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Abstract. Proof planning is an automated reasoning technique which
improves proof search by raising it to a meta-level. In this paper we apply
proof planning to First-Order Linear Temporal Logic (FOLTL), which
can be seen as a quantified version of Linear Temporal Logic, overcoming
its finitary limitation. Automated reasoning in FOLTYL is hard, since it
is non-recursively enumerable; but its expressiveness can be exploited
to precisely model the behaviour of complex, infinite-state systems. In
order to demonstrate the potentiality of our technique, we introduce a
case-study inspired by the Feature Interactions problem and we model it
in FOLTL; we then describe a set of methods which tackle and solve the
validation problem for a number of properties of the model; and lastly
we present a set of experimental results showing that the methods we
propose capture the common patterns in the proofs presented, guide the
search at the object level and let the overall system build large and highly
structured proofs. This paper to some extent improves over previous work
that showed how proof planning can be used to detect such interactions.

1 Introduction

Conceived in the early 80s by Bundy, Proof Planning [2] has proved along the
years to be a sophisticated, effective technique for doing automated reasoning in
complex frameworks, where standard theorem proving can do little; especially,
e.g., in mathematical reasoning, proof by induction [4] and non-standard analysis
[23]. (For more details about proof planning, see also [3,22,24]).

In proof planning search is raised to a meta-level. Rather than exploring
a space of inference rules applied backwards to a goal formula, as is standard
in theorem proving, in proof planning first a proof plan is generated, roughly
comparable to a proof tree, but in which nodes are labelled by possibly unsound
macro-steps of reasoning (methods) rather than by inference rules. Standard
examples of methods are case-splits and induction schemas. If a proof plan is
found, its soundness is verified by extracting a proof from it; this is accomplished
by having tactics attached to methods, which (partially) specify how a single
method is translated to a set of inference rules. The key idea is that the meta-
search space is typically orders of magnitude smaller than the original one, and
little or no backtracking is likely to occur. This enables proof planning to tackle
logics (and the associated problems) normally beyond the capacity of standard
theorem provers. Of course, no claim of completeness can be made about the



process — proof planning can fail either at the planning level (no plan could be
found) or at the proving level (no proof of the input formula could be extracted
from the plan); therefore this technique is best applied to very complex logics
for which an incomplete approach is better than no approach at all.

In this paper we apply proof planning to such a complex logic, First-Order
Linear Temporal Logic (FOLTL), which can be seen as the first-order-style
quantified counterpart of Linear Temporal Logic (LTL). FOLTL is not only
undecidable but indeed non-recursively enumerable [19]; but it is also very ex-
pressive, so that it can be used, as is the case here, to precisely model complex
systems beyond the reach of finitary methods like model-checking, automata- or
LTL-based methods. As far as we know, so far there are no effective, general-
purpose automated reasoning approaches to FOLTL?; the aim of this paper is
to show that proof planning can actually make the situation better.

We choose to study a well-known problem in Formal Methods, Feature In-
teractions in Telecommunication Systems (FIs, see [7]). We build an abstract
FOLTL model of part of the problem and devise a set of proof planning meth-
ods which let us validate a number of interesting properties of the model. Al-
though the case-study is not yet ready to be presented as a general solution
to the problem of FIs, we believe it is an interesting application of proof plan-
ning, and can be extended and refined to eventually become a tool for Formal
Methods, possibly and likely in combination with push-button techniques such
as model-checking. In view of this, we recall that previous work, e.g., [17,16,11]
already showed how proof planning can actually be used to detect FIs, although
that usually requires reasoning by refutation; whereas, so far, our approach only
works by proving statements.

Proof plans can be compared to sketches of human proofs, reflecting the
intuitions of the mathematician, while the details are left to a subsequent phase.
The experimental results we show indicate that this actually is the case, at least
for the case-study considered: several similar properties are planned using the
same sets of methods, and the proofs then generated share a common structure.
Moreover, the approach requires a reasonable amount of computer resources,
and an amount of human intervention which, though initially high, decreases as
more and more problems are tackled.

