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Abstract

This work considers the common problem of completing partially visible artifacts within a
3D scene. Human vision abilities to complete such artifacts are well studied within the realms
of perceptual psychology. However, the psychological explanations for completion have
received only limited application in the domain of 3D computer vision. Here, we examine pri-
or work in this area of computer vision with reference to psychological accounts of completion
and identify remaining challenges for future work.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Common 3D acquisition techniques in computer vision are realistically only 21
2
D in

nature—such that the backs and occluded portions of objects cannot be realised from a
single view.1 However, the same physical limitation is also true of human stereopsis
where visual completion, as an aspect of our extending visual reasoning system, allows
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Fig. 1. Candidates for volume completion.
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us to perceive the completion of occluded objects and reason how anobjectmay appear
from an alternative viewpoint (e.g., an opposing backward view).

Common 3D capture techniques result inmodels which are inherently 21
2
D in nature

(Fig. 1) or 3Dmodels which are constructed of multiple differently orientated views. In
the latter case, the additional capture, view planning, and subsequent combination, via
registration, are both time consuming and computationally expensive [18]. Addition-
ally ensuring all faces and crevices of a target have been captured at least once is not
an easy task and is often unapparent until final registration [11]. Ideally a method of
visual completion is required to facilitate the completion of a 3D model, from a 21

2
D

or incomplete 3D representation, akin to that present in human visual reasoning—a
method of completing unknown 3D scene enclosures (i.e., volumes).

In incomplete scenes (Fig. 1) it is often perceivable to a human viewer how the miss-
ing portions should appear (i.e., whatwe expect to see) based on the ability of our visual
system to compose these areas using supposed surface, contour, and pattern comple-
tionwithin the scene. The salient point, however, is thatwe donot perceive exactlywhat
exists there butwhatwe could reasonably expect to see. In this aspect,workingwith our
limited knowledge of the scene, we trade off accuracy for plausibility—what actually

exists against what we expect exists. Our expectation for these invisible scene portions
can be thought of as being governed by two classes of knowledge—Scene Evidence,
visual cues specific to the scene that trigger certain completion expectations, andWorld

Knowledge, general a priori completion rules based on prior visual experience.
Based on this analysis of visual completion an underlying principle of our comple-

tion abilities can be stated as follows: as humans, we perpetually complete the por-
tions of a scene we cannot physically visualise based on those portions which we can.
This reasoning process is itself governed by our generic and specific knowledge of the
world which we are perceiving in conjunction with relevant scene evidence.

This concept, of completion through controlled scene continuation, can be
thought of as visual propagation and embodies an approach to completion through

generalisation rather than the more specific completion through recognition [3,30,22] 2.
2 That is, recognise an article from a partial view and hence determine its unseen portions from a specific
a priori model. This is the common ‘‘recognition problem’’ of computer vision.
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In this paper, we review prior psychological theory and computer vision to iden-
tify the supporting aspects for this view of completion with specific reference to the
completion of unknown 3D volumes—considered here as the completion of the exte-
rior bounding surface(s) for an unknown (i.e., unbounded) enclosure within a given
3D scene. Notably, we see that 3D completion through visual propagation is specif-
ically supported by the recent psychological account of Volume Completion [72], it-
self surpassing earlier work in this field, although computer vision work in
considering such aspects remains limited.
2. Completion in perceptual psychology

The phenomenon of human visual completion has been of interest to psycholo-
gists for a considerable period, ranging from the early Gestalt principles [41] to more
modern interpretations [37,72].

Much of the early work centres around the study of various, now famous illusory
examples (Fig. 2) and the cues and process that cause certain perceptions for these
cases [34–36]. This work concentrates on the visual perception of 2D structures—
to date an on-going aspect of psychological research (e.g. [88,23,54,87]).

At the top level work in this area concerns itself with the two primary phenome-
non of visual completion:

• Modal completion: the illusory perception of a foreground object/shape, even
though it is not explicitly present, due to the perceived occlusion of background
objects/shapes (e.g., the perception of a triangle or rectangle in Fig. 2).

• Amodal completion: the perception of a background object/shape continuing
behind a foreground occluder despite the fact that one cannot see it directly.
The occluded portion is invisible yet perceived by the viewer (e.g., the perception
of the small disks being occluded and thus continuing behind the illusory triangle/
rectangle in Fig. 2).
Fig. 2. Famous illusory figures.



Fig. 3. Amodal completion examples: a clash of theories [72].

(A) The local view. (B) The global view. (C) The volume completion view.
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In reality, amodal completion can be thought of as occlusion among opaque sur-
faces (either partial or complete—i.e., hidden) whilst modal completion can be
thought of as perfect camouflage [72]. Clearly amodal completion is the more com-
monly occurring instance with relation to the problems encountered in 3D computer
vision and hence we are interesting in investigating further.3

We are specifically interested in the aspects of amodal completion as they pertain
to 3D completion. Theory in this area is still a source of debate but, following the
review by Tse in [71], there are generally three types of theory in this area:

1. Completion occurs when certain conditions are satisfied among local scene cues
(e.g., contours and junctions)—the local view (Fig. 3A).

2. Completion occurs when certain conditions are satisfied among global scene cues
(e.g., symmetry, regularity, and simplicity of form or pattern)—the global view
(Fig. 3B).

3. Completion occurs when certain conditions are satisfied among representations
internal to the scene (e.g., contour, surfaces, and volumes)—the volume based view
(Fig. 3C).

Theories following the local view (type 1) generally support completion through
�good continuation� (Kellman and Shipley [37]) and intersection of scene contours
(and associated surfaces) without consideration for the wider structure within the
scene (e.g. [37,83,62], Fig. 3A). In contrast, the global view (type 2) challenges this
assumption of locally dependent completion to suggest the importance of global reg-
ularities, for instance symmetry, in completion patterns (e.g. [76,77]). For example, it
is clear that Fig. 3B could not be completed based on a purely localised view of
completion.
3 Although, admittedly, modal completion itself poses a similarly interesting future problem for
computer vision research [88,87].



