
Scaling Conditional Random Fields Using Error-Correcting Codes

Trevor Cohn
Department of Computer Science

and Software Engineering
University of Melbourne, Australia

tacohn@csse.unimelb.edu.au

Andrew Smith
Division of Informatics
University of Edinburgh

United Kingdom
a.p.smith-2@sms.ed.ac.uk

Miles Osborne
Division of Informatics
University of Edinburgh

United Kingdom
miles@inf.ed.ac.uk

Abstract

Conditional Random Fields (CRFs) have
been applied with considerable success to
a number of natural language processing
tasks. However, these tasks have mostly
involved very small label sets. When
deployed on tasks with larger label
sets, the requirements for computational
resources mean that training becomes
intractable.

This paper describes a method for train-
ing CRFs on such tasks, using error cor-
recting output codes (ECOC). A number
of CRFs are independently trained on the
separate binary labelling tasks of distin-
guishing between a subset of the labels
and its complement. During decoding,
these models are combined to produce a
predicted label sequence which is resilient
to errors by individual models.

Error-correcting CRF training is much
less resource intensive and has a much
faster training time than a standardly
formulated CRF, while decoding
performance remains quite comparable.
This allows us to scale CRFs to previously
impossible tasks, as demonstrated by our
experiments with large label sets.

1 Introduction

Conditional random fields (CRFs) (Lafferty et
al., 2001) are probabilistic models for labelling
sequential data. CRFs are undirected graphical

models that define a conditional distribution over
label sequences given an observation sequence.
They allow the use of arbitrary, overlapping,
non-independent features as a result of their global
conditioning. This allows us to avoid making
unwarranted independence assumptions over the
observation sequence, such as those required by
typical generative models.

Efficient inference and training methods exist
when the graphical structure of the model forms
a chain, where each position in a sequence is
connected to its adjacent positions. CRFs have been
applied with impressive empirical results to the
tasks of named entity recognition (McCallum and
Li, 2003), simplified part-of-speech (POS) tagging
(Lafferty et al., 2001), noun phrase chunking (Sha
and Pereira, 2003) and extraction of tabular data
(Pinto et al., 2003), among other tasks.

CRFs are usually estimated using gradient-based
methods such as limited memory variable metric
(LMVM). However, even with these efficient
methods, training can be slow. Consequently, most
of the tasks to which CRFs have been applied are
relatively small scale, having only a small number
of training examples and small label sets. For
much larger tasks, with hundreds of labels and
millions of examples, current training methods
prove intractable. Although training can potentially
be parallelised and thus run more quickly on large
clusters of computers, this in itself is not a solution
to the problem: tasks can reasonably be expected
to increase in size and complexity much faster
than any increase in computing power. In order to
provide scalability, the factors which most affect the
resource usage and runtime of the training method

must be addressed directly – ideally the dependence
on the number of labels should be reduced.

This paper presents an approach which enables
CRFs to be used on larger tasks, with a significant
reduction in the time and resources needed for
training. This reduction does not come at the cost
of performance – the results obtained on benchmark
natural language problems compare favourably,
and sometimes exceed, the results produced from
regular CRF training. Error correcting output
codes (ECOC) (Dietterich and Bakiri, 1995) are
used to train a community of CRFs on binary
tasks, with each discriminating between a subset
of the labels and its complement. Inference is
performed by applying these ‘weak’ models to an
unknown example, with each component model
removing some ambiguity when predicting the label
sequence. Given a sufficient number of binary
models predicting suitably diverse label subsets, the
label sequence can be inferred while being robust
to a number of individual errors from the weak
models. As each of these weak models are binary,
individually they can be efficiently trained, even
on large problems. The number of weak learners
required to achieve good performance is shown to
be relatively small on practical tasks, such that the
overall complexity of error-correcting CRF training
is found to be much less than that of regular CRF
training methods.

