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Abstract

Annotations play a central role in the curation of scientific databases. Despite their importance,
data formats and schemas are not designed to manage the increasing variety of annotations. Moreover,
DBMS’s often lack support for storing and querying annotations. Furthermore, annotations and data
are only loosely coupled. This paper introduces an annotation-oriented data model for the manipula-
tion and querying of both data and annotations. In particular, the model allows for the specification
of annotations on sets of values and for effectively querying the information on their association. We
use the concept of block to represent an annotated set of values. Different colors applied to the blocks
represent different annotations. We introduce a color query language for our model and prove it
to be complete on the class of color (annotated) databases. We present MONDRIAN, a prototype
implementing the proposed annotation mechanism, and we conduct experiments that investigate the
set of parameters which influence the evaluation cost for color queries.

1 Introduction

From biology to astronomy, scientific databases play a central role in the advancement of science
by providing access to large collections of data. At the same time, these databases are of particular
interest to computer scientists due to the challenges that they pose in terms of data management
[8]. Apart from the often staggering amounts of data, there are two additional characteristics of
scientific databases that make their management challenging. First, the data stored in scientific
databases often have different formats which range from flat-formatted files to images and elec-
tronic publications. Thus, part of the challenge is to integrate [13], annotate [7] and cross-reference
[17] such diverse collections of data. Second, scientists often analyze data collected from a variety
of sources and, in turn, the results of this analysis are used by others in a continuous feedback of
(result) data. In such a setting, it becomes difficult for scientists to keep track of where the partic-
ular data that they are using came from. Thus, the challenge here is to maintain data provenance
[9].

The objective of this paper is to offer a new model to annotate scientific databases (although
the model can be applicable in other contexts). In the following paragraphs, we review some of the
key issues we want to address. We present these issues through examples drawn from the domain
of biological databases. Figure 1 shows example relations from three biological sources, namely,
GDB [2] (a database about human genes), Swissprot [3] (a database about proteins), and PIR
[1] (a database about protein sequences). In Figure 1(a), relation GDB records for each gene, its
identifier, name, and chromosome. In Figure 1(b), relation Swissprot stores the identifier of each
protein, its name, and the related species. Finally, in Figure 1(c), the PIR relation stores protein
identifiers along with their names.

∗ Research done while visiting University of Edinburgh
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gid gname chr
120231 NF1 17
120232 NF2 22
120233 NGFB 1
120234 NGFR 17
120235 NHS 21

sid sname origin
P01138 Nerve growth factor Human
P08138 TNR16 Human
P14543 Nidogen Human
P21359 Neurofibromin Human
P35240 Merlin Human

pid pname
A01399 Nerve growth factor
A25218 Tumor necrosis factor
A45770 Merlin
I78852 Neurofibromatosis
Q6T45 Nancy-Horan syndrome

(a) GDB relation (b) Swissprot relation (c) PIR relation

Figure 1: Relations from three biological sources1 2 0 2 3 2 P 3 5 2 4 0A 4 5 7 7 0 J o h nJ o h n , M a r y 1 2 0 2 3 1 P 2 1 3 5 9I 7 8 8 5 2J o h n M a r yp i d g i d s i d
1 2 0 2 3 4 P 0 8 1 3 8A 2 5 2 1 8P e t e r 1 2 0 2 3 3 P 0 1 1 3 8A 0 1 3 9 9 M a r y

Figure 2: An integrated relation

We make two key claims about annotations. First, we argue that for an annotation mechanism
to be useful in practice, it should be able to support the annotation of value associations. Existing
annotation mechanisms assume that each annotation is attached to a particular value of a specific
attribute (e.g., see [6]). So, we can annotate, for example, the gene name NF1, in Figure 1(a),
with the name of the researcher that discovered this gene. A possible implementation of such a
mechanism is to add one more column in the relation to record such an annotation. So in our
example, we can add column annot gname in the relation of Figure 1(a) and use this column to
store the annotations of the gname column values.