Fig. 4. Examples of visual completion aspects.
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The more recent type 3 theories have evolved from the traditional views in this
area, namely that completion is dependent on surface completion on a common
depth plane (e.g. [53]), towards the concept of a volume completion based approach
[72,75]. Fig. 3C shows an example where amodal completion would not occur
through a simple local or global view as shown in Figs. 3A and B—yet the viewer
amodally completes the occluded ‘‘wine bottle’’ volume to form a cohesive object.
Here (i.e., Fig. 3C), completion occurs at a higher level based on perceived volumet-
ric relationships within the scene—volume based completion.

2.1. Volume completion concept

Volume completion, suggested by Tse [72], argues that contour and surface based
amodal completion theories are not alone sufficient to account for all completion
phenomenon (see Figs. 3C and 6). In an extension to previous consideration of visual
completion (types 1 and 2), volume completion considers the way the human visual
system is able to complete entire 3D enclosures, which are not explicitly visible with-
in a scene.

It is argued that volume completion can be achieved through a combined ap-
proach utilising:

1. contour/surface relatability—the inter-relationships in the completion surfaces and
contours within the scene (Kellman and Shipley [37]). (see Fig. 4A). For formal
definition see [72].

2. volume mergability—the relationship between unbounded volumes within the
scene. ‘‘Mergability’’ refers to how the inside of one volume, unbounded due to
occlusion, can join with a similarly unbounded volume to create a larger volume
within the scene [72] (see Fig. 4B).

3. world knowledge—generic and specific knowledge relating to the world and to
instances within the scene that is being perceived [70] (see Fig. 4C).

4. pattern completion—the presence of regularity or semi-regularity within the
scene that could be extrapolated as being present in unknown scene areas [71]
(see Fig. 4D).



Fig. 5. Essence of volume completion.
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2.2. Volume vs. surface completion

Q: So how does volume completion differ from earlier surface or contour based
completion?

When performing any visual completion in 3D we are essentially performing the
completion of a volume. Consider a 21

2
D representation of a mug (i.e., front faces

only). First, assume we can identify the contours of the mug within our representa-
tion. From this, we can identify the surfaces of the mug as the regions bounded by
these contours. In turn, the 3D volume of the mug is itself bound by the concurrent
3D completion of these surfaces. This is a realistic assertion as we do not expect the
mug to extend beyond the bounds of the visible surfaces we perceive. Hence realis-
tically we are completing a 3D structure enclosed by a set of visible and invisible sur-
faces—we are essentially completing a volume through the combined completion of
bounding surfaces (Fig. 5).

Alternatively volume completion can be thought of as concurrently complet-
ing a set of surfaces to form a complete 3D representation over the 3D space
the surfaces potentially enclose (i.e., the volume). In the case where we only
have a single surface (e.g., a sphere) then we are completing the volume bound-
ed solely by that singular surface. When dealing with the degenerate case of
completing a single planar surface, a volume-less surface, we are essentially com-
pleting an undefined volume as the associated volume is essentially unbounded.
This occurrence is unrealistic as every real world surface has an associated vol-
ume [72]—even the surface of a sheet of paper has an associated volume, albeit
very small.

Formalising this view, the 21
2
D scene completion problem can be stated as follows:

• Let there be a set of natural contours C visible in the scene, C = {fold/blade edges
of scene}.

• Let the set of visible surfaces S be defined such that:

8Si 2 S; Si is bounded by fC0g � C.
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• There exists a completion of the scene, V, such that:

V ¼
Xi

0

fSC
i g; where SC

i is the completed surface of Si.

The solution to the volume completion problem is to find the V that minimises the
completion error with respect to constraints on completion, namely the need for
the aspects of good surface/contour relatability, volume mergability, pattern com-
pletion, and plausibility (i.e., world knowledge constraints) as discussed
previously.

Based on this premise that volumes are bounded by surfaces, which are themselves

bounded by contours, the volume completion view subsumes surface completion as a
special case by asserting that in fact every scene surface has an associated volume
[72]. Through this paradigm volume completion operates by merging volumes, those
enclosures bound by surfaces and contours in the scene, to achieve visual comple-
tion. This completion process is in turn governed by the constraints of world knowl-
edge to assess plausibility and pattern completion to enforce regularity. Thus, we see
our visual propagation principle underpinning the theory in this area.

Additionally, it has to be noted that the volume completion view is not in itself
separate from the local and global views of completion (types 1 and 2). Volume com-
pletion supports the view that whilst contour relationships (type 1) and global regu-
larities (type 2) are not solely responsible for completion they, together with other
visual cues, can be used to infer edge, surface, and volume relationships. Completion
then occurs at a higher level through the analysis of these relationships [71]. In fact,
Tse [72] goes on to suggest that the process of volume completion may in fact ‘‘in-
volve a relaxation into a best-fit given these local constraints.’’

Examples of the concept of volume completion as a combined theory of comple-
tion can be seen by considering Figs. 3, 4, and 6 together. Each of the completion
theories of Fig. 3 (local, global, and volume) can be attributed to the completion
Fig. 6. Amodal ‘‘volume based’’ completion examples where other theories fail [72].

(A) Amodal completion of visually
disjoint volumes.

(B) Amodal completion occurs on the left (despite lack of contour
relatability) but fails on the right.



Fig. 7. Contour relatability—a counter example [72].

(A) No amodal completion despite contour
relatability.

(B) No amodal completion despite surface
relatability.