The paper is structured as follows: Section 2 gives some preliminaries about
FOLTL and proof planning; Section 3 introduces our case-study and the way
we build the model of the problem; Section 4 describes the methods devised to
solve it; Section 5 shows the experimental results and comments on them; lastly
Section 6 contains comparison with related work, conclusions and future work.

2 Preliminaries

In this Section we first sketch our presentation of FOLTL and the sequent
calculus we will be using. For more details, the reader can refer to [10].

3 interesting results have been obtained, though, in applying clausal resolution to the
monodic fragment of FOLTL, see, e.g., [13].



FOLTL Our presentation of FOLTL extends first-order logic with the unary
temporal operators OO0 (“always”), ¢ (“eventually”) and O (“next”) and the
binary temporal operators U (“until”) and W (“weak until”). The semantics
is standard [1], assuming constant domains and rigid designators; this means
that no objects in the domain of quantification, D, are created or destroyed
along time, and that the only “dynamic” objects are predicates. An example of
FOLTL formula, akin to those we are about to see in our case-study, is this:

VO [state (x) D (stater(xz) W (transiz(x) V It.transis(x,t)))]

Assuming the domain of quantification represents individuals which can be,
at any given time, in a certain state, the informal (but accurate) reading of the
above example is: any individual, at any time, being in state 1, will remain in
that state forever, or will eventually take a transition to state 2, or to state 3. In
general, pWWq stands for “either p will hold forever, or eventually ¢ will hold, with
p holding meanwhile”. The standard semantics of W is exploited here to make
sure that the individual will stay in state 1 while it is waiting for something to
happen, or that no transitions will ever be taken. Notice that the way states and
transitions are represented is a free mixture of first-order predicates and possibly
quantifiers.

The proof system we use is a sequent calculus based upon those presented in
[12] for quantified modal logics; it is an extension of QS4.3, sound and complete
for the quantified logic of reflexive, transitive, weakly connected frames, with
rules for O),U and W. The resulting calculus is called CrorrL and its soundness
follows straightforwardly from the semantics of the operators modelled.

3 Case-study

By using FOLTL complex systems can be modelled and verified with no finitary
limitation; but also, we use its expressivity to keep the model small and intuitive.
Typically, in a large telephone network, if a customer subscribes to one or more
features (such as, e.g., ring-back when free, reject anonymous calls etc.) it can be
the case that interactions arise among different features, if not between a feature
and the basic service, where an interaction is an unexpected, unwanted behaviour
arising from insufficient, inconsistent and/or wrong specifications. Hence the
need of detecting interactions as soon as possible, e.g., at specification time,
or as well, to validate the model with respect to some property stating that
no interactions arise. The problem has received great attention both from the
academical and the industrial world, see, e.g., [18]; it is complex: any user, from
an unbounded pool, can subscribe to any feature(s), and each feature must
behave correctly for each user, in any possible scenario. Traditionally, it has
been solved by approximating the scenario in a finitary way and then using well-
known techniques such as model-checking [17, 8] or Boolean satisfiability (see [7]
for an exhaustive survey); but in this case a positive answer is not definitive; if,



e.g., the approximation assumes there are 3 users, an interaction involving more
users would go undetected.

The case-study we present is an abstraction and simplification of Fls as
stated in [9], to our knowledge one of the most effective approaches so far to
the problem; in particular we show how compatibility of properties of a basic
call service plus a feature can be verified. The phone network is modelled as a
set of users, each of which enjoys the abilities of answering the phone, dialling
a number etc., the so-called Basic Call Service (BCS). The environment must
take care of establishing connections among users. We model the generic user
as a set of FOLTL formulae defining the behaviour of the automaton given in
Figure 1.
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Fig. 1. A graphical representation of the BCS automaton.