We have evaluated the error-correcting CRF on
the CoNLL 2003 named entity recognition (NER)
task (Sang and Meulder, 2003), where we show
that the method yields similar generalisation perfor-
mance to standardly formulated CRFs, while requir-
ing only a fraction of the resources, and no increase
in training time. We have also shown how the error-
correcting CRF scales when applied to the larger
task of POS tagging the Penn Treebank and also
the even larger task of simultaneously noun phrase
chunking (NPC) and POS tagging using the CoNLL
2000 data-set (Sang and Buchholz, 2000).

2 Conditional random fields

CRFs are undirected graphical models used to spec-
ify the conditional probability of an assignment of
output labels given a set of input observations. We
consider only the case where the output labels of the

model are connected by edges to form a linear chain.
The joint distribution of the label sequence, y, given
the input observation sequence, x, is given by

p(y|x) =
1

Z(x)
exp

T+1
∑

t=1

∑

k

λkfk(t,yt−1,yt,x)

where T is the length of both sequences and λk are
the parameters of the model. The functions fk are
feature functions which map properties of the obser-
vation and the labelling into a scalar value. Z(x)
is the partition function which ensures that p is a
probability distribution.

A number of algorithms can be used to find the
optimal parameter values by maximising the log-
likelihood of the training data. Assuming that the
training sequences are drawn IID from the popula-
tion, the conditional log likelihood L is given by

L =
∑

i

log p(y(i)|x(i))

=
∑

i

T (i)+1
∑

t=1

∑

k

λkfk(t,y
(i)
t−1,y

(i)
t ,x(i))

− log Z(x(i))
}

where x(i) and y(i) are the ith observation and label
sequence. Note that a prior is often included in the
L formulation; it has been excluded here for clar-
ity of exposition. CRF estimation methods include
generalised iterative scaling (GIS), improved itera-
tive scaling (IIS) and a variety of gradient based
methods. In recent empirical studies on maximum
entropy models and CRFs, limited memory variable
metric (LMVM) has proven to be the most efficient
method (Malouf, 2002; Wallach, 2002); accord-
ingly, we have used LMVM for CRF estimation.

Every iteration of LMVM training requires the
computation of the log-likelihood and its deriva-
tive with respect to each parameter. The partition
function Z(x) can be calculated efficiently using
dynamic programming with the forward algorithm.
Z(x) is given by

∑

y αT (y) where α are the forward
values, defined recursively as

αt+1(y) =
∑

y′

αt(y
′) exp

∑

k

λkfk(t + 1, y′, y,x)

The derivative of the log-likelihood is given by

∂L

∂λk

=
∑

i

T (i)+1
∑

t=1

fk(t,y
(i)
t−1,y

(i)
t ,x(i))

−
∑

y

p(y|x(i))
T (i)+1
∑

t=1

fk(t,yt−1,yt,x
(i))

The first term is the empirical count of feature k,
and the second is the expected count of the feature
under the model. When the derivative equals zero –
at convergence – these two terms are equal. Evalu-
ating the first term of the derivative is quite simple.
However, the sum over all possible labellings in the
second term poses more difficulties. This term can
be factorised, yielding
∑

t

∑

y′,y

p(Yt−1 = y′, Yt = y|x(i))fk(t, y
′, y,x(i))

This term uses the marginal distribution over pairs of
labels, which can be efficiently computed from the
forward and backward values as

αt−1(y
′) exp

∑

k λkfk(t, y
′, y,x(i))βt(y)

Z(x(i))

The backward probabilities β are defined by the
recursive relation

βt(y) =
∑

y′

βt+1(y
′) exp

∑

k

λkfk(t + 1, y, y′,x)

Typically CRF training using LMVM requires
many hundreds or thousands of iterations, each of
which involves calculating of the log-likelihood
and its derivative. The time complexity of a single
iteration is O(L2NTF) where L is the number
of labels, N is the number of sequences, T is
the average length of the sequences, and F is
the average number of activated features of each
labelled clique. It is not currently possible to state
precise bounds on the number of iterations required
for certain problems; however, problems with a
large number of sequences often require many more
iterations to converge than problems with fewer
sequences. Note that efficient CRF implementations
cache the feature values for every possible clique
labelling of the training data, which leads to a
memory requirement with the same complexity of
O(L2NTF) – quite demanding even for current
computer hardware.