506 T.P. Breckon, R.B. Fisher / Computer Vision and Image Understanding 99 (2005) 499–526
cases of Fig. 4. For instance, the localised completion of Fig. 3A can be attributed to
the contour/surface relatability of Fig. 4A and the global completion of Fig. 3B to
the world knowledge and pattern completion depicted through Figs. 4C and D.
The more complex completion case of the ‘‘wine bottle’’ object in Fig. 3C shows a
good example of volume based completion—here completion succeeds despite the
lack of directly relatable contours or surfaces and in the absence of a global pattern
(e.g., symmetry, regularity) to allow us to deduce the occluded portion. In this case,
we see that the completion occurs primarily through volume mergability, as depicted
in Fig. 4B, although the influence of world knowledge has also to be acknowledged.4

These examples support the case made by Tse [72] that amodal completion occurs
through a combination of factors that all influence 3D completion and not simply
through contour and surface relatability as suggested earlier by Kellman and Shipley
[37]. The examples in Figs. 3B and C could not be completed based on the contour/
surface ‘‘good continuation’’ theory of [37] whilst in Fig. 3A, the ‘‘good continua-
tion’’ of contours and surfaces acts as a rough guide through which completion is
achieved. It has to be noted, however, that volume mergability and/or world knowl-
edge could also provide completion in this case using the contour relatability as com-
pletion constraints. Further, examples that rely on volume mergability for amodal
completion, from [72], are given in Fig. 6 and develop an argument [69] that amodal
volume completion occurs in the absence of specific contour based cues.

Support for a volume based completion account is further provided through Fig.
7, which shows that amodal completion in the human visual system can still fail de-
spite the presence of surface and contour relatability. In this example, the viewer fails
to complete the two cubic objects, despite the presence of relatability, because of the
overriding perception of disjoint 3D enclosures within the scene (albeit through any
combination of the volume completion aspects previously mentioned). Here, we see
volume based completion overriding the ideas of completion by contour and surface
relatability supporting Tse�s view [72] that amodal completion cannot be simply
4 That is, from the abundance of bottle shaped objects we may see in a lifetime!



Fig. 8. Famous impossible works.

(A) Unoccluded/occluded
Devil�s Pitchfork.

(B) Impossible staircase.
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attributed to the ‘‘good continuation’’ of contours and surfaces of Kellman and
Shipley [37].

This idea of volume completion overriding contour/surface relatable completion
is also evident in the famous examples of Fig. 8 and commonly in the artistic
works of E.C. Escher [46] (e.g., ‘‘Relativity’’: E.C. Escher). Here, we perceive ‘‘im-
possible’’ objects despite the relatability of their contours and surfaces. It is our
realisation of the object in 3D, considering the set of contours and surfaces
together as a 3D volumetric shape, that allows us to identify the spatial contradic-
tions in the scene. This issue was explored by Huffman [29] by likening scene
interpretation to understanding sentences and hence impossible objects to nonsen-
sical sentences.
2.3. Further work in volume completion

The volume completion theory is backed up by experimental evidence in Tse�s lat-
er work [71], which also further supported the idea of considering a global view of
completion rather than completion based on an isolated �per surface� approach. This
work also gives a fuller discussion of the concept of �mergability� underlying volume
completion in terms of the concept ‘‘good volume continuation’’ similar to that of
Kellman and Shipley [37] in relation to surfaces. Overall, it concludes that comple-
tion processes are ‘‘inherently probabilistic in nature’’ with multiple influences includ-
ing proximity (�localness�), global context, pattern, similarity of material, and form,
orientation, and volume mergability. With relation to computer vision this can be
likened to a co-operative algorithm such as Marr�s seminal work on stereo matching
[50].

The issue of global completion, raised in [72], has been considered by recent
work looking both experimentally and theoretically at global completion in non-
regular shapes (Tessa and Van Lier et al. [66] and Van Lier [75]). Both conclude
that evidence for globally influenced completion methods is strong with [75] going
on to discuss further the concept of �fuzzy completion�—the concept of being able
to derive a plausible completion to an irregular object based on analysis of the



Fig. 9. Fuzzy completion: an experimental example [75].
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visible portion. It is suggested that this allows us to plausibly complete irregular
shapes by analysis of the general fuzzy regularities we perceive in the visible por-
tion (see Fig. 9). This suggestion is backed up by experimental evidence through
which the author concludes global completion offers the best account for the fuzzy
and 3D completion phenomenon observed. This is further supported by [78] that
more generally asserts, via experimentation, that well-established local and global
completion tendencies for 2D surfaces appear valid for extension into 3D. Related
work in extending 2D modal completion to 3D similarly supports the concept of
volumetric completion from a combination of local and global occlusion cues
[88,87].

Additionally orientation in 3D completion has been considered by [1] which
showed experimentally that orientation and surface adjacency can affect the percep-
tion of a 3D volume. This shows that completion is affected by scene context and
further supports the view of global constraints within 3D completion.

Contour propagation (and by extension surface propagation) is also considered
by Tse [73], with regard to the visual interpretation of 2D silhouettes as 3D volume
enclosing surfaces. This work strongly supports the concept of visual propagation
through the propagation of single and multiple contours for the reconstruction of
3D volumes. It considers the identification of ‘‘propagatable segments’’ from occlud-
ing contours to propagate information about the underlying 3D form from the
occluding contours to areas where 3D form is ambiguous.

Contour propagation [73] can be considered a specific subset of our earlier visual
propagation proposal. Generalised visual propagation encompasses completion
though the propagation of all visual stimuli—contours, surfaces, shape, texture, col-
our, reflectance, etc. Here, we see a specific case of visual propagation based on exist-
ing psychological evidence for human completion abilities.

The work [73] proposes a theoretical algorithm for generating 3D shape from 2D
object silhouettes: given an identified propagatable segment (e.g., occluding edge),
propagate it into the interior of the silhouette (in a given direction of propagation)
and then scale (expand/contact) it until it touches the bounds of the silhouette at this
point. Repeated propagation at different distances into the interior thus builds a 21

2
D

contour map of the original silhouette.



Fig. 10. Tse�s ‘‘seamonster’’ amodal volume completion case [72].
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Although several practical issues remain in addressing the underpinning assump-
tions a future extension into computer vision work is suggested [73] and future exten-
sion to 21

2
D to 3D propagation, to facilitate true volume completion appears viable.

2.4. Volume completion summary

Ultimately the traditional theories of completion (types 1 and 2) can be challenged
by considering Tse�s ‘‘seamonster’’ example from [72] (see Fig. 10). Here, despite the
lack of local cues to suggest occlusion, the lack of ‘‘good continuation’’ in terms of
contours and surfaces and even the lack of any explicit occluding surface the viewer
sees a coherent, complete ‘‘seamonster.’’