In the Figure, the ovals and arrows are labelled respectively by states in
which a user can be (e.g., idle) and transitions that take a user to another state
(e.g., of fhook). The behaviour of the generic user with BCS is then enforced
via a set of FOLTL formulae:

1. (Initial state) Every user is initially idle:
Va.idle(x)

2. (Progress) For each state, either the user remains in the state forever, or a
transition happens; e.g.,
V.0 idle(x) D idle(x) W (of fhook(x) V Jt.trying(t, x))

3. (Trigger) For each state and transition, if they happen simultaneously then
the user will be in a new state at the next instant; e.g.,
Ve.O idle(z) A of fhook(xz) D (Oready(x) V Odown(x))

Additionally, a few first-order invariants are needed:



1. (Persistence of states) Each user is always at least in a state, e.g.,
vz.O \/ state(T)
where state(Z) denotes the generic state predicate such as idle, ready and
SO on.
2. (System azioms) relating states to one another, e.g.,
Va,y.0 oconnected(x, y) < tconnected(y, )

The above model concisely and intuitively models the behaviour of a user
overcoming a number of standard pitfalls; for instance, as already noted in [9],
the use of W in progress formulae is much better than, e.g., O(p D Oq). Indeed
this formulation is too weak, since (a) it would be true in a scenario in which the
user hears the busy tone later on, not necessarily as a result of this very call; (b)
it would be false in a scenario in which the user failed to progress infinitely often,
that is, for some reason the network took an infinite time to process her call. In
fact W specifies what must hold while we are waiting for an event to happen,
and we can also be satisfied if the event never happens. It seems reasonable, in
this case, not to force any fairness constraint on the system — it seems legal to
have a user waiting for something to happen forever; fairness constraints could
be anyway imposed on any transition(s) by using U/, which forces the releasing
event to eventually happen.

Notice also that this model (i) enforces some subtle properties of a real
phone network, such as, e.g., that a user that has been called (the terminator)
cannot terminate a call, whereas the user who has called (the originator) can
— this is the customary behaviour of a standard phone network, modelled via
two predicates tconnected and oconnected; (ii) enjoys a high degree of non-
determinism: a state can have more than one successor state even if the action is
the same, and as well a user can permanently remain in the current state; (i)
there is no restriction on the number of users.

We also introduce a simple feature called Originating Call Screening (OCS),
according to which a user subscribing to OCS has a predefined list of users,
calling whom is prohibited. A new predicate, ocs(z,y), declares that user = has
user y on his screening list; an axiom is added, stating that nobody can be
on his own’s screening list: Va.OO —ocs(x, z); and, in order to prevent calling
a screened user, the trigger formula determining the transition from ready to
trying is modified to Vz,y.0 ready(x) A dial(z,y) A —ocs(z,y) D Otrying(z,y).
The revised version of BCS is called BCS’.

3.1 Properties

In this Subsection we list the properties we are interested in proving. They resem-
ble the properties stated in [9] and are expressed, as the model is, in FOLTL; the
goal is to prove that the model enjoys them, which is achieved through standard
logical implication.

Reachability There are capabilities the system must enjoy at least under suitable
(good) conditions; for example, it must be eventually possible to connect any



two users, if the originator dials, if the line is available, if the terminator hangs
up and so on. These properties correspond to looking for a path in the graph of
Figure 1 from the initial state to the required state. Assume we can somehow
collect all good conditions in a formula ¢(x); then we want to prove that:
Reachl Under suitable conditions, any user can get ready:

Ve.p(x) D O ready(x)

Reach2 Under suitable conditions, any user can connect any other user:
Ve.p(x) D O Jt.oconnected(z, t)

Reach3 Under suitable conditions, any user can be connected to any other user:
Vz.p(x) D O Jt.tconnected(t, x)

First-order properties By a first-order property we denote a [J-formula not con-
taining temporal operators other than (), and we are interested in checking
whether the property always holds. Thus we look at:
FO1 The user we are trying to dial is the same as the user we have just dialled:
Vo, y.O (ready(z) A dial(z,y)) D Otrying(x,y)
FO2 If T am ringing y and she hangs up, I will be next connected to her:
Ve, y.O (oringing(z,y) A of fhook(y)) D Ooconnected(x,y)
FO3 If I am ringing y and she hangs up, she will be next connected to me:
V,y.O (oringing(z,y) A of fhook(y)) D Otconnected(y, x)

These properties are similar to trigger formulae, but in general they can have
a quite more complex first-order structure.

