
lates the bias-variance tradeoff, an unconstrained likelihood
maximization will, in general favor largehj since it implies a

higher confidence over larger regions of the data. Therefore,
we use a Gammaregularizerprior over the bandwidth para-
meters such that it favors relatively small values ofhj leading
to more localised models:

h2
j ∼ Gamma(aj , bj) (4)

We shall further assign noninformative Normal prior
N (µ,S) for the parameter̂β and a noninformative inverse
Gamma prior with hyperparametersc andd for σ. We as-
sume a uniform prior for the regularizer hyperparametersaj

andbj . Fig. 2 summarizes the resultant probabilistic model
for asinglelocal model.

In this model, one can marginalize out the hidden variables
βi to obtain

P (yi|β̂, σ, h1 . . . hd+1) =

Z
P (yi|βT

i xi, σ
2)P (βi|β̂, Ci)dβi

⇒ yi ∼ N (β̂
T
xi,x

T
i Cixi + σ2)

(5)

It is interesting to note that the form of likelihood in Eq. (5)
corresponds to a heteroscedastic regression and will be used
in later sections for prediction. In the next section we deal
with computing the parameter updates and the resultant en-
semble posteriors in an efficient manner.

3 Learning
Our objective is to learn the posterior over the parametersβ̂,
hj , σ and to obtain point estimates for the hyperparameters –
aj , bj . The joint posterior is given by:

P (h, β̂, σ|y,a,b, c, d, µ,S) =
P (y, β̂,h, σ,a,b, c, d, µ,S)

P (y,a,b, c, d, µ,S)
(6)

where we have usedh to denote the vector[h2
1 . . . h2

d+1]
T and

y denotes the training data[y1 . . . yN ]T , a ≡ [a1 . . . ad+1]T
and b ≡ [b1 . . . bd+1]T . However, the posterior over the
parameters is rendered intractable due to the difficulty in
evaluating the denominator of Eq. (6). This necessitates
the use of variational Bayesian EM to evaluate the posterior
P (h, β̂, σ|y,a,b, c, d,µ,S) and learn the regulariser hyper-
parametersa andb.

3.1 Variational approximation
To learn the parameters of the model we can maximize the
marginal log likelihood with respect to the parameters treat-
ing βi as the hidden variables. The marginal log likelihood is
given by:

L = ln P (y|a,b, c, d, µ,S)

= ln

Z
P (y, β1 . . . βN ,h, β̂, σ|a,b, µ,S, c, d)dβ1 . . . dβN

dhdβ̂dσ

= ln

Z "Y
i

P (yi|βi, σ)P (βi|β̂, h1, . . . hd+1)

Y
j

P (h2
j |aj , bj)P (β̂|µ,S)P (σ2|c, d)

#
dβ1 . . . dβN

dh1 . . . dhd+1dβ̂dσ (7)



Using Jensen’s inequality, the objective function that lower
boundsL is given by:

F =

Z h
Q(β1 . . . βN ,h, β̂, σ2)

ln
P (y, β1 . . . βN ,h, β̂, σ2|a,b, µ,S, c, d)

Q(β1 . . . βN ,h, β̂, σ2)

#
dβ1 . . . dβN

dhdβ̂dσ2

(8)

The optimal value for Q(β1 . . .βN ,h, β̂, σ) that
makes the bound tight is given by the joint poste-
rior P (β1 . . .βN ,h, β̂, σ|y) but since this posterior
is intractable, we make an approximation by assum-
ing that the posterior over the variables is indepen-
dent and can be expressed asQ(β1 . . .βN ,h, β̂, σ) =∏

i Q(βi|y)
∏

j Q(h2
j |y)Q(β̂|y)Q(σ2|y). This form of

approximation is often called anensemblevariational ap-
proximation, details of which can found in[Beal, 2003].
Substituting the factorised approximation in Eq. (8) we get:

Fapprox =
X

i

h
〈ln P (yi|βi, σ)〉Qβi

,Q
σ2

+
D
ln P (βi|β̂, h1 . . . hd+1)

E
Qβi

,Qh1 ...Qhd+1,Q
β̂

#

+
X

j



ln P (h2

j |aj , bj)
�

Qhj

+
D
ln P (β̂|µ,S)

E
Q

β̂

+


ln P (σ2|c, d)

�
Q

σ2
−
X

i

D
ln Qβi

E
Qβi

−
X

j



ln Qhj

�
Qhj

−
�

ln Q
β̂

�
Q

β̂

− 〈ln Qσ2〉Q
σ2

(9)

where〈.〉Q denotes the expectation with respect to the dis-
tribution Q. The optimal values of the posterior probabili-
ties can be computed iteratively by maximizing the functional
Fapprox with respect to each individual posterior distribution
keeping the other distributions fixed akin to an EM procedure.
Such a procedure can be shown to improve our factorised ap-
proximation of the actual posterior in each iteration. Skipping
the derivation, such a procedure yields the following posterior
distributions:

Q(βi|y) ∼ N (νi,Gi) (10)

Q(β̂|y) ∼ N (µ̃, S̃) (11)

Q(h2
j |y) ∼ Gamma(ãj , b̃j) (12)

Q(σ2|y) ∼ Inv-Gamma(c̃, d̃) (13)
where

Gi = (xix
T
i /


σ2�+ 〈Ci〉−1)−1

= 〈Ci〉 −
〈Ci〉xix

T
i 〈Ci〉

〈σ2〉+ xT
i 〈Ci〉xi

(14)

where the second part has been derived by making use of
the Sherman-Morrison Woodbury theorem. Here〈Ci〉 =
diag(xT

i xi/
〈
h2

j

〉
Q(h2

j )
) and

〈
σ2

〉
is the expectation with re-

spect toQσ2 . Furthermore, using results from Eq. (14),
νi = Gi(yixi/



σ2�+ 〈Ci〉−1 µ̃i)

=
〈Ci〉xi

(〈σ2〉+ xT
i 〈Ci〉xi)

�
yi − xT

i µ̃i

�
+ µ̃i

(15)

S̃ = (
X

i

〈Ci〉−1 + S−1)−1, (16)

µ̃ = S̃(
X

i

〈Ci〉−1 νi + S−1µ) (17)

ãj = aj + N/2 (18)

b̃j = bj +
X

i

h
(νi,j − µ̃i,j)

2 + Gi,jj + S̃jj

i
/(2xT

i xi) (19)

Here,νi,j andµ̃i,j denote thej-th element of the respective

vectors andGi,jj andS̃jj denotes thej-th diagonal element.

c̃ = c + N/2 (20)

d̃ = d +
X

i

h
(yi − νT

i xi)
2 + xT

i Gixi

i
/2 (21)

We also need to learn the point estimates for the regulariser
hyperparametersaj andbj . Maximum likelihood value for
the hyperparametersaj and bj can be found by maximiz-
ing the boundFapprox given by Eq. (9) with respect to these
hyperparameters keeping the posterior distributionsQ fixed.
Considering only the terms involving the hyperparameters:

E =

Z
Q(h2

j |ãj , b̃j) ln P (h2
j |aj , bj)dh2

j

MaximisingE with respect to the hyperparameters is equiv-
alent to minimising the KL divergence between the distrib-
utions Q and P . Since the posteriorQ and priorP share
the same parametric form, KL divergence is minimised when
the parameters of these distributions match. This leads to the
simple update rule for the hyperparameters given by:

aj = ãj , bj = b̃j (22)

The hyperparametersµ, S, c andd are initialised such that the
corresponding priors are non-informative. An initialisation of
µ = 0, S = 10−3×I, c = 10−3 andd = 10−3 ensures such a
condition. On the other hand the regulariser hyperparameters
a andb are initialised such that it encourages smallh. A
value ofa = 1 and a sufficiently large value forb ensures
such a bias. These are the settings used by RVC for all the
evaluations carried out in Sec. 4.