3 Error Correcting Output Codes

Since the time and space complexity of CRF
estimation is dominated by the square of the number
of labels, it follows that reducing the number
of labels will significantly reduce the complexity.
Error-correcting coding is an approach which recasts
multiple label problems into a set of binary label
problems, each of which is of lesser complexity than
the full multiclass problem. Interestingly, training a
set of binary CRF classifiers is overall much more
efficient than training a full multi-label model. This
is because error-correcting CRF training reduces
the L2 complexity term to a constant. Decoding
proceeds by predicting these binary labels and then
recovering the encoded actual label.

Error-correcting output codes have been used for
text classification, as in Berger (1999), on which the
following is based. Begin by assigning to each of the
m labels a unique n-bit string Ci, which we will call
the code for this label. Now train n binary classi-
fiers, one for each column of the coding matrix (con-
structed by taking the labels’ codes as rows). The j th

classifier, γj , takes as positive instances those with
label i where Cij = 1. In this way, each classifier
learns a different concept, discriminating between
different subsets of the labels.

We denote the set of binary classifiers as
Γ = {γ1, γ2, . . . , γn}, which can be used for
prediction as follows. Classify a novel instance x

with each of the binary classifiers, yielding a n-bit
vector Γ(x) = {γ1(x), γ2(x), . . . , γn(x)}. Now
compare this vector to the codes for each label. The
vector may not exactly match any of the labels due
to errors in the individual classifiers, and thus we
chose the actual label which minimises the distance
argmini∆(Γ(x), Ci). Typically the Hamming
distance is used, which simply measures the number
of differing bit positions. In this manner, prediction
is resilient to a number of prediction errors by the
binary classifiers, provided the codes for the labels
are sufficiently diverse.

3.1 Error-correcting CRF training

Error-correcting codes can also be applied to
sequence labellers, such as CRFs, which are capable
of multiclass labelling. ECOCs can be used with
CRFs in a similar manner to that given above for

classifiers. A series of CRFs are trained, each
on a relabelled variant of the training data. The
relabelling for each binary CRF maps the labels
into binary space using the relevant column of the
coding matrix, such that label i is taken as a positive
for the jth model example if Cij = 1.

Training with a binary label set reduces the time
and space complexity for each training iteration to
O(NTF); the L2 term is now a constant. Pro-
vided the code is relatively short (i.e. there are
few binary models, or weak learners), this translates
into considerable time and space savings. Coding
theory doesn’t offer any insights into the optimal
code length (i.e. the number of weak learners).
When using a very short code, the error-correcting
CRF will not adequately model the decision bound-
aries between all classes. However, using a long
code will lead to a higher degree of dependency
between pairs of classifiers, where both model simi-
lar concepts. The generalisation performance should
improve quickly as the number of weak learners
(code length) increases, but these gains will diminish
as the inter-classifier dependence increases.

3.2 Error-correcting CRF decoding

While training of error-correcting CRFs is simply
a logical extension of the ECOC classifier method
to sequence labellers, decoding is a different mat-
ter. We have applied three decoding different strate-
gies. The Standalone method requires each binary
CRF to find the Viterbi path for a given sequence,
yielding a string of 0s and 1s for each model. For
each position t in the sequence, the tth bit from
each model is taken, and the resultant bit string
compared to each of the label codes. The label
with the minimum Hamming distance is then cho-
sen as the predicted label for that site. This method
allows for error correction to occur at each site, how-
ever it discards information about the uncertainty of
each weak learner, instead only considering the most
probable paths.

The Marginals method of decoding uses the
marginal probability distribution at each position
in the sequence instead of the Viterbi paths. This
distribution is easily computed using the forward
backward algorithm. The decoding proceeds as
before, however instead of a bit string we have a
vector of probabilities. This vector is compared

to each of the label codes using the L1 distance,
and the closest label is chosen. While this method
incorporates the uncertainty of the binary models, it
does so at the expense of the path information in the
sequence.