However, in a number of domains, including scientific databases, it becomes increasingly im-
portant to annotate not only data values but also value associations. For example, consider the
relation shown in Figure 2. This relation results by partially integrating the relations in Figure 1.
The relation associates gene identifiers from the GDB database to protein (and protein sequence)
identifiers from the Swissprot and PIR databases. The semantics of this association is that the
specified gene is related to the indicated protein (and protein sequence). Such relations are widely
used in the biological domain and offer a quick way to cross-reference and establish associations
between independent biological sources [17]. In such a setting, it is important to record, for each
integrated tuple, what evidence exists about a particular association. In the figure, we show pos-
sible annotations of the integrated relation in the form of blocks and block labels. In more detail,
blocks are used to indicate the set of values for which an annotation exists, while block labels are
used to indicate the annotations themselves. In our example, the annotations indicate the names
of the curators who verified that a particular association holds. For example, in the first tuple, a
block indicates Mary’s belief that the gene with GDB id 120231 produces protein with id P21359.
This type of annotation is a statement about neither the gene nor the protein, but rather about
their relationship. One can think of using such a mechanism to annotate the relationship between
any two (or more) entities. In comparison, existing mechanisms are capable of only annotating
the entities themselves. We note that to represent annotations such as the ones described here,
it does not suffice to add an annotation column for each attribute of the relation. One objective
of this paper is to propose a suitable representation so that our annotation mechanism can be
implemented in practice.

Our second claim about annotations is that they should be treated as first-class citizens of the
database, that is, we should be able to query values and annotations alike (in isolation or in unison).
Currently, query languages operate only on data values and the corresponding annotations are
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propagated accordingly in the query result (e.g., see [6]). However, for curators, annotations are
of equal and sometimes of greater importance than values. A curator using the relation in Figure
2 might want to find which tuples are annotated by either John or Mary. This is still a value-based
query, but it refers to an annotation value which, as the figure shows, spans attribute boundaries,
and it can appear over distinct attribute sets, in different tuples. As another example, the curator
might be interested in finding which gene-protein sequence (gid, sid) pairs are annotated, and
by whom. This is not a value-based annotation query. Rather, it refers to the schema on which
annotations are applied for each tuple. As a last example, we note that sometimes the lack of
annotations might also be of interest to a curator. In a heavily curated database, like Swissprot,
a curator might want to find which gene-protein (gid, pid) pairs are not annotated. All these
operations assume that we have a query language capable of expressing queries over annotated
databases.

Desirable properties of such a query language are that it is independent of the chosen repre-
sentation of annotations and that it is user friendly. Any relational representation of annotated
databases offers the relational algebra or, on a practical level, SQL as candidate query languages.
However, a natural requirement is that each query posed in these languages should be annotation-
aware. Furthermore, the result of the query must be interpretable as an annotated database again.
It is clear that one needs to pose severe syntactic and semantic conditions on such queries in order
to achieve this goal. It is not clear what these conditions should be.

We opt for a different approach and introduce a new query language which we will refer to as
the color algebra (since we use colors to represent annotations). By definition, any query in this
language produces a colored (annotated) relation on every input colored relation. Moreover, the
semantics of colors and blocks is transparent in each operator. This facilitates the manipulation
and querying of colored databases. In particular, the queries described above are easily expressed
in the color algebra.

The contributions of this paper are as follows:
• We introduce an annotation mechanism for relational databases that is capable of annotating
both single values and the associations between multiple values. We investigate generic properties
of annotations and, through these properties, we are able to define annotations with a range of
semantics. To the best of our knowledge, our mechanism is both the first to support the annotation
of value associations and the first to investigate the properties of annotations.
• We introduce an algebra that can be used to express queries on values and annotations alike.
Our algebra supports well-known algebra operators, like selection and projection, along with
new operators that are particular to the querying of annotations. We formalize the notion of
annotation in relational databases and we show that the introduced algebra is complete on the
class of annotated relational databases.
• We present MONDRIAN1 which is an implementation of our annotation mechanism over a
relational DBMS. We investigate the space overhead of our representation, and we study the cost
of evaluating queries over annotated databases and the parameters that influence this cost.

