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Abstract 

Workflows are playing a crucial role in e-Science systems. In many cases, e-Scientists need to do 
average case estimates of the performance of workflows. Quality of Service (QoS) properties are 
used to do the evaluation. We defined the Bell-Curve Calculus (BCC) to describe and calculate the 
selected QoS properties. The paper presents our motivation of using the BCC and the methodology 
used during the developing procedure. It also gives the analysis and discussions of the experimental 
results from the ongoing development. 

1.   Introduction 
Grid computing has an almost ten-year history 
since it was derived, from an analogy to the 
power Grid, to denote a proposed distributed 
computing infrastructure for advanced science 
and engineering collaborations [1]. It is strongly 
required by consumers, scientists, engineers, 
enterprises, countries, and even the whole world 
to share resources, services and knowledge [2]. 
This sharing is supported and implemented by 
web services, software systems designed to 
support interoperable machine-to-machine 
interaction over a network. These services can 
be composed in many different ways to form 
workflows. It is very helpful to measure the 
performance of the resulting composite services 
because their quality affects the quality of the 
Grid directly. 
      In scientific workflows, experimental data is 
generated and propagated from one service to 
another. It would be useful to get rough 
estimates of various QoS properties, e.g. 
reliability, accuracy, run time, etc. so that e-
Scientists could perform analyses and 
evaluations of either services or the data 
produced. We have previously thought about 
the use of interval arithmetic to calculate error 
bounds on such estimates. The idea is to extend 
a numeric value to a number interval, e.g. we 
use an interval, say [41, 43], to represent the 
range of error of 42. Extended numeric analysis 
is used as the way of interval propagation in 
workflows. The simplest example is for a unary 
and monotonically increasing function f(x), the 
extended function f*([a, b]) = [f (a), f (b)]. 
Using interval arithmetic and propagating error 
bounds will calculate the biggest accumulative 
error during workflow executions, so it is a 
good method for doing a worst-case analysis. 
      However, in more common situations, e-
Scientists may want to know the likelihood of 

each value in the interval. So for average-case 
analysis, we propose to use normal distributions 
(bell curves) to add the concept of probability to 
differentiate the likely from the unlikely values 
of the QoS properties. That is, if we associate a 
probability density function (pdf) shaped as a 
bell curve with the estimate, then some values 
in the interval have a higher probability than 
others. Figure 1 defines and illustrates the pdf 
and cumulative density function (cdf) of a 
standard bell curve. 

 
FIGURE 1 

STANDARD BELL CURVE 

 
The graph shows a standard bell curve with parameters – 
mean value µ=0 and standard deviation �=1. The red curve 
is the pdf (probability density function) curve, indicating the 
probability of each possible value of variable x. It can be 

generally presented as p(x) =
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. The green 

curve is the cdf (cumulative density function) curve, 
integrated from its pdf. It gives the probability that a 
normally distributed variable will output a value � x. 

 
      So now the questions are: 
      (1) Can we use BCC to describe QoS     
properties and what are the advantages and 
disadvantages? 
      (2) How can we define a BCC?       
      We aim to prove the hypothesis: 



      The Bell-Curve Calculus is a good estimate 
of Quality of Service properties over a wide 
range of values. 

2.   Why a Bell-Curve Calculus 

Although PEPA [3] and some other projects use 
exponential distribution as their atomic 
distribution, we still have sufficient reasons to 
choose bell curve. Initial experimental evidence 
from DIGS 1  suggests that bell curves are a 
possible approximation to the probabilistic 
behaviour of a number of QoS properties used 
in e-Science workflows, including the reliability 
of services, considered as their mean time to 
failure; the accuracy of numerical calculations 
in workflows; and the run time of services. 
Moreover, the Central Limit Theorem (CLT) [4] 
also gives us some theoretical support by 
concluding that: 

      “The distribution of an average tends to be 
Normal, even when the distribution from which 
the average is computed, is decidedly non-
Normal.” 
      Here in the CLT, ‘Normal’ refers to a 
Normal Distribution, i.e. a Bell Curve. 
      Furthermore, from the mathematical 
description of bell curves, we can see that the 
biggest advantage of using a bell curve is that 
its probability density function (pdf) p(x) 
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has only two parameters: mean 

value µ and standard deviation �, where µ 
decides the location of a bell curve and � 
decides the shape of a bell curve. While 
evaluating the performance of a workflow, we 
need to gather all the possible data values of the 
QoS properties we analyse from all the input 
services. We do calculations and analysis using 
the information and pass the results through the 
whole workflow. It will be a big burden if we 
transfer and calculate all the possible data 
values one by one. Now using bell curves which 
have only two parameters, the job becomes 
more efficient. All we need to do is to store and 
propagate the two parameters in workflows and 
a bell curve can be constructed at any time from 
µ and �. 
      Then we will see if we can calculate the 
QoS properties of a whole workflow from the 
corresponding properties of its component 
services, namely if we can define some 
inference rules to derive the QoS properties of 

