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Abstract

We argue that artificial intelligence systems must be able to manipulate their own internal

representations automatically in order to deal with an infinitely complex and ever changing

world, and to scale up to rich and complex applications. Such manipulation must go beyond

the ability to change beliefs and learn new concepts in terms of old; it must be able to change

the underlying syntax and semantics of the ontology. Initial progress is being made and is

now urgent, due to the demands created by autonomous multi-agent systems. Understanding

and automating this ability must be a major focus of artificial intelligence for the next 50

years.

1 Introduction

In the 50 years since the 1956 Dartmouth AI conference, we have become increasingly aware of
the key role of representation in all areas of artificial intelligence. In the original proposal for the
conference1, for instance, John McCarthy says:

“The emphasis here is on clarifying the environmental model, and representing it as a
mathematical structure.”

In his seminal Machine Intelligence 3 paper [Amarel, 1968], Saul Amarel demonstrated the sensi-
tivity of search space size to problem representation by exhibiting an increasingly efficient series of
representations for the Missionaries and Cannibals problem. Since then, huge amounts of AI energy
has been expended on hand-crafting representations, or ontologies [Uschold & Gruninger, 1996],
to hit a sweet spot combining adequate expressivity with inferential efficiency.

Despite these prodigious efforts, a few minutes studying any particular representation rapidly
reveals deficiencies in expressivity or efficiency or both. The inevitability of expressivity defi-
ciencies have long been recognised. For instance, the qualification problem refers to the practical
impossibility of specifying all the preconditions of an action required to guarantee successful ap-
plication. The ramification problem refers to the practical impossibility of specifying all the effects
of an action.

There have been valiant, but ultimately misguided, attempts to provide a general-purpose,
common-sense knowledge-base, for instance, the cyc Project2 or sumo3 (Suggested Upper Merged
Ontology). But even Cycorp has recognised the need to customise its general purpose knowledge
base to each application. And the developers of sumo recognise that their ultimate goal may be
unattainable.

∗The research reported in this paper was supported by EPSRC grant GR/S01771, and EPSRC studentship and
the EU Open Knowledge project. We are grateful to Chris Walton for feedback on an earlier draft.

1http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
2http://www.cyc.com
3http://ontology.teknowledge.com/
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“The question, then, is how do we handle cases like these, given that our goal is to
construct a single, consistent, and comprehensive ontology. It will be unfortunate if we
cannot reach this goal, but perhaps it is unattainable.” [Niles & Pease, 2001][p6]

We will argue that attempting to build a general-purpose representation is chasing rainbows.
The world is infinitely complex, so there is no end to the qualifications, ramifications and richness
of detail that one could incorporate, and that you might need to incorporate for a particular appli-
cation. This is not just a question of adding some additional facts or rules; it may also be necessary
to modify the underlying representational language: its syntax, its representational power or even
its semantics or logic. For a narrow application, it is often sufficient to hand-craft a representation
that hits the desired sweet spot. But this will not be sufficient for the deeper and wider ranging
applications that are the ultimate goal of artificial intelligence, e.g., autonomous agents able to
solve multiple and evolving goals in a complex and messy environment in collaboration with some
other agents and in conflict with others. For these, more ambitious, applications, the represen-
tation must be a fluent, i.e., it must evolve under machine control. This proposal goes beyond
conventional machine learning or belief revision, because these both deal with content changes
within a fixed representation. The representation itself needs to be manipulated automatically.

We believe that automatic representation development, evolution and repair must be a major
goal of artificial intelligence research over the next 50 years.

2 An Example: Motherhood

To illustrate our argument, consider the standard family tree ontology used to illustrate many logic-
based formalisms. Let Mother(x) represent the mother of x, where Mother is a function from chil-
dren to their mothers. We can then define Maternal Grandmother(x) ::= Mother(Mother(x)).

However, motherhood has become much more complicated than this in our modern world.
We have long had stepmothers and adopting mothers, but medical fertilization techniques have
recently provided: biological mothers, who provide the eggs, but don’t carry their baby to term;
surrogate mothers who host the baby in their womb, but who do not provide the egg; even mothers
who provide one part of the egg and other mothers who provide the other half. Who knows what
tomorrow will bring in this rapidly changing field.

To deal with these constant changes in the world, we are constantly having to update our
representations of that world. Firstly, Mother can no longer be a function, since Mother(x) is
no longer guaranteed to return a unique result4. We must replace the function with a relation
Mother(x, y) where y is the mother of x. Now we could replace this single Mother predicate with
several new predicates: Natural Mother, Step Mother, Adopting Mother, Biological Mother,
Surrogate Mother, etc. Alternatively, we could recognise the similarity between these relation-
ships by replacing the binary Mother predicate with a ternary one, in which the third argu-
ment specifies the type of motherhood involved, e.g., Mother(x, y,Natural), Mother(x, y, Step),
Mother(x, y,Adopting), etc. This third argument would have to picked up and manipulated by
any predicate defined in terms of Mother, for instance:

Maternal Grandmother(x, z, Type(τ1, τ2)) ::= ∃y. Mother(x, y, τ1) ∧ Mother(y, z, τ2)

The term Type(τ1, τ2) tells a complex story about the real family relationship. Modern families
are like this: “she’s the step-mother of his biological mother”.