The remainder of this paper is organized as follows. First, we review related work. Then,
in Section 2, we introduce the basic notions of colors and blocks. Section 3 presents the color
algebra while Section 4 describes the relational representation and presents the completeness result.
Section 5 introduces the MONDRIAN system and offers a description of our implementation and
experiments. The paper concludes in Section 6 with a summary of the results and a discussion on
future work.

1.1 Related Work

Most existing annotation systems focus on text and HTML documents (e.g., Annotea [16]) and are
often specialized to support annotations for a particular kind of data, e.g., genomic sequences [12,
7]. Research on these systems has been focused on scalability, distributive support of annotations,
and other features.

1Piet Mondrian: Dutch painter whose paintings mainly consist of colored blocks.
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In the relational setting, Bhagwat et al. [6] recently proposed an annotation management
system for relational databases in which relational data can be annotated. More specifically, they
store annotations in special attributes and extend the Select-Project-Join-Union fragment of SQL
with a PROPAGATE clause which allows the user to specify how annotations should propagate.
The focus is thus on the propagation of the annotations through queries, and the issue of how to
query these annotations is not addressed. Also, only single values are annotated.

A more extensive literature exists regarding the computation of provenance. Annotations
provide a solid way of keeping track of provenance. Indeed, computing provenance by forwarding
annotations along data transformations has been proposed in various forms [19, 5, 16, 6, 18]. The
data provenance problem without the use of annotation is studied by Cui et. al [11], Buneman
et. al [9, 10], and Widom [20]. In this work, a “reverse” query is generated to compute data
provenance. In this paper, we will not address the issue of provenance. Instead we provide a
foundation on which both provenance information and other forms of annotations can be managed.

An unrelated work (although the title suggests otherwise) regards “Colorful XML” [15]. In
this paper a new XML data model, referred to as multi-colored trees, is introduced. Colors are
used to add semantic structure over the nodes in the XML data.

2 Colors and blocks

As already mentioned, our aim is to provide a mechanism for annotating groups of attribute values.
We refer to such a group of attribute values as a block. As an example, in Figure 2, there are six
different blocks, and each block has an associated annotation. In the remainder of the paper, for
ease of presentation and notational convenience, we assume that each annotation is represented
by a color. Therefore, instead of talking about annotations and annotated blocks we talk about
colors and colored blocks, respectively. Similarly, we talk about colored databases (databases that
are annotated) and color queries (queries on annotated databases) that are written using a color
algebra (an algebra that accounts for annotations).

2.1 Coloring notations and properties

We first describe the data model used in this paper. Let D be a standard relational database
consisting of the relations R1, . . . , Rk. For each relation Ri, we denote its set of attributes by
sort(Ri), while we use ri to denote an instance of the relation. We use upper-case letters early
in the alphabet (A, B, . . .) to denote attribute names while upper-case letters late in the alphabet
(X, Y, . . .) are used to denote sets of attributes. Accordingly, lower-case letters early in the alphabet
(a, b, . . .) are used to denote attribute values, while those late in the alphabet (x, y, . . .) are used
to denote sets of attributes values. Finally, C denotes a set of colors.

Let r be an instance of relation R and let t be a tuple in r. The annotation, or coloring, of
a tuple t is performed through a coloring function χ. Function χ accepts as input a tuple t and
a non-empty set of attributes Y ⊆ sort(R) and assigns a set of colors to the values in t[Y ]. For
a tuple t, the triplet (t, Y, χ(t, Y )) defines a color block which consists of the attribute values in
t[Y ] along with their assigned colors. If χ(t, Y ) = ∅, then the values in t[Y ] are not within a color
block.