                                                           
1 DIGS (Dependability Infrastructure for Grid Services, 
http://digs.sourceforge.net/) is an EPSRC-funded project, to 
investigate in fault-tolerance system and other quality of 
service issues in service-oriented architectures 

composite services from the correlative 
properties of their components. 
      We consider four fundamental methods to 
combine Grid services (we use services 1S  and 

2S  to represent two arbitrary services). 

Sequential:  2S  is invoked after 1S ’s invocation 

and the input of 2S  is the output of 1S . 

Parallel_All: 1S and 2S  are invoked 
simultaneously and the outputs are both passed 
to the next service. 
Parallel_First:  The output of whichever of  1S  

and 2S  first succeeds is passed to the next 
service. 
Conditional:   1S is invoked first. If it succeeds, 
its output is the output of the workflow; if it 
fails, 2S is invoked and the output of 2S  is the 
output of the whole workflow. 
      In terms of the three QoS properties and 
four combination methods, we have twelve 
fundamental combination functions (see Table 
1). For instance, the combination function of 
run time in sequential services is the sum of the 
run times of the component services. 
 

TABLE 1 
THE TWELVE FUNDAMENTAL COMBINATION FUNCTIONS 

 Seq Para_All Para_Fir Cond 

run time sum max min cond1 

accuracy mult combine1 varies? cond2 

reliability mult combine2 varies? cond3 

The table shows the twelve fundamental combination 
functions in terms of three QoS properties and the four basic 
combination methods. Sum, max,  min and mult represent 
respectively taking the sum, maximum, minimum and 
multiplication of the input bell-curves. Cond1-3 are three 
different conditional functions and their calculation depends 
on the succeeding results. The functions of Varies are 
parallel_first, which means the output of the workflow is the 
output of the first succeeded service. Combine1-2 are 
probabilistic merges, which are in the forms of linear-
_combinations_of_distribution_1*probability_of_1_occurri
ng+linear_combinations_of_distribution_2*probability_of_
2_occurring+...+linear_combinations_of_distribution_N*pr
obability_of_N_occurring. Neither are uniquely defined 
functions, but depend on different use cases of workflows, 
which adds the uncertainty to the calculus. But in most 
workflows, only the basic combinations sum, max, min and 
mult are needed. What we do for combine1-2 is to combine 
these basic functions based on different workflow. 

      
Here we convert the formula of bell curve to 

a function in terms of µ and �, then get the bell 
curve function as 
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      Our job is to define different instantiations 
of the combination functions applying to 
different QoS properties and different workflow 
structures.  

3.   Methodology 
Suppose we have two bell curves corresponding 
to two services. We present them using a bell 
curve function defined in Section2 as 

1 1( , )bc µ σ  

and
2 2( , )bc µ σ . We need to describe 

0µ  and 
0σ  

using
1µ ,

2µ ,
1σ and

2σ . That is, 
0µ  = 

1 2 1 2( , , , )fµ µ µ σ σ and 
0σ = 

1 2 1 2( , , , )fσ µ µ σ σ  The 

combination function 
0 0( , )bc µ σ  is defined as 

0 0( , )bc µ σ  = 
1 1 2 2( ( , ), ( , ))F bc bcµ σ µ σ  = 

bc(
1 2 1 2( , , , )fµ µ µ σ σ ,

1 2 1 2( , , , )fσ µ µ σ σ ), which is 

actually a function in terms of four  parameters  
--

1µ , 
2µ , 

1σ  and 
2σ . 

      Therefore we have two main tasks: 
(1) Can we find a satisfactory instantiation 

of 
1 1 2 2( ( , ), ( , ))F bc bcµ σ µ σ  for every 

situation we are investigating? 
(2) How good will our approximations be? 

‘Good’ here means accurate and 
efficient. 