Weak-until properties An interesting class of properties employ the W operator.
We look at:

WUL1 If I dial myself, I will hear the busy tone before getting back to idle:
Ve.O (ready(x) A dial(z,z)) D (—idle(x) W busytone(z))

The semantics of the operator here helps establishing what must not hold
between two events. A slightly different kind of weak-until properties are:
WU2 If I am trying to connect y, I will keep on trying until I will hear the busy
tone or I will be ringing her:

Ve, y.O trying(x,y) D trying(xz, y) W (busytone(x) V oringing(x, y))

WU3 If T am ready, I will stay ready until I will get back to idle or I will be
trying to connect to someone:

Vo, y.O ready(x) D ready(x) W (idle(x) V t.trying(z,t))

Notice that, although WU2 and WU3 may look similar to progress proper-
ties, they are indeed different, since in general the event on the right-hand side
of W cannot immediately be found in a progress formula.

0OCS Once we add OCS to the system we have to state and prove the charac-
teristic property of OCS itself:
OCS Assuming user x has a user alice on his screening list,  can never be
connected to t as originator:
V.0 (ocs(x, alice) D —oconnected(x, alice))

When the user enjoys OCS, we expect some of the above properties to be still
provable, while some others are not. In particular, we are interested in proving



that WUTL is still valid (no user may have himself on his screening list), whereas
WUS3 is no longer (a ready user trying to dial a screened user will never be
trying to connect to her).

4 Proof Planning for the case-study

We employ the proof planner ACIAM, written in AProlog (see [25]). A proof plan
is a tree whose nodes are labelled by pairs (method, sequent); every method
is associated to a tactic. In the style of [15], a (basic) tactic is a rule of in-
ference plus some operational content (for instance, which formula in the se-
quent the rule must be applied to); more complex (compound) tactics enforce,
e.g., repeated, conditional and exhaustive application of tactics. The object-level
theorem prover we have devised, FTL, written in AProlog too, is actually tactic-
based, in order to be seamlessly integrated with ACIAM. First the input sequent
is translated into ACIAM’s internal syntax and ACIAM’s planning engine is called;
if a plan is found, it is translated to a tactic tree, which FTL runs on the input
sequent. If the result is a proof of the sequent, soundness of Crorry, rules ensures
the sequent is valid. Due to space limitations, we explain in detail the first sets
of methods only, tailored for reachability properties, and informally sketch the
others. The interested reader is referred, once again, to [10].
Reachability This method mimics backward-reachability:

method exists_path
repeat:

1 (init) if we are in the initial state, stop; otherwise,

2 (trig) find a trigger formula leading to the current state;
then for each associated transition,

3 (prog) find a progress formula leading to the current transition;
for each associated state, make it the current state and
go back to 1.

Methods such as this are called compound since they apply other methods,
indicated in parentheses. The loop at steps 1-3 takes care of finding all possible
trigger and progress formulae that may lead to the current state. The hope is
that, eventually, a path from idle to it will be found. Notice that the above
scheme only shows the operational content of the method, without committing
to the structure of the proof plan; in general, every method may open several
branches, leading to the construction of a proof plan as a tree. Then, if the proof
plan is found, in order to build a proof of the goal formula, tactics attached to
each method are glued together, building a tactic tree; and the tactic tree is
finally executed, possibly leading to a proof of the goal formula. Tactics take
care of filling the gaps left by the proof plan.