Example 1. Consider the relation in Figure 2. Then, the coloring of each tuple in the relation
is expressed through the following coloring function χ (where, ti is the ith tuple in the relation):

χ(t1, {pid, gid}) = {John} χ(t1, {gid, sid})= {Mary}
χ(t2, {pid, gid}) = {John, Mary} χ(t2, {gid, sid})= {John}

χ(t3, {gid, sid})= {Mary}
χ(t4, {pid, gid, sid}) = {Peter}

Note that χ(ti, Y ) is equal to the empty set, for every tuple ti and every set of attributes Y ,
other than the ones mentioned above.
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Color blocks permit the specification of annotations with diverse semantics. As an example,
consider Figure 2. A color could represent a curator who has approved or verified an association of
values. Alternatively, a color may indicate just the provenance of values. We present below a set of
properties of colors and blocks that can be used to capture such diverse semantics. Furthermore,
we use these properties while answering queries over the colored databases.
Block overlapping We allow an attribute value t[A], A ∈ sort(R) to participate in more than
one color blocks. Intuitively, this property allows a value to participate in multiple independent
annotated associations. This is the case in Figure 2 where, in the first tuple, the gene with GDB id
120231 is colored twice, once because it produces the Swissprot protein P21359 and once because
it is associated to the PIR protein sequence with id I78852.
Inheritance We say that a coloring function is inheriting if for every color block (t, Y, χ(t, Y )),
and every set of attributes Y ′ ⊆ Y , the following blocks are implied:

(t, Y ′, χ(t, Y ′)) is a block with χ(t, Y ′) ⊇ χ(t, Y )

Intuitively, in certain applications, we want to color a set of values by placing all of them within
a block and, at the same time, we want any possible subsets of these values to inherit this color.
For example, assume that the annotations in Figure 2 denote that certain genes and proteins
are mentioned in a publication whose author name appears in the annotation. Then, we expect
that the annotation is also inherited by any subset of these values since any such subset is in the
publication.

We say that a coloring function is non-inheriting if no blocks are implied apart from the ones
explicitly defined by the function. As we discussed in the introduction, we often annotate values
because they have a property as a set, while no subset of these values has the property. As an
example, consider the annotations in Figure 2 which represent names of curators who believe that
certain genes and proteins are related. Remember that these annotations are on the relationship
between genes and proteins and not the individual values.
Transitivity We say that a coloring function χ is transitive if for any two blocks (t, X, χ(t, X)) and
(t, Y, χ(t, Y )), with χ(t, X)∩χ(t, Y ) 6= ∅, the following color block exists (t, X∪Y, χ(t, X)∩χ(t, Y )).
Intuitively, a transitive function merges blocks whose sets of colors overlap. This might be desirable
when, for example, we have a coloring function such as the one of Figure 2, which expresses the
belief of a curator in an association. In the second tuple of the figure, curator John has validated
the association of both the pid A45770 with the gid 120232, and the association of this gid with
sid P35240. If we assume a transitive coloring function, then a color block with all three values is
implied whose semantics is that John has validated the association of all the values in the tuple.

Given the introduced notation and properties, in the next section, we present an algebra that
can be used to query colored databases. The algebra includes standard operators like selection
(σ), projection (π), product (×), renaming (ρ) and union (∪), along with a set of operators that
are particular to the manipulation of colors and colored blocks.

3 Color algebra (CA)

In what follows, we introduce the set of operators of the color algebra (CA). We start with two
basic operators through which we can refer relations in our database and introduce new constants.

Input relation: The operator R accepts as input an instance 〈r, χ〉 and returns 〈r, χ〉, if r is an
instance of R, and the empty relation otherwise.

Unary singleton constant : We allow for the creation of (un-)annotated single values. Specif-
ically, the operator (A, a) takes as input any instance 〈r, χ〉 and returns the instance of sort {A}
containing a unique element a. The operator (A, a, c) takes as input any instance 〈r, χ〉 and re-
turns the instance of sort {A} containing a unique element a which is in a block of color c (or
χ(a, A) = {c}).
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Figure 3: The projection operators

Projection : We define the projection πA1···Ak
as the operator which takes as input any instance

〈r, χ〉 of sort containing {A1, . . . , Ak} and returns the instance 〈r′, χ′〉 of sort {A1, . . . , Ak} such
that

r′ = {t[A1, . . . , Ak] | t ∈ r} (normal projection)

and for any t ∈ r, and any Y ⊆ {A1, . . . , Ak},

χ′(t[A1, . . . , Ak], Y ) =
⋃

Z

χ(t, Y ∪ Z),

where Z ranges over all subsets of sort(R) \ {A1, . . . , Ak}. Our projection operator treats the
coloring function as an inheriting one since it projects the blocks in each tuple of r to the projected
attributes. In the end of this section, we show how to define an alternative projection operator
that treats the coloring function as non-inheriting.