      For example, for the property run time in 
sequential services, we can use 

0 1 2µ µ µ= +  and 
2 2

0 1 2σ σ σ= + , which has been proved true in 

mathematics [5]. 
      Our experiments are based on a system 
called Agrajag 2 . Using Agrajag, we got a 
satisfactory match (the error is generated by the 
limited calculation in the approximation method 
in Agrajag) of the piecewise uniform 
approximation curve (blue curve) and our 
estimate curve (mauve curve) (see Figure 2). 

Some of our combination functions have 
been defined by ourselves and tested in Agrajag. 
For example, for runtime in parallel_all 
structure, we need to get the maximum of two 
bell curves. Figure 3 shows the situation of the 
maximum of two bell curves using the 
combination method:  

0 1 2max( , )µ µ µ=  

and
0 1 2max( , )σ σ σ= . In this graph, we can see 

that our estimate achieved a good result – the 
                                                           
2 Agrajag (http://digs.sourceforge.net/agrajag.htm) is a 
framework written in Perl and C, developed by Conrad 
Hughes, to implement some operations and measurements 
on some basic models of stochastic distributions. 
 

error is very small. But does it always work like 
this? When we choose two closer bell curves as 
the inputs, the error became comparatively large 
(see Figure 4). This inconsistency decided one 
aspect worth investigation: through systematic 
experimentation using Agrajag, we needed to 
explore in a wide range of data to find various 
error status in different input situations. 

FIGURE 2 
THE SUM OF TWO BELL CURVES  

AND ITS APPROXIMATION 

 
The graph shows the sum of two bell curves (red curve and 
green curve). It can be used to model the run time of 
sequential combinations. Here we use an exact 
mathematically proved method: 

0 1 2µ µ µ= +  and 

2 2
0 1 2σ σ σ= +  to estimate the piecewise uniform curve 

(blue curve) produced by Agrajag. The mauve curve is our 
approximation curve, which almost coincides with the blue 
curve. We can see there is still a tiny error shown at the title 
of the graph. It is caused by the approximation using 
piecewise uniform functions. In the ideal situation (the 
resolution values which divide a curve to locally constant 
and connected segments �+�), the error is zero. 
 

FIGURE 3 
THE MAXIMUM OF TWO BELL CURVES  

AND ITS APPROXIMATION (1) 

 
 
This graph shows an ideal situation of getting the maximum 
of two bell curves. The red curve and the green curve are the 
two inputs. In this case, using the method 

0 1 2max( , )µ µ µ=  and
0 1 2max( , )σ σ σ= , the green 

curve is the piecewise uniform form of our approximation, 
the mauve curve. The blue curve is Agrajag estimate. Since 
the green curve, the blue curve and the mauve curve almost 
coincide with each other, they are hardly distinguished in 
the figure. 



FIGURE 4 
THE MAXIMUM OF TWO BELL CURVES  

AND ITS APPROXIMATION (2) 

 
In this graph, we use the same combination method as that 
in Figure 3, but taking two much closer bell curves as the 
inputs. This time, there is a distinct difference between 
Agrajag’s estimate (the blue curve) and our approximation 
(the mauve curve). We can see that in this case, the mauve 
curve and the green curve are the same curve, so they 
coincide with each other. 

 
      Another investigation aspect is to define and 
compare all sorts of combination methods to get, 
say, the maximum of bell curves. For example, 
through testing in Agrajag, we discovered that 
in most common situations, to get the maximum 
of two bell curves, the effect of approximating 
the output curve using 

0 1 2max( , )σ σ σ=  is better 

than that using 2 2
0 1 2σ σ σ= +  or that 

using
0 1 21/(1/ 1/ )σ σ σ= + . Our main goals are to 

make comparisons of all sorts of approximation 
methods and find the best one across many 
different situations. 
      To achieve a better outcome, we need some 
methods to define the precision of the 
approximation methods we use and then refine 
the experimental results. The explicit way to get 
to precision is to calculate the average error 
values, which allows us to have a general idea 
about how accurate our approximation is and 
make a comparison between different 
approximation methods easily. However, it 
cannot indicate how we could improve our 
method to get a better result. In Agrajag, there is 
a functionality to derive the parameters of the 
piecewise uniform approximation to the 
combination functions. So we call these 
parameters the perfect parameters and use them 
as a standard. Then we transform the job of 
finding the most suitable parameters of the 
combination functions to matching the perfect 
parameters. We will elaborate it using an 
example in Section 4. 
      All the above description to our 
methodology raises the question: since Agrajag 
can perform piecewise uniform approximation 
of bell-curve combinations, why do we still 

need a BCC? Why don’t we just use Agrajag to 
produce a bell-curve approximation to a 
workflow using the data from its component 
services? The answer is efficiency. Agrajag’s 
calculations do well in small workflow 
calculations, but the more common scenario is 
that workflows sometimes are composed of 
thousands of services. To take all the inputs and 
get an approximation requires huge calculation 
capacity, which will make Agrajag’s runtime 
unacceptably long. While using the BCC, we 
just need to do calculations among the 
parameters, which will make the calculation 
procedure more efficient. 