An example will clarify. Consider Reachl (and Figure 1). We start from
ready; since it is not the initial state (step 1), we find all trigger formulae that
can lead to it. There is just one: Va.Ol idle(z) A of fhook(xz) D (Oready(z) Vv
Odown(x)). So, in order to get to ready, idle and of fhook must have happened



in the past (step 2). The only progress formula related to this is Vz.O idle(x) D
idle(x) W (of fhook(x) V Ft.trying(t,x)) (step 3). So we now know that, if the
user is idle, under suitable conditions, it will get to ready. Since idle is the initial
state, we are done.

Proof planning here also takes care of dynamically building the assumptions
¢(z) needed to prove the statement. Initially, ¢(z) is instantiated with a logical
variable?. While looking for the plan, methods (trig) and (prog) neglect all
transitions not leading toward the state we want to reach, and collect them into
¢(x). Consider the application of method (trig) in the above example: the
method simply “forgets” that idle and of fhook may lead to down, as well as to
ready, and records it in ¢(x). When it comes to building the tactic tree, ¢(x)
is used in the hypotheses, and the method forces a tactic called close_tac to
close the proof branch related to the neglected transition. At the object level,
one can view this tactic as a very carefully controlled application of the cut
rule: assuming that the right transitions are taken, the statement can be proved.
In general, for each trigger formula found by (trig) having n transitions (for
instance, there are three possible transitions out of idle) the resulting proof
employs close_tac n — 1 times. Something analogous happens with method
(prog), since in general one can nondeterministically progress to more than one
transition from each state.

In this case, proof planning literally “directs” the search at the object level
and builds the correct assumptions on-the-fly.

First-order properties In order to plan and prove these properties we use
the “persistence of states” invariant (see Section 3) with the following compound
method:

method all_paths
repeat until closed:
1 (inv)  introduce an invariant in the hypotheses
2 (mlor) open a branch for each disjunction
3 (mutex) either close by mutual exclusion, or
4 (pl) try and close the branch by first-order logic

The method works like this: open up n branches using the invariant in the
hypotheses; then, in n — 1 branches, close thanks to the detection of mutual
exclusion, while the remaining branch is closed by first-order reasoning. The lat-
ter task is devoted to the object-level theorem prover and therefore delayed to
the proving phase. Mutual exclusion between states (i.e., that no user can be
simultaneously in two different states) is realized via a further method which de-
tects the presence in the hypotheses of two state predicates; the associated tactic
selects the appropriate system axioms and works by propositional reasoning.

Notice how this method somehow resembles a well-known inductive reasoning
technique which consists of showing that a certain property is preserved over all
possible states of the system, in case there is a finite number of (classes of)

4 recall that the system is written in a higher-order language, so that logical variables

may well stand for predicates and formulae.



them. Here the invariant consists of an n-ary disjunction appearing among the
hypotheses, and that is how n search branches are opened.

Weak-until properties Once again, the proving strategy is inspired by
model checking, this time by forward reachability. Consider Property WU1L:
we start from the state specified in the antecedent of the goal (in this case,
ready(x)) and find a trigger formula telling us what happens if we take the
transition specified in the same place (in this case, dial(x, z)). Open one branch
for each transition found; then for each branch, that is, following each possible
path forward, check whether we have reached the state on the right hand side of
the W in the goal (in this case, busytone(z)). If it is the case, stop. Otherwise,
find a progress formula and identify what transitions can be taken from this
state; again, open a branch for each possible transition and, for each one, close
the branch by mutual exclusion detection. Then go back to the beginning.

Slightly simpler than the previous one, Properties WU2 and WU3 are
proved in a similar way, but trying to identify a trigger formula correspond-
ing to the required goal. If this is not the case, the same method seen above is
employed to let the system progress.

OCS is proved using a slight variation of the previously mentioned invariant.
The associated method opens a search branch for each possible state user z is
in; all of them but one are closed by detection of mutual exclusion, while the
remaining one goes through by propositional reasoning — this is reasonable,
since the use of the OCS axiom Vz.00 —ocs(x, z) should match with the condition
—ocs(x, ) when dealing with the transition from ready to trying.