Example 2. Consider again the relation 〈r, χ〉 shown in Figure 2. Then, expression πpid,gid(r)
returns the relation r′ shown in Figure 3(a). Notice that in tuples t1, t2 and t3, the projection
introduces blocks consisting only of attribute {gid}. Furthermore, in tuple t4, it introduces a block
consisting of attributes {pid,gid}.

The projection operator uses a schema constraint T to remove the parts of a relational instance
which are uninteresting, or irrelevant, for the task at hand. It proves useful to offer a corresponding
operator that works on the annotation level by removing annotations that do not satisfy certain
schema constraints.

Block Projection : We offer two types of block projection that allow for the projection of blocks
based on whether blocks contain or are contained in a specified set of attributes. Specifically,
the L-type (Lower) block projection operator ΠL

A1,...,Ak
takes as input an instance 〈r, χ〉 of sort

containing {A1, . . . , Ak}, and returns the instance 〈r′, χ′〉 of the same sort defined by

r′ = {t | t ∈ r and there exists a block(t, Y, χ(t, Y )) with A1, . . . , Ak ⊆ Y }

and for any t ∈ r′, and any set of attributes Y ⊆ sort(R′),

χ′(t, Y ) =

{

χ(t, Y ) if {A1, . . . , Ak} ⊆ Y , χ(t, Y ) 6= ∅;

∅ otherwise.

The U-type (Upper) projection operator ΠU
A1,...,Aℓ

is defined similarly, except that r′ = r and in

the definition of χ′(t, Y ), Y ⊆ {A1, . . . , Ak} must hold. We also define ΠL
∅ = Id, while ΠU

∅ only
returns the unannotated tuples.

Example 3. Consider the relation 〈r, χ〉 in Figure 3(a). Assume that we want to find all the
tuples with at least one annotation that involves the pid attribute. Then, we can use the expression
ΠL

pid(r). The expression returns the pair 〈r′, χ′〉, shown in Figure 3(b). Notice that tuples that do
not have an annotation involving the pid attribute, and blocks that do not annotate the attribute,
are removed.
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Figure 4: The selection and union operators

On the other hand, we may want all the tuples of relation r that might have an annotation
involving only the gid attribute. Then, the expression ΠU

gid(r) finds all such tuples. The resulting

relation is shown in Figure 3(c). Notice that while the ΠL projects out unannotated tuples, the
ΠU operator preserves them. This is because the former operator requires the existence of blocks,
while the latter only specifies a maximum set of attributes that a block can include.

Selection : The operator σA=a takes as input any instance 〈r, χ〉 and returns the instance 〈r′, χ′〉
of the same sort defined by r′ = {t | t ∈ r, t[A] = a} and χ′ is the restriction of χ to r′.

The selection operator σA=B is defined over any instance 〈r, χ〉 of sort containing {A, B} and
returns the instance 〈r′, χ′〉 of the same sort defined by r′ = {t | t ∈ r, t[A] = t[B]} and where χ′

performs a similar selection on the blocks. More specifically, for any t ∈ r′, and any Y ⊆ sort(R′)
we have that

χ′(t, Y ) =

{

χ(t, Y ) A, B 6∈ Y ;

χ(t, Y ) ∩ β(t, A) ∩ β(t, B) otherwise.

where β(t, A) (resp. β(t, B)) is the set of colors of all blocks in t containing attribute A (resp. B).
So, for tuples that satisfy the selection condition at the value level, only those blocks containing
A (resp. B) for which there exists a block, of the same color, containing B (resp. A), are selected.
If no such blocks exist, the selection attributes become unannotated. Thus, selection requires an
agreement on both the data and block level, as one of our following examples illustrates (Example
5).

Similar to the selection operator, which can be used to identify tuples that have a particular
data value, it is desirable to offer a block selection operator to identify blocks that have a specific
color.