4.   Experimental Result and Analysis 

In this section, we will give some experimental 
results and analysis according to the 
methodology we have described in Section 2 
and Section 3. Since the combination function 
of sum of two bell curves is exact, we make our 
first attempt on the method of the getting 
maximum of two bell curves, which does not 
have a known simple mathematical combination. 

      To get more intuitive results, we used 
Gnuplot3 to draw 3D graphs. Without loss of 
generality, we fixed one of the input bell curves 
to the standard bell curve (

2µ =0 and 
2σ =1). 

Then the three dimensions were set as
1µ , 

1σ  

and the difference between the piecewise 
uniform estimation and our approximation using 
our combination methods. To ensure that 
common situations are considered, we generated 

1 1( , )bc µ σ  from a range of logarithmic-scaled 

integers, e.g., 102− �
1µ � 102  and 102− �

1σ � 102 . 

      Figure 5 shows the experimental results 
using a combination method (Method 1): 

0 1 2max( , )µ µ µ= and
0 1 2max( , )σ σ σ= .  From this 

graph we can see how the value of the error 
changes. Especially in the area of 7�

1µ �9 and 

1�
1σ �1.6, the errors are near 1e-06, which is a 

quite satisfactory approximation. 
      Does the method shown in Figure 5 achieve 
the best result? We tested another method 
(Method 2): 

0 1 2max( , )µ µ µ= and 
0σ =

1σ  or 
2σ  

(with bigger µ ) (see Figure 6). In Figure 6, we 
can see that the area of tiny errors is extended, 
compared to Figure 5. In most areas, the two 
surfaces coincide with each other, which is 
always true when 

1σ �1 because 
2σ �1 and both 

                                                           
3 Gnuplot is a portable command-line driven interactive data 
and function plotting utility for many operating systems. It 
can plot either 2D or 3D graphs. 



methods will take
0 1σ σ= . Whereas in the area 

1µ �4 and 
1σ <1, the green surface (Method 2) is 

much lower than the red one (Method 1). But 
the two methods are still the best two among all 
the methods we tried. Table 2 shows all the 
combination methods we had tried to get the 
maximum of two bell curves and their average 
errors. For all the methods we 
used

0 1 2max( , )µ µ µ= . 

FIGURE 5 
THE MAX OF TWO BELL CURVES  

AND ITS APPROXIMATION – METHOD 1 

 
The graph shows the error distribution for 

102− �
1µ � 102 and 102− �

1σ � 102 . The X-axis is the value 

of
1µ , the Y-axis is the value of 

1σ  and the Z-axis is the 

value of error between the piecewise uniform estimate (the 
resolution values is 1000 for this case) and the BCC 
estimate using the method 

0 1 2max( , )µ µ µ=  and 

0 1 2max( , )σ σ σ= . A lower value for the Z-axis shows a 

better fit. The values of x, y and z are discrete, but we  set it 
drawn with the parameter ‘by steps’, which allows Gnuplot 
to connect every two points and give us a clearer figure. The 
colourful platform map at the bottom of the coordinates 
indicates the various values of error. From the label on the 
right, we can see that from grey to yellow, the value of error 
decreases. 

FIGURE 6 
THE MAX OF TWO BELL CURVES  

AND ITS APPROXIMATION – METHOD 2 

 
 
The graph shows the error distribution using the method 

0 1 2max( , )µ µ µ=
 and 0σ = 1σ  or 2σ (with bigger 

µ
). Please note that the yellow areas in the platform map 

do not imply that all the values of the error are zero, but 
rather the errors are too small to distinguish from zero. 