Tse suggests that the unbounded black portions are processed, as potential vol-
umes, through volume completion to derive the completed ‘‘seamonster’’ concept
that we perceive. However, the bearing of ‘‘world knowledge’’ within this volume
completion instance, from the countless similar {sea|worm|snake|Loch Ness} mon-
ster images to which we are exposed, has also to be considered.

Overall, it is clear that there is no simplistic explanation for our visual completion
abilities. A number of suggested theories fail to explain all of the completion capa-
bilities of the human visual system. The most recent and advanced such theory, Vol-
ume Completion [72], offers a combined and somewhat open-ended approach that
considers various visual influences in a ‘‘best-fit’’ optimisation based approach that
subsumes the abilities of earlier theories. It would seem apparent that volume com-
pletion offers both a theoretical explanation of human visual completion abilities and
a useful framework for implementing artificial visual completion with heavy support
for our desired principle of completion through visual propagation. Notably, some re-
cent theoretical work [73] supports the realisation of volume completion through a
subset of the visual propagation paradigm.
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3. Completion in computer vision

Work in visual completion in computer vision can be thought of in two distinct
but related camps. First, there are those inspired by the 2D contour and surface com-
pletion theories of [41] interested in completion of 2D synthetic or photographic
images. The majority of this work concerns itself with contour or pattern identifica-
tion realised through a variety of techniques (e.g. [5,24,82,23,44,45,54]) to explore
both the possibilities for automated 2D completion and to some extent to test psy-
chological visual completion theories. Here, however, we are primarily concerned
with the other camp in visual completion—3D visual completion—and thus our
analysis of completion work in computer vision concentrates itself here.

Work in 3D visual completion is reasonably limited within the computer vision
literature. However, a number of existing techniques support the concept of visual
propagation and to a limited extent some of the previous psychologically based com-
pletion theories.

3.1. Occlusion resolution

In terms of tackling the limitations of 21
2
D, there has been some initial work in the

resolution of partial occlusions in range images by Fisher et al. [20,59,7,12]. Overall
three types of occlusion are identified and considered: occlusion preserving surfaces,
occlusion breaking surfaces, and occlusion breaking boundaries (see Fig. 11). This
work completed occluded surfaces through the use of contour and surface relatabil-
ity together with a limited aspect of ‘‘world knowledge’’ to constrain the overall com-
pletion (i.e., definition of ground and wall planes at scene limits). The technique
operates by extracting contours and surfaces using segmentation and fitting tech-
niques, extending the contours into the occluded area and then interpolating the sur-
face between these now extended contours.
Fig. 11. Types of occlusion identified and resolved in [7].
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In terms of visual completion theory this approach fits best with the completion
paradigm put forward by Kellman and Shiplet [37], itself forming a subset of the lat-
er theories on volume completion [72]. The more advanced of this occlusion resolu-
tion work [7], considering surface completion through the use of contour relatability,
falls short of considering true surface relatability in terms of multiple surface inter-
actions and concentrates on the completion, through continuation, of uniform sur-
face types. The limitations of [7] in completing certain surfaces (due to lack of
constraining information) and in fully completing scenes (i.e., from 21

2
D to complete

3D) is acknowledged by the authors. Additionally this work considers the comple-
tion of individual surfaces in isolation rather than completing a set of multiple (pos-
sibility interacting) scene surfaces in combination. Possible constraints introduced by
surface interaction are thus not available to aid completion.

In contrast to this data driven approach, related work has also been carried out
using parametric shape fitting to facilitate the 3D completion of partially visible
21
2
D cylinders and cuboids. This model based approach is utilised in [51,19] with spe-

cific reference to building column completion in architectural reconstruction. The
limitations in this work are that it considers the columns abstractly from the scene
for the purposes of completion and completion is itself based purely on parametric
completion of regular 3D shapes—a good example of generic ‘‘world knowledge’’ in
terms of the volume completion paradigm.

3.2. 21
2
D to 3D reconstruction

Completion work in architectural reconstruction has also been carried out using
structure and motion as a source for the initial 21

2
D representation [15,14]. This work

uses a model fitting based approach together with a high level of ‘‘world knowledge,’’
specific both to architecture in general and to the classical/Gothic architectural styles
considered. Both synthetic buildings and building completions are constructed
through the utilisation of Bayesian priors for architectural scenes and a model fit
of the structure from the motion image sequence.

The probability priors for model fitting to the video sequence fall into four catego-
ries: primitive usage (e.g., window, door frequency), shape (e.g., specific architectural
styles such as narrow Gothic windows), texture parameters (e.g., windows are often
dark with intersecting vertical/horizontal bars), and image likelihood (i.e., the likeli-
hood of the images given a complete specification of the model) [15]. The primitive
and shape priors are based upon both architectural rules, observations and practical
considerations whilst the texture priors are learnt from a set of example images. Mod-
el fitting is achieved by obtaining a maximum a posteriori (MAP) set of model param-
eters. In the latter work [14], this is augmented with spatial organisation prior to allow
the generation of building completions and synthetic buildings using aMarkov Chain
Monte Carlo (MCMC) algorithm with the initial building model as a seed. An exam-
ple of this approach applied to the Downing Library, Cambridge, is shown in Fig. 12.

The overall result is a textured geometric model based representation of a given
building at the level of defined geometric and architectural primitives (e.g., walls,
doors, windows, columns, etc.). In terms of perceptual completion, this work relies



Fig. 12. 21
2
D to 3D reconstruction using MCMC.
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heavily on the concept of ‘‘world knowledge’’ for success, both general (i.e., geomet-
ric models) and specific (i.e., architectural), but does follow the arguments put for-
ward for visual propagation and plausible completion—in this case both
embodied in a probability distribution.