As far as WU1 is concerned, we expect the very same methods employed to
prove its validity with BCS to carry the proof on in this case; on the other hand,
proving that WU3 interacts with OCS is slightly more complex; we prove that
user alice, not being on anyone’s screening list, validates the property. This is
due to the fact that our approach cannot work, so far, by refutation; therefore,
if a property fails to be provable, there is no way to tell whether that is due to
incompleteness of the system or to an interaction actually arising. The formula
stating this should be provable via the same set of methods used for Property
WU2, and in fact it is.

Discussion Although applied to this particular case-study, it is worth noting that
the methods outlined above are in principle applicable to any model formalised
in FOLTL along the guidelines given in Section 3. In fact, the main points in
building the model and devising a proof planning strategy for it are those of
(1) exploiting the expressivity and complexity of FOLTL in order to accurately
model the behaviour of the system, and (i7) taking advantage of the shape of
the goal formulae in order to try and plan / prove them.

5 Experimental results

Since our approach is not push-button, it seems fair to give an overview of the
time spent by the user in devising the approach, beside showing CPU times.



We adopt Cantu et al.’s three-fold classification of the time required by the user
[14]: human time is divided into User Time, spent in formalising a problem,
Proof Time, spent in tuning proof techniques without modifying the tool, and
Tool Time, used for debugging. The properties outlined in Section 4 have been
verified by the system ACIAM/FTL; Table 1 shows the results. Columns contain,
for each property, data about the proof plan and the proof (depth d, number of
nodes #N, CPU Time in seconds), total CPU Time in seconds, and human time
required to devise the solution (User, Proof, Tool time and total, in man-hours).
The last two rows show averages and totals. All experiments were run on a PC
equipped with an AMD K6 200MHz processor, 256 MB on board memory and
Linux 2.4.7. We employed a patched version of the AProlog environment Teyjus
v1.0-b33 and ACIAM v4.0.0 (2002). The heap space of the AProlog compiler /
simulator was raised to 512 MB in order to avoid heap overflow.

Table 1. Experimental results.

Proof plan Proof Human time
Property d #N Time| d #N Time Uu P T
Reachl 13 15 11} 23 31 2| 13| 2 100 200{302
Reach2 19 21 24| 66 92 71031 1 10 1| 12
Reach3 15 17 15| 38 52 3 18| 1 1 1} 3
FO1 28 44 49| 39322 17| 66]| 4 10 20| 34
FO2 28 44 58| 39321 20 78| 1 1 2 4
FO3 28 44 58| 39327 200 78| 1 1 5 7
WU1 17 19 20| 48 97 10| 30|10 70 100|180
WU2 14 16 11| 41 112 14| 25| 4 10 10| 24
WU3 14 16 11| 43 111 14] 25| 1 1 1| 3
BCS’+WU1||17 19 21} 57112 13| 34| 1 1 1| 3
BCS™+0CS (|32 80 76| 41 341 96(172|| 8 5 20| 33
BCS'+WU3|[14 16 11| 47 110 20| 31|20 10 10| 40
Averages |(|2029.6 30.4/43.4 169 19.7 3.5 18.3 30.9
Totals 365 236(601|| 54 220 371|645

We now comment on each single experiment, analysing the structure of the
plans and proofs obtained and the CPU and human time needed.

Reachability The planner finds a path from idle to the required state, and
the depth of each plan is related to the distance on the graph. Consider Figure 1:
to prove Reachl the proof planner needs discover that any user can get to ready
from idle in “one step”; analogously for Reach2 (four steps) and Reach3 (two
steps). Timings, depths and numbers of nodes roughly reflect this proportion; the
structures of plans and proofs also look very similar from a qualitative point of
view. This is a clear indication that the employed methods capture the common
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structure in the three proofs. Unsurprisingly, planning time dominates proof
checking time, as expected, and Reach2 is the hardest.