Neither of these decoding methods allow the
models to interact, although each individual weak
learner may benefit from the predictions of the
other weak learners. The Product decoding method
addresses this problem. It treats each weak model
as an independent predictor of the label sequence,
such that the probability of the label sequence given
the observations can be re-expressed as the product
of the probabilities assigned by each weak model.
A given labelling y is projected into a bit string for
each weak learner, such that the ith entry in the
string is Ckj for the jth weak learner, where k is
the index of label yi. The weak learners can then
estimate the probability of the bit string; these are
then combined into a global product to give the
probability of the label sequence

p(y|x) =
1

Z ′(x)

∏

j

pj(bj(y)|x)

where pj(q|x) is the predicted probability of q given
x by the jth weak learner, bj(y) is the bit string
representing y for the jth weak learner and Z ′(x)
is the partition function. The log probability is
∑

j

{Fj(bj(y), x) · λj − log Zj(x)} − log Z ′(x)

where Fj(y, x) =
∑T+1

t=1 fj(t,yt−1,yt,x). This log
probability can then be maximised using the Viterbi
algorithm as before, noting that the two log terms are
constant with respect to y and thus need not be eval-
uated. Note that this decoding is an equivalent for-
mulation to a uniformly weighted logarithmic opin-
ion pool, as described in Smith et al. (2005).

Of the three decoding methods, Standalone
has the lowest complexity, requiring only a binary
Viterbi decoding for each weak learner. Marginals
is slightly more complex, requiring the forward
and backward values. Product, however, requires
Viterbi decoding with the full label set, and many
features – the union of the features of each weak
learner – which can be quite computationally
demanding.

3.3 Choice of code

The accuracy of ECOC methods are highly depen-
dent on the quality of the code. The ideal code
has diverse rows, yielding a high error-correcting
capability, and diverse columns such that the weak
learners model highly independent concepts. When
the number of labels, k, is small, an exhaustive
code with every unique column is reasonable, given
there are 2k−1 − 1 unique columns. With larger
label sets, columns must be selected with care to
maximise the inter-row and inter-column separation.
This can be done by randomly sampling the column
space, in which case the probability of poor separa-
tion diminishes quickly as the number of columns
increases (Berger, 1999). Algebraic codes, such as
BCH codes, are an alternative coding scheme which
can provide near-optimal error-correcting capabil-
ity (MacWilliams and Sloane, 1977), however these
codes provide no guarantee of good column separa-
tion.

4 Experiments

Our experiments show that error-correcting CRFs
are highly accurate on benchmark problems with
small label sets, as well as on larger problems with
many more labels, which would be otherwise prove
intractable for traditional CRFs. Moreover, with a
good code, the time and resources required for train-
ing and decoding can be much less than that of the
standardly formulated CRF.

4.1 Named entity recognition

CRFs have been used with strong results on the
CoNLL 2003 NER task (McCallum, 2003) and thus
this task is included here as a benchmark. This data
set consists of a 14,987 training sentences (204,567
tokens) drawn from news articles, tagged for per-
son, location, organisation and miscellaneous enti-
ties. There are 8 IOB-2 style labels.

A multiclass (standardly formulated) CRF was
trained on these data using features covering word
identity, word prefix and suffix, orthographic tests
for digits, case and internal punctuation, word
length, POS tag and POS tag bigrams before and
after the current word. Only features seen at least
once in the training data were included in the model,
resulting in 450,345 binary features. The model was

Model Decoding MLE Regularised
Multiclass 88.04 89.78
Coded standalone 88.23∗ 88.67†

marginals 88.23∗ 89.19
product 88.69∗ 89.69

Table 1: F1 scores on NER task.

trained without regularisation and with a Gaussian
prior. An exhaustive code was created with all
127 unique columns. All of the weak learners
were trained with the same feature set, each having
around 315,000 features. The performance of the
standard and error-correcting models are shown in
Table 1. We tested for statistical significance using
the matched pairs test (Gillick and Cox, 1989) at
p < 0.001. Those results which are significantly
better than the corresponding multiclass MLE or
regularised model are flagged with a ∗, and those
which are significantly worse with a †.