Overall this work offers a successful model based, heavily knowledge-dependant
approach to completion specific to the domain of architecture with structure from
motion as its primary source of 3D information. It does, however, also support
the idea of probability based plausible completion where a number of different com-
pletions are possible (cf. fuzzy completion [75]).

3.3. 21
2
D completion

In a variant on other work in this field [68] considers the completion of 21
2
D depth

maps from sparse range data based on corresponding intensity image similarity. This
relatively successful technique relies on having valid intensity data for the scene re-
gions where depth is not explicitly known and thus uses a method akin to the texture
synthesis of Efros [16] to infer depth based on the intensity similarity of localised re-
gions to those where both intensity and depth are known. Markov random fields are
used to capture the relationship between intensity and depth over localised regions
neighbouring an unknown depth value and the unknown depth value then is inferred
from this model in a deterministic fashion. Depth values are synthesised one value at
a time (following the texture based method of Efros [16]) and are constrained, by
neighbourhood localisation, to be similar to some region close to their location.

An example of this technique is shown in Fig. 13 where from left to right we see
complete intensity knowledge of the scene, partial depth knowledge, and the result-
ing completion of the depth map compared against the ground truth. Apart from a
few minor errors around the top of the main foreground object we see a successfully
completed depth map based on intensity similarity.

In relation to volume completion, this work follows the concept of visual propa-
gation but relies on at least partial knowledge of the entire scene (i.e., intensity) from
which only 21

2
D rather than 3D scene knowledge is derived. By contrast the problem

posed by volume completion contains no explicit knowledge of the areas of the scene



Fig. 13. 21
2
D completion of sparse depth maps [68].
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to be completed (or synthesised) but instead relies on knowledge that can be inferred
from the visible scene portions (i.e., implicit knowledge).

Additional work in 21
2
D completion has also been considered in the construction

of solid models from 2D sketches [80]. In this work, the �frontal geometry of the 2D
sketch� (i.e., 21

2
D contour sketch) is initially derived from 2D using the techniques of

[79]. Completion is then performed using geometric face and vertex addition through
a method of greedy hypothesis construction and selection. In addition, special-case
symmetry based completion based on [79] is also considered. This work is, however,
limited in its purely geometric view of completion and currently only offers comple-
tion of simple 2D geometric sketches consisting of straight lines with right-angled
intersections (i.e., block-type objects). Additionally, it assumes that the object has
been sketched from the ‘‘most informative viewpoint’’ (i.e., no hidden portions exist
that cannot be geometrically inferred from the visible portion) and that the sketch
represents a singularly connected object (i.e., no frontal occlusion or multiple object
consideration).

In terms of volume completion it most closely follows the surface and contour
based completion paradigm of [37] although also exhibits the use of ‘‘world knowl-
edge’’ through its use of geometric constraint. To some limited extent an awareness
of ‘‘geometric volume’’ is also shown in terms of inferring hidden vertex junctions
and faces to create a fully constrained solid object. However, in summary this work
only offers very limited aspects of generalised volume completion due its reliance on
the geometric properties, and hence the possible geometric �good continuation,� of
the objects it considers.

3.4. 3D surface filling

The topic of 3D surface filling from within the 3D modelling domain is another
area related to visual completion. Here, the problem of hole filling in automated
model acquisition relates directly to the idea of plausible completion.

Work in this area is fairly advanced and was notably used on the Michelangelo
project—a complete 3D reconstruction of Digital Michelangelo�s David [11]. This
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work concentrates on the merging of surfaces through diffusion between opposing
edges of a surface hole or missing volume. The zero set, with respect to a pre-deter-
mined distance field, then forms a surface approximation over the diffused region.
This work follows on from earlier mesh based reconstruction techniques [10] that
used a similar method of blending distance functions together with space-carving
based on a priori knowledge for the line of sight between the laser scanner and visible
surfaces. Additionally there is a considerable body of work using regular mesh con-
struction or point cloud interpolation for surface filling (e.g., [6,2,13]). These tech-
niques primarily concentrate on the surface reconstruction and perform surface
filling almost as an implicit by-product of this process—‘‘Reconstruct this surface—
if a section is missing then just �fill over it.’’ By contrast, Curless/Davis [10,11] and Sag-
awa [55] treat surface filling as an explicit post-process to initial surface reconstruc-
tion—‘‘This section can be reconstructed but this section cannot therefore re-process
it separately.’’ This distinction is important in terms of considering scene evidence
or world knowledge for surface completion although whether visual completion nat-
urally occurs as part of a general scene interpretation or as a separate visual process
remains an open question in the study of human visual completion. In general, a good
overview of previous work in this area is given in the review by Davis et al. [11].

More recent work in this area [55] extends [11] by using a pre-processing technique
to correct inconsistencies in the signed distance field used for surface reconstruction,
resulting in hole filling success in previously difficult cases. This method performs
correction by propagating a localised consensus from neighbouring voxels into
inconsistent regions giving support to our concept of visual propagation from work
in this area. Subsequent work on this area, specifically on polygon models [43,65,33],
facilitates smooth surface completion via similar propagation based techniques.

Whilst this set of techniques is well suited to the continuous completion of holes
within existing surfaces, it is less suited to the completion of large 3D enclosures be-
cause it inherently pursues a smooth surface completion over the void within the sur-
face regardless of localised surface texture or surrounding contour completion
constraints. As such it is not suited to instances where plausible completion may
be bounded by existing contour or similarity constraints and surface data may be
very sparse as shown in Figs. 14(a) and (b). In fact, the authors of [11] cite greater
control over surface shape with respect to constraining factors (user specified or
otherwise) as an area for future work.

In general, this work supports generalised visual propagation in terms of
‘‘smooth’’ surface shape completion through a propagation process akin to surface
relatability (Kellman Shipley [37]) as a subset of wider volume completion (Tse [72]).
However, as shown in Fig. 14 it falls short of the desired plausible completion criteria
previously identified.