The ratio between the depth and number of nodes of both the plans and the
proofs are low, meaning that the associated trees are quite narrow; the planner
is actually guiding the search in an efficient way, i.e., cutting away useless search
branches. As far as human time is concerned, consider Reachl: it was no great
problem to invent the proof plans (User time 2 man-hours) but it was quite hard
to build the correct machinery, both in terms of methods (Proof time 100 man-
hours) and in terms of adjusting the system (Tool time 200 man-hours). In fact
this was the very first attempt, and, as expected, took a long time to set up. The
times scale down radically, however, if we proceed on to the other properties,
especially because the very same set of methods, with slight modifications, work
fine for all three of them.

First-order properties Proof plans and proofs of these Properties present
remarkable similarities in structure. The high number of nodes of the proofs
comes from 8 similar search branches opened up by the use of an invariant.
Notice also that these proofs do not include the proof of the invariant itself. On
a smaller scale, there is a pattern in human times which is similar to that one
can see for the previous set of Properties. Tool time appears a little larger (5
man-hours) for Property FO3 since it was necessary to code and use a system
axiom in that case, in order to have the proof go through.

WU1 This problem required a big effort in human terms, as shown in the
Table, since it was necessary for the first time to devise a way of proving an
invariant with a WW operator in it. In particular, a number of different methods
were required, and it was not clear in the beginning how to translate the intuitive
ideas to tactics.

WU2, WU3 Another two similar plans and proofs, proved by the same
set of methods. The first one required some effort on the human side, while
the second was proved quite easily. Actually, the experience gathered for WU1
helped.

BCS’ That WU1 still holds with OCS on could be proved with little or no
modification to the methods explained above. As one can see, the human time
required was small. If compared with the figures above, for BCS+WU1, the
proof is somehow deeper and larger because of the added complexity of the OCS
feature. Validating OCS requires the largest effort of the whole benchmark set,
due to the use of the OCS invariant, which introduces complexity in each branch
of both the proof plan and the proof. Lastly, WU3 proved to be quite complex,
as is witnessed by the human time. Actually, there is still no systematic way
of determining how to detect an interaction when there is one, and this single
problem needed some 20 man-hours to find out how to discover it.

Statistics Consider the “Averages” row. One can see that the average proof
plan is 20 nodes deep and contains about 30 nodes in total (ratio: 0.66): proof
plans are narrow and deep and not very large overall. This indicates that the
proof planner chooses the right methods quite easily, also taking into account
that basically no backtracking happens. In short, the abstract search space is
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tractable. On the other hand, the average proof is about 43 nodes deep and has
169 nodes in total (ratio: 0.25), which seems to suggest that there is a lot more
“decoration” in a proof than in a proof plan — this agrees with the idea that the
proof plan abstracts away much more than is allowed in a proof. Considering
that here the search space is infinite and the object logic is non recursively
enumerable, such a depth is remarkable. The plan is directing the search, which
is the idea behind proof planning.

Proof planning time dominates over proof checking time by a factor of 3 to
2. This is sensible as well, since most of the “intelligence” of the system lies in
the plan rather than in the proof, although the tactics in the methods can be
rather involved, let alone requiring some degree of automation themselves. For
instance, in some places the planner closes a branch assuming it can be closed at
the object level too via propositional reasoning — the mutual exclusion detection
method works exactly like this — but then the object level theorem prover must
exhaustively apply propositional reasoning in order to carry the proof to the end.
Most of the time spent by the planner is required for reasoning on the shape of
the formulae present in the sequent; in this case, higher order unification plays
a leading role.

The whole set of benchmarks can be solved on a rather slow machine in
something more than 10 minutes of CPU time, and the total human time required
to set the machinery up was some 4 man-months full-time, assuming one man-
month full-time is 160 man-hours; since this is a novel approach, such an effort
appears reasonable, since it also takes into account the time spent to debug a
system which is still prototypical. To this extent, it is worth noting that there
is definite dominance of Tool time over Proof time, and of Proof time over User
time: detecting and fixing bugs is harder than designing methods and tactics, at
least in the initial phase of the development of a novel approach.