If a reasoning system is restricted to a fixed ontology, this will rapidly get out of date. Reasoning
systems need to be able to develop, evolve and repair their underlying representations as well as
reason with them. The world changes too fast and too radically to rely on humans to patch the
representations. Some changes happen on a daily or even shorter timescale.

4Perhaps, soon, the very existence of a result will be no longer be guaranteed either.
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3 Representational Repair in Multi-Agent Planning

As an illustration of the kind of research programme we have in mind, We will describe the recent
PhD project of the second author [McNeill, 2005, Bundy et al, 2006]. This addresses the problem
of ontology alignment in a multi-agent planning environment: a problem which it is essential to
solve in order to realise the vision of the Semantic Web [Berners-Lee et al, 2001].

The environment of McNeill’s project is that some agents offer services and others require
these services. Each agent represents these services with strips-like planning action rules with
preconditions and effects written in a restricted version of kif, a first-order logical language.
Planning systems of this kind form the basis for many reasoning systems for multi-agent systems,
for instance, in bdi-based systems, in which the intentions and desires provide the goals for a
planning system and the beliefs provide the ontology over which planning is performed. We
assume that there has been an attempt at standardisation of ontologies, e.g., with all the agents’
authors downloading a common ontology from a central server. However, it is inevitable with any
sufficiently large agent community that there will be small differences between the ontologies, for
instance, caused by downloading different versions of the ontology or by local customisation to
meet specific user requirements.

The purpose of McNeill’s Ontology Refinement System (ors) is to identify and repair these
ontological mismatches at run time. Moreover, this must be done without full access to the other
agents’ ontologies. We cannot assume such full access because: (a) agents are unlikely to have
been built with the functionality to provide access to their underlying ontology; (b) in any case,
some details of an agent’s ontology are likely to be confidential, e.g., a commercial secret; and
(c) some aspects of the ontology may be generated dynamically in response to requests, e.g., rss
feeds.

Note that this project differs from previous approaches to ontology mapping, merging or align-
ing [Kalfoglou & Schorlemmer, 2003] in several ways.

• The ontologies are used for planning, so have to be more expressive than the concept on-
tologies (isa hierarchies) that are usually mapped.

• We do not assume complete access to the mismatched ontologies.

• Ontology repair is conducted entirely at run-time.

• We assume that the mismatches between the ontologies are relatively minor in extent.

The ors ontology repair operations consist mostly of syntactic manipulations of the underlying
kif representation. For instance, (a) the number or order of the arguments of a predicate may
be changed; (b) a predicate or constant may be divided into two or more, or two or more may
be merged into one. The only belief revision operations available to ors are to add or remove a
precondition of an action rule.

The diagnosis and repair of a faulty ontology is guided by a decision tree. The nodes of this tree
have questions such as “did the other agent ask a question we were not expecting to be asked?”.
Depending on the answer, the diagnosis process can ask a question further down the decision tree,
enter the Shapiro Algorithm or suggest a repair. The Shapiro Algorithm tries to determine the
truth or falsity of the agent’s beliefs by a restricted dialogue with the other agent [Shapiro, 1983].

ors has been evaluated on successive versions of third party ontologies from the kif and
planning communities (including sumo). It was able to deal successfully with just over a third of
the individual mismatches between these ontologies. Many of the mismatches were out of scope
of the project, for instance: arbitrary predicate name changes, comment or formatting changes,
changes that could not be represented in our restricted version of kif. Given the novelty of our
approach, we regard these results as very encouraging.

Our current research is directed at removing the many simplifying assumptions of the initial
project and applying it to a practical architecture for open, automated communication between
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multiple agents. Part of this work is to combine our approach with conventional ontology map-
ping abilities, e.g., to address name differences between predicates and constants with the aid of
WordNet5, which identifies synonyms, hyponyms and hypernyms.

4 Conclusion

We have argued that artificial intelligence systems must be able to manipulate their own internal
representations automatically in order to deal with an infinitely complex and ever changing world,
and to scale up to rich and complex applications. Such manipulation must go beyond the ability
to change beliefs and learn new concepts in terms of old; it must be able to change the underlying
syntax and semantics of the ontology. Initial progress is being made and is now urgent, due to
the demands created by autonomous multi-agent systems [Hendler, 1999]. Understanding and
automating this ability must be a major focus of artificial intelligence for the next 50 years.
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