3.5. Completion using symmetry

Symmetry occurs frequently within both natural and built environments or ob-
jects and is thought to feature heavily in human visual recognition [81]. It thus ap-
pears a natural choice for use in the visual completion of occluded objects [85].
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However, whilst the symmetry properties of isolated 3D objects and 2D shapes
are relatively easy to obtain and reason with (e.g. [85,67,60]), the identification of
consistent sets of localised symmetries in a complex 3D scene remains a difficult
problem [22] (e.g., finding the symmetrical components in Fig. 1B). This problem
is made increasingly difficult when dealing in 21

2
D to 3D completion where the goal

is to identify potential axes of symmetry based on limited knowledge of the object
(i.e., potentially only one side of the symmetrical axis in some cases).

Work in detecting symmetry in isolated 2D objects is well established [85] and has
thus been used for visual completion where necessary based on the idea of a contin-
uous symmetry measure [84,86]. This extends the idea of symmetry from a discrete
feature (i.e., Is symmetric? yes/no) to consider symmetry as a continuous measure
of the minimum effort required to turn a shape into a symmetric shape.

Some work in this area has been extended to consider detecting 3D symmetry
from simple 2D geometric sketches [79]. This work has been further extended to con-
sider 3D completion of these objects [80], but suffers from a number of limitations—
notably its reliance on the simple geometric nature of the sketches it successfully
completes and possible ambiguity in interpreting the initial 2D representation (cf.,
21
2
D completion). Furthermore, this work is also limited by its consideration of ob-

jects that are noiseless, isolated, and unoccluded.
From the literature, work on symmetry in real 3D data appears limited to identify

symmetry axes and the recognition of objects based on their symmetric properties
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[21,67]. This work is again limited to isolated objects rather than the more general
case of identifying local object symmetries in a larger scene. A body of work is
however present in identifying localised symmetry in isolated objects following from
similar work in 2D [64]. Work is also available for detecting symmetries in multiple
2D object scenes based on edge detection and matching [52]. Again, this work is lim-
ited to simple scenes without consideration of the general effects of noise or occlusion
on the process.

A potential solution to this difficult problem, posed by 21
2
D localised symmetry

identification, could involve either the segmentation of individual scene objects prior
to symmetry analysis, or some kind of (possibly exhaustive) search for subsets of
data satisfying local symmetry constraints for a given axis. It would appear this
problem remains largely unsolved for more complex 3D scenes such as those of
Fig. 1B. However, an extension to the approaches of [64,52], perhaps utilising the
continuous symmetry measure of [86] together with common 3D feature extraction
techniques may offer a viable future solution in this area.

Despite these problems the use of symmetry, within the context of volume com-
pletion, can be seen most clearly as an example of completion through world knowl-
edge (e.g., Fig. 3B) and as such would probably only form a small part, possibly
through constraint, to a more general solution in this area. After all, few objects
or scenes (especially in the natural world) are perfectly symmetric.

3.6. Completing surfaces from contours

Given that, based on earlier completion work [7], contours can be interpolated
into occluded scene regions the derivation of surfaces from these contours needs
to be itself considered as an aspect of volume completion.

A considerable portion of work in this area has been carried out with regard to
2D imaging and the 3D interpretation of 2D line drawings [79] or line structure
extracted from a 2D images (cf. early work [3]). More recent work in this area uses
contour identification and matching/tracking over a set of 2D images to recreate the
underlying 3D structure (e.g. [9,74,89,61,56]). Similarly, shape from silhouette work
has also been carried out by a number of researchers (e.g. [42,17]), where a series of
silhouettes of an object, as opposed to image contours, are used to estimate 3D sur-
face information. Generally, both techniques operate by considering the edge con-
tours of an object over multiple views (image contours or silhouettes) from
differing object rotations or camera positions. The inter-view relationships (a priori
or derived) together with the relative feature placement in each view allows the der-
ivation of 3D surface shape. Overall work in this area is now a well-established
branch of 2D to 3D vision and a subset of the more general idea of tracking generic
image features (be they lines, corners, blobs, etc.) over a set of images to recover 3D
structural information [26]. The problem solved here is, however, subtly different
from that posed in completing 3D surfaces from contours.

In our completion scenario, we have explicit knowledge of the 21
2
D contours from

which likely completions into unknown scene portions can be estimated—unlike
approaches based on 2D line drawings. Thus, we have explicit 3D knowledge of
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our contours but not the surfaces which they bound. This is quite a unique recon-
struction situation. If we were reconstructing a scene from a range scanner or multi-
ple view vision, we would have both evidence of the contours and similarly of the
surfaces they bound as both would be present in the intensity/range image(s)5 [22].
Here, we have a set of contours, or possible contours, evidence of surfaces in the vis-
ible portion of the scene (for possible continuation criterion, cf. Kellman and Shipley
[37]) and no explicit knowledge of surfaces in the scene portion we wish to complete.
Work in reconstruction problems of this kind is present in two different sub-fields of
3D vision—reconstructing surfaces from contour slices on an object (common to 3D
medical MRI type vision) and in reconstructing surfaces from sparse 3D structure
(common in feature based sparse stereo techniques).

3.6.1. Surfaces from contour slices

Looking first at reconstructing surfaces from contour slices, or more formally a set
of regularly spaced concentric surface contours, a body of early work exists based on
triangulation of surfaces between contours by Keppel [38]. A good overview of this
work, including later extensions to consider the problems of branching between con-
tour layers (see Fig. 15), is given in [31]. This work concentrates on finding the min-
imum cost triangulation between two contours with respect to a defined cost metric
(e.g., minimum surface area or enclosed volume) using triangulated tiling. Essentially
tackling this problem involves two important and inter-related sub-problems:

• The correspondence problem: common to many aspects of computer vision prob-
lems but here concerned with which points on each contour should be connected
as triangular mesh vertices to provide an error free and realistic surface
representation.