Notice, lastly, that the human time reported in Table 1 is not time spent
in human interaction with the system; once the methods and tactics have been
devised, the process is automatic, if it runs to the end. Rather, one can think
of User and Proof Time as time spent by the user in programming the planning
and proof search of the system, and of Tool Time as time spent in debugging
the system. This approach is quite different from standard interactive theorem
proving.

6 Conclusions, related and future work

This paper outlines a new application field and methodology for Proof Planning,
by showing that FOLTL can be used to model complex systems, and that proof
planning applied to this logic can be used to prove interesting properties of such
models. In particular, (i) we have built an abstract model of part of a well-known
problem of Formal Methods, that of Feature Interactions, using the complexity
and expressivity of FOLTL to keep the model both accurate and small; (i7) we
have devised a set of general-purpose proof planning methods which, applied to
such a model, lead to the verification of a number of interesting properties of
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the model itself; (i) a set of experimental results shows that the approach is
viable: solving the problems required a reasonable amount of computer resources;
human time, though quite high in absolute terms, is shown to decrease steadily
once the initial attempts are made. In particular, it is worth noting that the
proofs obtained under the guidance of proof planning are remarkably structured
and that most of the useless search is cut away in the planning phase, thanks to
the fact that the structure of proofs is captured by the methods employed.

Calder and Miller’s work (see e.g., [5,8,9]) is the main source of inspiration
to the experimental test-set presented in this paper. It is difficult to quantita-
tively compare the results obtained by Calder and Miller and ours, since (1) the
machines used are rather different, and (2) there is no indication on the human
time required by Calder and Miller’s approach in their papers; from a qualita-
tive point of view our approach has, in general, a precise advantage over Calder
and Miller’s (and any other model-checking-based approach), since our proofs
use no finitary approximation whatsoever and need find no suitable abstraction
for that — this characteristic comes “for free” from the use of FOLTL. But it
must as well be remarked that, in [6], the authors extend their approach to an
unbounded number of users, thanks to an abstraction-based technique. More-
over, their model is much more detailed and realistic than ours, also thanks to
the use of a well-established modelling language such as ProMeLa [20, 21]. As a
final remark, notice that in [9] the authors solve the problem for a wider set of
properties than ours.

The present paper can be seen as an extension and a generalisation of the
preliminary result of [11]; in particular, in that paper, the required User Time was
unacceptably long, and concentrated in a single, big tactic, containing something
like 150 basic tactics. Some of them had to be applied to a precise formula in the
antecedents or consequent of a sequent — that is, the user had to specify not
only what sequent rule was to be used, but also on which formula. Moreover, the
order in which basic tactics appeared in that tactic was absolutely crucial. One
wrong position and the execution would not go through any more, preventing the
system from proving soundness of the proof plan. In short, the methods devised
were non reusable and had very little generality. In this work, we have built a set
of methods which can be used, with little or no modification, to tackle analogous
problems for any FOLTL model resembling the one presented in Section 3. For
instance, under such an assumption, method exists_path (see Section 4) will
be able to find and prove reachability properties in a number of cases.

Future work, in fact, will mainly focus along two orthogonal directions: on
one hand, finding more problems like the case-study presented, in order to prove
the extensibility and generality of the approach; on the other hand, extending
the model toward the full set of features, and making it more concrete, possibly
by extracting it out of a formal specification. Also, a systematic way of detecting
interactions still has to be devised: the main drawback of our approach seems,
right now, that it cannot work by refutation, requiring statements to be proved
in order to catch interactions; but the work reported in, e.g., [17, 16, 11, 10] shows
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how the theorem-proving approach can be used to detect interactions, and that
is one of the main lines of future research.
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