These results show that error-correcting CRF
training achieves quite similar performance to the
multiclass CRF on the task (which incidentally
exceeds McCallum (2003)’s result of 89.0 using
feature induction). Product decoding was the
better of the three methods, giving the best
performance both with and without regularisation,
although this difference was only statistically
significant between the regularised standalone and
the regularised product decoding. The unregularised
error-correcting CRF significantly outperformed
the multiclass CRF with all decoding strategies,
suggesting that the method already provides some
regularisation, or corrects some inherent bias in the
model.

Using such a large number of weak learners is
costly, in this case taking roughly ten times longer
to train than the multiclass CRF. However, much
shorter codes can also achieve similar results. The
simplest code, where each weak learner predicts
only a single label (a.k.a. one-vs-all), achieved an
F score of 89.56, while only requiring 8 weak learn-
ers and less than half the training time as the multi-
class CRF. This code has no error correcting capa-
bility, suggesting that the code’s column separation
(and thus interdependence between weak learners)
is more important than its row separation.

An exhaustive code was used in this experiment
simply for illustrative purposes: many columns
in this code were unnecessary, yielding only a
slight gain in performance over much simpler
codes while incurring a very large increase in
training time. Therefore, by selecting a good subset
of the exhaustive code, it should be possible to
reduce the training time while preserving the strong
generalisation performance. One approach is to
incorporate skew in the label distribution in our
choice of code – the code should minimise the
confusability of commonly occurring labels more
so than that of rare labels. Assuming that errors
made by the weak learners are independent, the
probability of a single error, q, as a function of the
code length n can be bounded by

q(n) ≤ 1 −
∑

l

p(l)

b
hl−1

2
c

∑

i=0

(

n

i

)

p̂i(1 − p̂)n−i

where p(l) is the marginal probability of the label l,
hl is the minimum Hamming distance between l and
any other label, and p̂ is the maximum probability
of an error by a weak learner. The performance
achieved by selecting the code with the minimum
loss bound from a large random sample of codes
is shown in Figure 1, using standalone decoding,
where p̂ was estimated on the development set. For
comparison, randomly sampled codes and a greedy
oracle are shown. The two random sampled codes
show those samples where no column is repeated,
and where duplicate columns are permitted (random
with replacement). The oracle repeatedly adds to the
code the column which most improves its F1 score.
The minimum loss bound method allows the per-
formance plateau to be reached more quickly than
random sampling; i.e. shorter codes can be used,
thus allowing more efficient training and decoding.

Note also that multiclass CRF training required
830Mb of memory, while error-correcting training
required only 380Mb. Decoding of the test set
(51,362 tokens) with the error-correcting model
(exhaustive, MLE) took between 150 seconds for
standalone decoding and 173 seconds for integrated
decoding. The multiclass CRF was much faster,
taking only 31 seconds, however this time difference
could be reduced with suitable optimisations.

 83

 84

 85

 86

 87

 88

 89

 90

 10 15 20 25 30 35 40 45 50

F1
 s

co
re

code length

random
random with replacement

minimum loss bound
oracle

MLE multiclass CRF
Regularised multiclass CRF

Figure 1: NER F1 scores for standalone decoding
with random codes, a minimum loss code and a
greedy oracle.

Coding Decoding MLE Regularised
Multiclass 95.69 95.78
Coded - 200 standalone 95.63 96.03

marginals 95.68 96.03
One-vs-all product 94.90 96.57

Table 2: POS tagging accuracy.

4.2 Part-of-speech Tagging

CRFs have been applied to POS tagging, however
only with a very simple feature set and small training
sample (Lafferty et al., 2001). We used the Penn
Treebank Wall Street Journal articles, training on
sections 2–21 and testing on section 24. In this
task there are 45,110 training sentences, a total of
1,023,863 tokens and 45 labels.

The features used included word identity, prefix
and suffix, whether the word contains a number,
uppercase letter or a hyphen, and the words one
and two positions before and after the current word.
A random code of 200 columns was used for this
task. These results are shown in Table 2, along with
those of a multiclass CRF and an alternative one-vs-
all coding. As for the NER experiment, the decod-
ing performance levelled off after 100 bits, beyond
which the improvements from longer codes were
only very slight. This is a very encouraging char-
acteristic, as only a small number of weak learners
are required for good performance.