 
      When we observe the above three figures, 
we can see that the errors produced by both 
methods stay stable at a comparatively high 
value in some areas. For instance, in Figure 6, 
there are some areas with correspondingly high 
error values and a sharp descent on error values 
at 

1µ �4. Why is there a distinct difference 

among the values? We did an experiment using 
method 2 to get the answer. 
      We set the numbers of pieces of piecewise 
uniform functions as 10, 100 and 1000 and got 
the three piecewise uniform estimates of the 
maximum of two bell curves. Then we used 
method 2 to derive our approximation of the 
maximum and obtained three error distributions. 
We drew the three distributions in one graph 
(Figure 7). We can see that the high-error areas 
of the three distributions coincided with each  

 

TABLE 2 
THE COMBINATION METHODS OF GETTING MAXIMUM OF TWO BELL CURVES 

 
The table shows the situation when we use different combination methods to get the maximum of two bell curves at the same 
resolution value. We set 

0 1 2max( , )µ µ µ=  in all the methods. 
1µ  And 

1σ  both take values from 52−  to 52 . Since we use the 

standard bell curve as one input and 
1µ >0, 

0σ =
1σ  or 

2σ  (with bigger µ ) and 
0 1 2σ σ σ= ×  are the same method in this case. 

Despite this, the first two combination methods are the best two methods we got. The combination methods we choose are rough 
hypotheses based on Figure 4. We estimate the output parameters according to the location and shape of the Agrajag approximation 
curve. We calculated the average error of each method to compare how good these combination methods are. 



other. But since the three distributions used 
different resolution values, which means that 
the precisions of the three calculations are 
different and there should be a minimum 
difference on the error values with different 
numbers of pieces. While in some areas, the 
value is almost unchanged, which means the 
method we used did not get a correct result in 
these areas. We tested all the methods we used 
in our experiment and could not find a 
completely satisfactory method. 

 
FIGURE 7 

THE COMPARISON OF COMBINATION METHOD 2  
WITH DIFFERENT RESOLUTION VALUES 

 
The graph provides us the comparison of  error distributions 
when we separately take the number of a pieces in 
piecewise uniform estimate as 10, 100 and 1000. Here the 
method is 

0 1 2max( , )µ µ µ=  and 
0σ =

1σ  or 
2σ  (with 

bigger µ ). 

            
 In this case, we could use our perfect 

parameters method stated in Section 3 to 
facilitate fine adjustments on our approximation 
functions. 

We derive the perfect parameters 
pµ  and 

pσ  

in Agrajag and try to approximate them in terms 
of

1µ ,
2µ ,

1σ and
2σ . Then the combination 

function we aim for turns to ( , )p pbc µ σ  = 

bc(
1 2 1 2( , , , )fµ µ µ σ σ ,

1 2 1 2( , , , )fσ µ µ σ σ )

1 1 2 2( ( , ), ( , ))F bc bcµ σ µ σ . 

      We fix one parameter, such as
1σ , then use 

some function to describe the relation between 

pµ  and
1µ . To simplify the problem, we use 

linear function here, namely
1p a bµ µ= × + . Then 

we get sets of a and b corresponding to different 

1σ  value. Figure 8 gave us the linear 

approximation when 
1σ = 0.5. Then we could 

have the linear function of 
1σ  in terms of a and 

b. So we finally get the function of 
pµ  in terms 

of 
1µ  and 

1σ  (see Figure 9). 

FIGURE 8 
THE LINEAR APPROXIMATION OF 

pµ  

 
The red line is the real data of 

pµ  and the green line is our 

approximation using the linear function 

10.99 0.24pµ µ= × + . In this case, 
1σ  is fixed to 0.5. In 

this figure, the linear approximation achieved a good result, 
especially in the upper part of the curve. 

 
 FIGURE 9 

THE APPROXIMATION OF 
pµ  IN TERMS OF 

1µ  AND 
1σ  

 
In this graph, the red surface is the real perfect 

pµ  surface 

and the green surface is our approximation of 
pµ  in terms 

of 
1µ  and

1σ . We can see in this figure, the two surfaces do 

not coincide in all the areas, which means that we still need 
to do some adjustment during the procedure of the linear 
approximation. We could change parameters of the linear 
functions or use non-linear functions to do the 
approximation. 

  
     In the above example, only using linear 
approximation seems to get a good result. 
However, in most cases, linear functions alone 
cannot achieve a satisfactory result. For 
example, this time we fix 

1µ  to 15.5, then we 

use a linear function of 
1σ  to approximate 

pσ  

(see Figure 10). There is a big gap between the 
curve and the approximation. After drawing the 
difference curve, based on the curve shape, we 
used different compensation to approximate it. 
The choices of exponential or other functions 
were made by our experience and the 



parameters of those functions were chosen by 
fitting the curves gradually. Figure 11 shows the 
result after adding the exponential 
compensation. The error between the real 
perfect values and our approximation is reduced 
appreciably. We could repeat the above 
procedure until the result reaches the acceptable 
range. 
 