• The branching problem: should slices contain several contours (e.g., Fig. 15), how
to solve theM to N contour correspondence problem to provide a realistic surface
representation (M 6¼ N; N, M > N).
5 Surface presence is implied by the presence of surface range data for range images whilst the absence of
detected contours together with possible intensity similarities or gradients imply the same for intensity
images.
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Unfortunately these sub-problems cannot be solved uniquely and consequently
several methods of solution have been proposed with a varying degrees of success
(for an overview see [31,48]). Although well suited to surface reconstruction be-
tween similar contours many approaches begin to fail when contour shape or
branching varies greatly between slices resulting in erroneous surface triangulation
[48]. However, some recent improvements to triangulation based techniques have
attempted to tackle these problems by assuming the underlying shape follows an
assumed definition of natural topology (cf. world knowledge) to successfully over-
come the unnatural branching constructions produced from earlier work in this
area [8].

Some more recent work in this area considers the use of Euclidean distance
fields as an alternative method of solution [32,40]. Work by Jones [32] encloses
the contour slices within a volume and uses distance fields to calculate the distance
from every point within the volume (voxel) to the closest contour point. From this
an isosurfacing approach can be used to hypothesize a surface while still maintain-
ing the original contour slices. This technique operates by circumnavigating the
explicit correspondence and branching problems by considering the surface space
as a distance field. It is shown to work well on both practical medical imaging
problems and on known �difficult� problems, from literature in this area, beyond
those of earlier approaches in the field [32]. However, as the author states this tech-
nique is currently limited to use on closed contours and non-intersecting contours
(within the slices).

Related and later work by Klein et al. [57,39,40] also made use of distance fields as
a basis for a similar solution to this problem. In this work [40], the distance field is
used to find a medial contour, a half-way contour between two slices, based on sum-
ming the adjacent distance fields at every point and locating the zero crossings
(where the dominance of a given distance field changes). Once this medial contour
between two contour slices has been found, the approach can then be applied recur-
sively considering this previously derived medial contour as a new contour slice itself.
This can be repeated until the desired level of contour density has been achieved—up
to that of a dense range image if required. From this now simplified problem, in
terms of the correspondence and branching issues, a polygonised mesh can be con-
structed using any of the wealth of suitable techniques available for mesh construc-
tion over a dense point cloud [47,18,27,2,13]. However, this technique can result in
an overly complex triangulation and [40] simultaneously presents a fast simplifica-
tion algorithm based on the calculated distance fields used for surface construction
as a solution to this problem. In addition, numerous techniques for general mesh
simplification exist within the literature based on augmentations to common mesh
construction algorithms [47,18,27].

Overall this technique appears to work well on example problems and, although
not explicitly mentioned, appears not to suffer from the complete contour constraint
of the earlier work by Jones and Chen [32]. As such it offers a viable method for sur-
face reconstruction from contours for use as an aspect of volume completion. Aug-
mentations to the process may also allow the reconstruction to be tailored to
incorporate other volume completion aspects as detailed previously.
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3.6.2. Surfaces from sparse data

Surface reconstruction from contour slices can be thought of as a specific case of
the more general problem of reconstruction from disparate points [32]—reconstruc-
tion from sparse data. Work in this area is primarily motivated from the interpreta-
tion of data from sparse stereo capture and generally involves 3D reconstruction
from a set of sparse features (e.g., points, lines, and corners) whose presence and rel-
ative position are scene dependent [18].

A number of approaches in this area concern themselves with surface fitting to
sparse data points using methods analogous to those used in range data segmenta-
tion to fit surfaces and feature descriptors to sparse 3D data (e.g. [28,25,63]). In
[25], constraints are used to extend the common surface fitting approach to impose
good surface continuity in the resulting surface model. Such constraints can be con-
sidered similar to those proposed by Kellman and Shipley [37] with respect to visual
completion and hence an extension of this work into the area of visual completion
may be possible. However, as later stated by one of the authors [63], this work is lim-
ited to fitting surfaces and identifying features in 3D data in which ‘‘surface and cur-

vature discontinuities are explicitly preserved.’’ Thus although dealing with sparse
range data this technique is performing a task closer to advanced surface interpola-
tion, through the use of additional constraints, rather than that of 3D completion as
we are considering here. As such this work is functionally limited to 21

2
D surface

interpolation—a common paradigm for realising complete 21
2
D scenes from sparse

stereo techniques [18].
Another approach is that of 3D model construction from sparse stereo capture.

Recent work in constructing 3D models from sparse 3D data [49] has utilised trian-
gulation on sparse data sets obtained using structure-from-motion over a sequence
of 2D images. In this work, sparse corner and edge features were used as primes
for the construction of a triangular mesh to describe the surfaces of the scene. Vis-
ibility constraints, encoding the visibility of features from a given viewpoints, are
used to constrain the construction of the mesh towards a model globally consistent
with structural data gathered across all viewpoints. This technique relies on useful
constraining features being present in multiple images (i.e., not consistently occluded
or hidden) and being present at the surface intersections and edges in order to guide
the triangulation.

In terms of completing entirely unknown 3D enclosures, through volume comple-
tion, these luxuries of constraining knowledge are not explicitly available and may
have to be inferred from visible scene portions prior to application of a technique
such as this. An alternative would be to extend the principle of this technique,
through iterative constraint optimisation, to consider more general constraints.
Probabilistic inferences rather than absolute positional constraints could possibly
be used to guide the reconstruction towards the most probable representation of
an unknown scene portion (cf. fuzzy completion [75]).

Overall, despite the clear parallels to general 3D completion, work on both sur-
face from contour and sparse data completion techniques relies on the presence of
constraining information not present in our stated 21

2
D to 3D completion problem.

As such they focus on completion through good continuation of contours and
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surfaces—hence following the local view of completion shown by Tse [72] to be
inadequate to many 3D completion cases. However, despite this limitation, this ap-
proach may offer a viable completion aspect into the wider volume completion
framework from which the additional constraint, required here for success, can
otherwise be derived.
4. Summary

Our examination and contrast of 3D completion in both perceptual psychology
and computer vision show us that completion is approached very differently in each
discipline but still a vein of commonality, in terms of usable visual attributes, can be
seen running through both.