3.2 Prediction using the committee of local models
We have dealt so far with building a coherent probabilis-
tic model for each local expert and have derived inference
procedures to estimate the parameters of individual model.
Given the ensemble of trained local experts, in order to pre-
dict the responseyq for a new query pointxq, we take the
normalised product of thepredictive distributionof each lo-
cal expert. This is close in spirit to the paradigm of Product
of Experts[Hinton, 1999] and the Bayesian Committee Ma-
chines[Tresp, 2000]. The predictive distribution of each local
expert is given by:

P (yq|y) =

Z
P (yq|β̂, σ,h)Q(β̂|y)Q(σ2|y)Q(h|y)dhdβ̂dσ2

(23)
where P (yq|β̂, σ,h) has the form given by Eq. (5). We
can further integrate out̂β from Eq. (23), but cannot do
the same forσ2 and h. Hence, we approximateQ(σ2|y)
andQ(h|y) by a delta function at the mode which implies



Q(σ2|y) ≈ δσ2
mode

andQ(h|y) ≈ δh2
mode

. The final predic-
tive distribution for thek-th local model is:

yq,k ∼ N (µ̃T xq,k,xq,k
T (S̃k + Ckhmode)xq,k + σ2

mode)

wherexq,k refers to the query point with thek-th center sub-
tracted and augmented with bias. Blending the prediction of
different experts by taking their product and normalising it
results in a Normal distribution given by:

yq ∼ N (µ, ζ2) where µ =

P
k αkµ̃T

k xq,kP
k αk

, ζ2 =
1P
k αk

.

Here, µ is a sum of the means of each individual expert
weighted by the confidence expressed by each expert in its
own predictionαk, ζ2 is the variance andαk is the precision
of each expert:

αk = 1/(xT
q,k(S̃k +Ck)xq,k +σ2

k), Ck = diag{xT
q,kxq,k/h2

j,k}

3.3 Online updates
The iterative learning rules to estimate the posteriors over pa-
rameters given the appropriate prior and the data, represented
by Eqs. (16)-(21), can be rewritten in the form of online up-
dates by exploiting the Bayesian formalism. In a batch mode
of posterior evaluation, we have

posteriorN =

NY
i

(likelihoodi)× prior0

The same can be expressed as a set of online updates:
posteriori = likelihoodi × priori; priori+1 = posteriori

Therefore we can transform the batch updates that we had
derived earlier into online updates given by :

S̃i = (〈Ci〉−1 + S−1
i )−1 (24)

µ̃i = S̃i(〈Ci〉−1 νi + S−1
i µi) (25)

ãi,j = ai,j + 1/2 (26)

b̃i,j = bi,j +
h
(νi,j − µ̃i,j)

2 + Gi,jj + S̃i,jj

i
/(2xT

i xi) (27)

c̃i = ci + 1/2 (28)

d̃i = di +
h
(yi − νT

i xi)
2 + xT

i Gixi

i
/2 (29)

We repeat above updates for a single data point{xi,yi} till
the posteriors converge – here,Θ̃ represents the posterior of
Θ. For the(i + 1)-th point, we then use posterior ofi-th step
as the prior as illustrated in Algorithm 1.

Addition/deletion of local models
The complexity of the learner is adapted by the addition and
deletion of local models. When the predictive likelihood for a
new data point is sufficiently low then one can conclude that
the complexity of the learner needs to be increased by adding
a new local model. This leads to the simple heuristic for the
addition of a local model wherein a local model is added at
a data point when the predictive probability for the particular
training data is less than a fixed threshold. The data point
serves as the center for the added local model.

When two local models have sufficient overlap in the re-
gion they model, then one of them is redundant and can be
pruned. The overlap between two local models can be deter-
mined by the difference in the confidence expressed in their
prediction for a common test point. The addition and deletion
heuristics that have been used here is similar to the ones used
in [Schaal and Atkeson, 1998].