FIGURE 10 
THE LINEAR APPROXIMATION TO 

pσ   

IN TERMS OF 
1σ  WHEN 

1µ  IS FIXED 

 
In this graph, we fixed 

1µ  = 15.5 and used a linear function 

of 
1σ  to approximate

pσ . The green line is our 

approximation, whereas the red curve is the real 
pσ  data. 

We can see the lower part of the curve dropped remarkably. 
So only using linear approximation does not produce a 
satisfactory result. 
 

FIGURE 11 
THE APPROXIMATION OF 

pσ  IN TERMS OF 
1σ   

AFTER ADDING EXPONENTIAL COMPENSATION 

 
 
In this figure, the red curve is the real 

pσ  data. The green 

curve is our approximation using linear function plus some 
exponential compensation. The blue curve is the error 
between the real data and our approximation, which is quite 
flat to the naked eye. Compared to Figure 10, we can see 
that our improved approximation method achieved a much 
better result. If we require more precise result, we could add 
more compensation to the method. 

 

FIGURE 12 
THE APPROXIMATION OF ‘A’ IN TERMS OF 

1µ  

 
In this graph, the red surface is the real perfect ‘a’ surface 
and the green surface is our approximation of ‘a’ in terms of 

1µ . There is a gap between the two curves in the area when 

1µ  is relatively small. We could still use some 
compensation function to erase it. But in this case, the 
absolute value of error is acceptable. So we chose to keep 
the form of the approximation function simpler. 

 
We applied the above procedure to different 

1µ  values and found that 
pσ  could always be 

approximated by the function f(
1σ ) in the form 

of f(
1σ ) = a*

1σ +b-exp(-
1σ /d) and the 

parameters a, b, c and d vary regularly along the 
values of 

1σ . So we present the parameters a, b, 

c and d in term of 
1µ  separately. Figure 12 

shows the situation when we approximate the 
parameter a using a function of 

1µ . 

After deriving all the four functions of 
approximating the parameters a, b, c and d in 
term of 

1µ , we substitute them into the perfect 

function 
pσ  = f(

1σ ). Then we have the final 

approximation function of 
pσ  in terms of both 

1µ  and 
1σ . We repeat the procedure to get the 

approximation function of 
pµ , which is more 

precise than the result in Figure 9. 

5.   Use Case 
After deriving the fundamental combination 
functions for runtime, we apply the BCC to 
some use case (Figure 13), which can be 
abstracted using our combination functions 
(Figure 14). 

We use Agrajag results as the gold standard 
values against which to evaluate our BCC. 
Figure 16 shows the difference between the 
standard values and our approximation values. 
Through calculating the runtime of the whole 
workflow, we could: 
(1) Do evaluations on the performance of the 
workflow; 



(2) Provide measurement values for e-Scientists 
to make decisions on whether to use the 
workflow or not. 
 

FIGURE 13 
EVALUATION USE CASE 

 

 
 
This is an example workflow for creating population-based 
"brain atlases", comprised of procedures, shown as orange 
ovals, and data items flowing between them, shown as 
rectangles.  More details of the workflow can be found in 
http://twiki.ipaw.info/bin/view/Challenge/FirstProvenanceC
hallenge. 

 
 

FIGURE 14 
ABSTRACTED WORKFLOW USE CASE 

 

 
 
This graph shows the abstract structure of the workflow 
using our fundamental combination functions. In this case, 
the workflow contains only the structures of ‘Seq’ and 
‘Para_All’, so only ‘sum’ and ‘max’ are concerned. 

 

FIGURE 15 
APPROXIMATION OF RUNTIME 

 
 
The graph presents the runtime of the workflow in Figure 13.  
In this graph, the blue curve shows the Agrajag values, 
namely, the standard values; while the green curve is our 
approximation values. Due to the low resolution, the 
difference is acceptable. If we raise the resolution, the 
advantage of the BCC will be obvious. It will take much 
less time to achieve the values. 

6.   Future Work 
In Section 3~5, we gave the methodology and 
some experimental results of the BCC, and also 
applied it to certain use case. The next step is to 
complete the BCC by finishing the rest of the 
fundamental combination functions. Then we 
will find real data to do more evaluation. After 
that, we will consider extend the BCC by 
importing Log-Normal or other distributions to 
describe the values more precisely. We may 
also embed the extended BCC to some 
frameworks to enhance their functionalities of 
prediction and evaluation. 
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