Perceptual psychology offers us several explanations for human visual comple-
tion. The most recent and advanced in terms of 3D completion is that of Volume
Completion proposed by Tse [72]. Volume Completion is a combined and open-end-
ed approach to complete 3D enclosures utilising contour and surface relatability,
volume mergability, world knowledge, and pattern completion. The volume comple-
tion concept asserts that every surface has an associated volume and hence volume
completion subsumes earlier surface based completion (Kellman and Shipley [37]) as
a special case. Tse goes on to suggest that the volume completion process is a relax-
ation into a best-fit between given constraints and that completion processes are in
general inherently probabilistic.

Tse�s work is supported by both experimental evidence [71] and work by others in
the field—notably in the work of van Lier et al. [75] with his suggestion, and support-
ing experimental evidence, for plausible completion through probabilistic �fuzzy
completion.� Further work by Tse [73] goes on to highlight the importance of con-
tours and surfaces in volume completion and proposes a visual propagation tech-
nique as an explanatory theory for this area.

We have examined primarily 3D completion work in computer vision although a
body of work in 2D similarly exists. Work explicitly in 21

2
D to 3D completion of

range images is limited to completion of partially occluded surfaces and this work
is itself limited to well-posed and isolated instances of this completion task
[12,7,19]. Similar work exists in 3D building reconstruction and completion using
21
2
D structure from motion data and a probabilistic model of building features

and textures [14]. This work is itself limited to the domain of architecture and both
rely heavily upon aspects of ‘‘world knowledge’’ either specific to this domain [14] or
more generally to geometric shape conformity [12,7,51]. Related work has also been
carried out on 21

2
D depth map completion based on having at least partial knowledge

(i.e., intensity) of areas to be completed [68] and similarly in completing 21
2
D sketches

of simple geometric constructions [80]. Here again we see a reliance upon knowledge
not readily available within the confines of the generalised volume completion prob-
lem although both offer a useful insight into achievable goals when we allow the
propagation process to be closely governed by either specific scene knowledge [68]
or geometric constraint [80].
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By contrast, the relevant work in 3D surface filling [11,43,33,65] offers what can
be considered a more generalised propagation based approach to isolated surface
completion which follows the conceptual surface continuation idea of Kellman
and Shipley [37]. However, here the primary consideration is surface completion,
through merging over a hole, rather than completing 3D volumes with regard to
other governing constraints. This is notable when this work is considered within
the wider aspect of producing locally plausible completion in addition to filling a
surface hole that is consistent with more global (i.e., higher level) aspects of the
scene.

A less well-developed area is that of symmetry for 3D visual completion.
Although work on symmetry identification has been successfully carried out in 2D
[85] together with successful work on symmetry identification in 3D data sets
[67,64] it would appear that identifying potential axes of localised symmetry in a
21
2
D scene remains an open, and potentially difficult problem. It is not clear how

helpful advances in this area would be to the more general problem of 3D comple-
tion. Although symmetry naturally appeals to any proposed completion approach its
application is limited to symmetrically regular objects/scenes—a very limited subset
of general completion instances.

In our final area of computer vision in consideration, surface from contour com-
pletion [32,25,40,49], we again see the requirement for additional knowledge moving
us away from the generalised volume completion problem. Here, however, unlike
earlier knowledge dependent completion approaches we foresee potential for using
surface/contour relatability as a sub-part of generalised volume completion where
the required constraining knowledge is itself derived from the other identified aspects
of volume mergability, world knowledge, and pattern completion.

Overall, the problem of 3D completion is certainly difficult—both in terms of
understanding the psychological phenomenon and in terms of replicating this artifi-
cially in computer vision.

Many aspects of the perceptual psychology work highlighted here remain unex-
plored in the computer vision literature. From our examination, despite the many
successes we have detailed, computer vision work in 3D completion is limited to con-
sidering, somewhat disjointly, a subset of the aspects attributed to visual completion
by perceptual psychology and only mildly approaches our concept of visual propa-
gation and that of Tse�s volume completion derived from the psychological litera-
ture. From our earlier discussion of aspects attributable to volume completion it is
notable that work in 3D pattern completion, volume mergability, and, to a lesser ex-
tent, surface/contour relatability is somewhat lacking. Instead, we see a variety of
successful ‘‘world knowledge’’ dependent techniques themselves knowledge-limited
to specific visual domains.

Work on unified completion approaches is also similarly limited. Here, we show
an example of work in progress [4] utilising combined aspects of world knowledge,
contour/surface relatability, and 3D pattern completion (Fig. 16). Utilising geomet-
ric shape fitting and completion [7,12,19] to achieve a constrained ‘‘good surface
continuation’’ of the underlying shape for a scale model of Pisa Tower we use a novel
3D pattern completion technique based on [16] to achieve a realistic and plausible



Fig. 16. 21
2
D to 3D completion of Pisa Tower.
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completion of this 21
2
D range image (Fig. 16)—details in [4]. Concurrent work [58]

has considered a similar approach in contrast with [4]. Despite the success of this
work in progress, the technique still falls some way short of generalised volume com-
pletion in the computer vision arena.

Perhaps future computer vision work in this area, building upon the psycholog-
ical accounts highlighted here, should further explore the available psychological
hypotheses. Overall a realistic and plausible 3D completion process remains an
open goal in computer vision research. Notably, several promising general areas
in 3D volume completion that have to date received little attention in computer
vision are:

• Volume mergability: the completion of objects through the identification and cor-
respondence of disjoint volumes within the scene. Proposed by Tse [72] with
strong visual supporting evidence (Fig. 10) and theoretical proposals [73].

• 3D pattern completion: one of the main contributing aspects to the identified
phenomenon of volume completion. Although a wide body of work exists in 2D
image analysis and synthesis (e.g. [16]), similar work in 3D remains in its infancy
[4,58].

• Co-operative completion approaches: multi-modal approaches utilising a breadth
of available scene evidence and knowledge from all of the aspects of volume com-
pletion discussed here in an approach driven by the principle of completion via
visual propagation. Akin to algorithms proposed in other computer vision
domains [50] and representing the ‘‘holy grail’’ of work in this area.
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