The random code of 200 bits required 1,300Mb
of RAM, taking a total of 293 hours to train and
3 hours to decode (54,397 tokens) on similar
machines to those used before. We do not have
figures regarding the resources used by Lafferty et
al.’s CRF for the POS tagging task and our attempts
to train a multiclass CRF for full-scale POS tagging
were thwarted due to lack of sufficient available
computing resources. Instead we trained on a
10,000 sentence subset of the training data, which
required approximately 17Gb of RAM and 208
hours to train.

Our best result on the task was achieved using
a one-vs-all code, which reduced the training
time to 25 hours, as it only required training 45
binary models. This result exceeds Lafferty et al.’s
accuracy of 95.73% using a CRF but falls short of
Toutanova et al. (2003)’s state-of-the-art 97.24%.
This is most probably due to our only using a
first-order Markov model and a fairly simple feature
set, where Tuotanova et al. include a richer set of
features in a third order model.

4.3 Part-of-speech Tagging and Noun Phrase
Segmentation

The joint task of simultaneously POS tagging and
noun phrase chunking (NPC) was included in order
to demonstrate the scalability of error-correcting
CRFs. The data was taken from the CoNLL 2000
NPC shared task, with the model predicting both the
chunk tags and the POS tags. The training corpus
consisted of 8,936 sentences, with 47,377 tokens
and 118 labels.

A 200-bit random code was used, with the follow-
ing features: word identity within a window, pre-
fix and suffix of the current word and the presence
of a digit, hyphen or upper case letter in the cur-
rent word. This resulted in about 420,000 features
for each weak learner. A joint tagging accuracy of
90.78% was achieved using MLE training and stan-
dalone decoding. Despite the large increase in the
number of labels in comparison to the earlier tasks,
the performance also began to plateau at around 100
bits. This task required 220Mb of RAM and took a
total of 30 minutes to train each of the 200 binary
CRFs, this time on Pentium 4 machines with 1Gb
RAM. Decoding of the 47,377 test tokens took 9,748

seconds and 9,870 seconds for the standalone and
marginals methods respectively.

Sutton et al. (2004) applied a variant of the CRF,
the dynamic CRF (DCRF), to the same task, mod-
elling the data with two interconnected chains where
one chain predicted NPC tags and the other POS
tags. They achieved better performance and train-
ing times than our model; however, this is not a
fair comparison, as the two approaches are orthogo-
nal. Indeed, applying the error-correcting CRF algo-
rithms to DCRF models could feasibly decrease the
complexity of the DCRF, allowing the method to be
applied to larger tasks with richer graphical struc-
tures and larger label sets.

In all three experiments, error-correcting CRFs
have achieved consistently good generalisation per-
formance. The number of weak learners required
to achieve these results was shown to be relatively
small, even for tasks with large label sets. The time
and space requirements were lower than those of a
traditional CRF for the larger tasks and, most impor-
tantly, did not increase substantially when the num-
ber of labels was increased.

5 Related work

Most recent work on improving CRF performance
has focused on feature selection. McCallum (2003)
describes a technique for greedily adding those
feature conjuncts to a CRF which significantly
improve the model’s log-likelihood. His experi-
mental results show that feature induction yields a
large increase in performance, however our results
show that standardly formulated CRFs can perform
well above their reported 73.3%, casting doubt
on the magnitude of the possible improvement.
Roark et al. (2004) have also employed feature
selection to the huge task of language modelling
with a CRF, by partially training a voted perceptron
then removing all features that the are ignored
by the perceptron. The act of automatic feature
selection can be quite time consuming in itself,
while the performance and runtime gains are often
modest. Even with a reduced number of features,
tasks with a very large label space are likely to
remain intractable.

6 Conclusion

Standard training methods for CRFs suffer greatly
from their dependency on the number of labels,
making tasks with large label sets either difficult
or impossible. As CRFs are deployed more widely
to tasks with larger label sets this problem will
become more evident. The current ‘solutions’ to
these scaling problems – namely feature selection,
and the use of large clusters – don’t address the
heart of the problem: the dependence on the square
of number of labels.