Algorithm 1 Training a local model
1: Initialise hyperparameters:Θ0 ≡ {µ0,S0, c0, d0,a0,b0}.
2: for i = 1 to N do
3: Inputxi, yi

4: repeat
5: Estimate posterior hyperparametersΘ̃i usingΘi and

Eq. (14), (15) and Eqs. (24) - (29).
6: Estimate values of the hyperparametersa andb of

the regulariser prior using Eq. (22).
7: until convergence of posteriors
8: Θi+1 = Θ̃i

9: end for

3.4 Complexity analysis
The time complexity of the algorithm is dominated by the
computation ofGi in Eq. (14). The equations that useGi are
Eq. (27) and Eq. (29) and these can be rewritten to avoid ex-
plicit computation ofGi. Eq. (27) requires only the diagonal
elements ofGi which can be computed inO(d) since

Gi(j, j) = Ci(j, j)− (Ci(j, j)xi(j))
2/(σ2 +γi) using Eq. (14)

whereγi = xT
i Cixi which can also be computed inO(d) due

to the fact thatCi is diagonal. On the other hand, Eq. (29) re-
quires the evaluation ofxT

i Gixi which in turn can be written
down as:

xT
i Gixi =

σ2γi

σ2 + γi

and can also be computed inO(d). Furthermore, the ma-
trix inverses in Eq. (24) and Eq. (25) can also be computed
in O(d) due to the fact thatSi andCi are diagonal matri-
ces. Therefore the overall time complexity per online update
is O(dM) whered is the number of dimensions andM the
number of local models. The algorithm doesn’t require any
data points to be stored and hence, has aO(M) space com-
plexity for the sufficient statistics stored in the local mod-
els. The independence of the local models also means that
we could bring down the effective time complexity toO(d)
if we hadM parallel processors. The time complexity for
prediction isO(dM) including the evaluation of mean and
the confidence bounds. We can see from this analysis that
the algorithm is very efficient with respect to time and space
(in fact it matches LWPR’s efficiency) and hence, is a strong
candidate for situations which require real time and online
learning.

4 Evaluation
In this section, we demonstrate the salient aspects of the RVC
model by looking at some empirical test results, compare the
accuracy and robustness against state of the art methods and
evaluate its performance on some benchmark datasets.

Fig. 3(a) shows the local linear fits (at selected test points)
learned by RVC from noisy training data on a function with
varying spatial complexity. Such functions are extremely
hard to learn since models with high bias tends to oversmooth
the nonlinear regions while more complex models tend to fit
the noise. One can see that the linear fit roughly corresponds
to the tangential line at the center of each local model as ex-
pected. A more significant result is the adaptation of the local
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Figure 3: (a)Local fits and bandwidth adaptation. Fit and confidence bounds learned by (b) RVC model and by (c) GP model.

bandwidth. The bottom section of Fig. 3(a) plots the con-
verged locality measure computed asproduct of the band-
width parameters along each input dimension - nicely illus-
trating the ability to adapt the local complexity parameter in
a data driven manner. Note that for this illustration, we have
placed local centers in a dense, uniform grid in input space.

In the next evaluation, using the samesinc function, we
compare the fits and confidence bounds learned by RVC and
Gaussian Processes (GP)[Williams, 1998] in Fig. 3(b) and
(c). It is important to note that we have deliberately avoided
using training data in [5.5,6.5] and the confidence bounds of
RVC nicely reflect this. Our next experiment aims to illus-
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Figure 4: Fit and confidence bounds for the motorcycle
dataset learned by the RVC model (local models were cen-
tered at 20 uniformly distributed points along the input)

trate the ability of RVC to model heteroscedastic data (i.e.,
data with varying noise levels). Fig. 4 illustrates the fit and
the confidence interval learnt on themotorcycle impactdata
discussed in[Rasmussen and Gharamani, 2000]. Notice that
the confidence interval correctly adapts to the varying amount
of noise in the data as compared to the confidence interval
learnt by a GP with squared exponential kernel shown in Fig.
5. This ability to model non-stationary functions is another
advantage of RVC’s localised learning. In these evaluations,

we have used RVC in the batch mode using the updates that
we derived in Sec. 3(c.f. Eqs. 14 - 21). The subsequent eval-
uations in this section make use of the online updates derived
in Sec. 3.3.
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Figure 5: Fit and confidence bounds for the motorcycle
dataset learned by the Gaussian Processes model

To compare the online learning characteristics, we trained
the three candidate algorithms on 500 data points from the
sinc function corrupted with output noise:ε ∼ N (0, 0.052).
After each training data was presented to the learner, the er-
ror in learning was measured using a set of 1000 uniformly
distributed test points. The RVC model was allowed only a
single EM iteration for each data point to ensure a fair com-
parison with LWPR. The resulting error dynamics is shown in
Fig. 6(a). In this comparison, GP exhibits a sharply decreas-
ing error curve which is not surprising considering that it is
essentially abatchmethod and stores away all of the train-
ing data for prediction. When we compare RVC with LWPR,
we find that RVC converges faster while using roughly sim-
ilar number of local models. This can be attributed to the
Bayesian learning rules of RVC that estimates the posterior
over parameters rather than point estimates. Since the poste-
rior is a product of likelihood and prior, in the event of sparse
data (as in the initial stages of online learning), the prior en-
sures that the posterior distributions assigned to the parame-
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Figure 6: (a) Comparison of online learning dynamics forsinc function (b) Comparison of generalization error

ters and in turn the predictions of the learner are reasonable.
Also the optimization of the regularizer hyperparameters for
every data point implies a faster adaptation and hence, a faster
convergence.

In the next evaluation, we compare the generalization per-
formance of the algorithms on artificial as well as real world
datasets. Thesinc function, air dataset described in[Bruntz
et al., 1974] and the Boston housing dataset from the UCI
repository were used as benchmark datasets. The air(ozone)
dataset which is a three dimensional dataset with 111 data
points was split into 83 training and 28 test points. The 13
dimensional Boston dataset was split into 404 training and
102 test points. The online learners namely RVC and LWPR
were trained in epochs of repeated presentation of the train-
ing data, till convergence – LWPR required careful tuning of
the distance metric initialization and learning rates to achieve
the performance reported here as opposed to the uninforma-
tive priors used for RVC. The performance of GP, RVC and
LWPR shown in Fig. 6(b) are statistics accumulated over 10
different train-test splits. All three methods perform very well
on thesinc data set, achievingnMSE of less than 0.0025.
For the ozone dataset which is highly nonlinear, RVC and
LWPR performs better than GP. For the Boston dataset, we
find that the performance of RVC is close to that of LWPR
while slightly inferior to the GP results – although this differ-
ence is statistically insignificant.

5 Discussion
The major contribution of the paper is the development of
a Bayesian formulation for independent spatially localised
learners for multivariate nonlinear regression. We have used
a novel formulation of data dependent priors in order to carve
out locally linear regions while avoiding competition amongst
local models. The ‘non-competitive’ behaviour of each lo-
cal model allows independent, efficient learning while the
Bayesian regularizer hyperpriors guard against the danger of
overfitting or over-smoothing through automatic local band-
width adaptation. We evaluated the RVC model against the
state of the art in non-linear regression techniques on artificial
as well as real world data sets. RVC matched the generaliza-

tion performance of LWPR while avoiding cumbersome pa-
rameter tuning for initialization. It achieves competitive per-
formance compared to GP – essentially a batch method, while
being much more computationally efficient (linear in number
of training data and input dimensionality as opposed to cubic
in training data for GP). The space and computational effi-
ciency of RVC coupled with the ability to grow model com-
plexity in a data driven fashion makes it a strong candidate
for practical online and real time learning scenarios.
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