Error-correcting CRF training allows CRFs to be
applied to larger problems and those with larger
label sets than were previously possible, without
requiring computationally demanding methods such
as feature selection. On standard tasks we have
shown that error-correcting CRFs provide compa-
rable or better performance than the standardly for-
mulated CRF, while requiring less time and space to
train. Only a small number of weak learners were
required to obtain good performance on the tasks
with large label sets, demonstrating that the method
provides efficient scalability to the CRF framework.

Error-correction codes could be applied to
other sequence labelling methods, such as the
voted perceptron (Roark et al., 2004). This may
yield an increase in performance and efficiency
of the method, as its runtime is also heavily
dependent on the number of labels. We plan to
apply error-correcting coding to dynamic CRFs,
which should result in better modelling of naturally
layered tasks, while increasing the efficiency and
scalability of the method. We also plan to develop
higher order CRFs, using error-correcting codes to
curb the increase in complexity.

7 Acknowledgements

This work was supported in part by a PORES travel-
ling scholarship from the University of Melbourne,
allowing Trevor Cohn to travel to Edinburgh.

References

Adam Berger. 1999. Error-correcting output coding for
text classification. In Proceedings of IJCAI: Workshop on
machine learning for information filtering.

Thomas G. Dietterich and Ghulum Bakiri. 1995. Solving mul-
ticlass learning problems via error-correcting output codes.
Journal of Artificial Intelligence Reseach, 2:263–286.

L. Gillick and Stephen Cox. 1989. Some statistical issues in
the comparison of speech recognition algorithms. In Pro-
ceedings of the IEEE Conference on Acoustics, Speech and
Signal Processing, pages 532–535, Glasgow, Scotland.

John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.
Conditional random fields: Probabilistic models for seg-
menting and labelling sequence data. In Proceedings of
ICML 2001, pages 282–289.

Florence MacWilliams and Neil Sloane. 1977. The theory of
error-correcting codes. North Holland, Amsterdam.

Robert Malouf. 2002. A comparison of algorithms for max-
imum entropy parameter estimation. In Proceedings of
CoNLL 2002, pages 49–55.

Andrew McCallum and Wei Li. 2003. Early results for named
entity recognition with conditional random fields, feature
induction and web-enhanced lexicons. In Proceedings of
CoNLL 2003, pages 188–191.

Andrew McCallum. 2003. Efficiently inducing features of
conditional random fields. In Proceedings of UAI 2003,
pages 403–410.

David Pinto, Andrew McCallum, Xing Wei, and Bruce Croft.
2003. Table extraction using conditional random fields.
In Proceedings of the Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval, pages 235–242.

Brian Roark, Murat Saraclar, Michael Collins, and Mark John-
son. 2004. Discriminative language modeling with condi-
tional random fields and the perceptron algorithm. In Pro-
ceedings of ACL 2004, pages 48–55.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000. Introduc-
tion to the CoNLL-2000 shared task: Chunking. In Proceed-
ings of CoNLL 2000 and LLL 2000, pages 127–132.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduc-
tion to the CoNLL-2003 shared task: Language-independent
named entity recognition. In Proceedings of CoNLL 2003,
pages 142–147, Edmonton, Canada.

Fei Sha and Fernando Pereira. 2003. Shallow parsing with
conditional random fields. In Proceedings of HLT-NAACL
2003, pages 213–220.

Andrew Smith, Trevor Cohn, and Miles Osborne. 2005. Loga-
rithmic opinion pools for conditional random fields. In Pro-
ceedings of ACL 2005.

Charles Sutton, Khashayar Rohanimanesh, and Andrew McCal-
lum. 2004. Dynamic conditional random fields: Factorized
probabilistic models for labelling and segmenting sequence
data. In Proceedings of the ICML 2004.

Kristina Toutanova, Dan Klein, Christopher Manning, and
Yoram Singer. 2003. Feature rich part-of-speech tagging
with a cyclic dependency network. In Proceedings of HLT-
NAACL 2003, pages 252–259.

Hanna Wallach. 2002. Efficient training of conditional random
fields. Master’s thesis, University of Edinburgh.