Block Selection : The operator Σc, where c ∈ C, takes as input any instance 〈r, χ〉 and returns
the instance 〈r′, χ′〉 of the same sort defined by

r′ = {t | t ∈ r such that there exists a block in t of color c},

and for any t ∈ r′ and any set of attributes Y ⊆ sort(R), χ′(t, Y ) = χ(t, Y ) ∩ {c}.

Union : The union operator takes as input any two instances 〈r, χr〉 and 〈s, χs〉, of the same sort,
and returns the instance 〈r′, χ′〉 of the same sort defined by r′ = s ∪ r (set union) and for any
t ∈ r′, and any set of attributes Y ⊆ sort(R′), we have that χ′(t, Y ) = χr(t, Y ) ∪ χs(t, Y ).

Example 4. Consider again relation 〈r, χ〉 in Figure 2. Assume that we want to find all the tuples
that have a block annotated by Mary, or concern the protein with sid P08138. Also, assume that
we are only interested in keeping the {gid, sid} attributes from these tuples. Then, the expression

πgid,sid((ΣMary(r)) ∪ (σsid=“P08138”(r)))
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returns the desired result. Figure 4 shows both the intermediate results for each part of the union,
and the final result of the query. Notice that the block selection operator maintains only the tuples
that have at least one annotation from Mary. At the same time, from these tuples, the operator
keeps only the blocks belonging to Mary. On the other hand, a selection predicate of the form
A = a focuses on values without altering the block structure. Our next example shows that this is
not the case for selections of the form A = B.

The next two three operators are of particular importance both for the completeness of our
algebra and because, along with the selection operator, they can be used to define the color join.

Product : The product operator × takes as input any two instances 〈r, χr〉 and 〈s, χs〉 of disjoint
sorts and returns the instance 〈r′, χ′〉 of sort R′ = sort(R)∪ sort(S) defined by r′ = r × s (normal
product) and for any tuple t ∈ r′ and set of attributes Y ⊆ sort(R′),

χ′(t, Y ) =











χr(πsort(R)(t), Y ) if Y ⊆ sort(R);

χs(πsort(S)(t), Y ) if Y ⊆ sort(S);

∅ otherwise.

Merge: Assuming a transitive coloring function, a natural operation on blocks is merging. The
operator mergeY,Z , with Y, Z being sets of attributes such that Y ∩Z = ∅, takes as input instances
〈r, χ〉 of sort sort(R) containing Y ∪ Z and returns the instance 〈r′, χ′〉 of the same sort defined
by r′ = r and for any t ∈ r′ and any set of attributes X ⊆ sort(R),

χ′(t, X) = χ(t, X1) ∩ χ(t, X2),

where X = X1 ∪ X2, X1 ⊆ Y , X2 ⊆ Z and χ(t, X) = ∅. Intuitively, the merge operator considers
each tuple t and it identifies pairs of blocks that are contained in Y and Z, respectively, and have
the same color. Then, it replaces two equi-colored blocks with a new block that is the result of
their merging. Blocks that are contained in Y and Z but cannot be merged, are dropped, as are
the blocks not contained in Y and Z.
Renaming : Let f be an attribute renaming of a finite set of attributes R such that f(A) 6= A.
The renaming operator δf accepts as input an instance 〈r, χ〉 of sort R, and returns the instance
〈r′, χ′〉 of sort f(R) defined by

r′ = {t′ | t ∈ r and ∀A ∈ R, t(A) = t′(f(A))},

Furthermore, for any t′ ∈ r′ and any set of attributes Y ′ ⊆ sort(R′), χ′(t′, Y ′) = χ(t, Y ), where
Y = {A1, . . . , Ak} and f(Ai) = A′

i and t′[f(Ai)] = t[Ai] for i ∈ [1, k].

Example 5. Consider relation 〈r, χ〉 from Figure 3(b) and relation 〈r′, χ′〉 from Figure 4(c) (the
relations are copied in Figures 5(a) and (b) for convenience). Figure 5(c) shows the relation that
results from taking the product of r and r′ and applying an equality condition on the gid attribute,
that is,

σgid=gid’(r × δf (r′))

where f is a renaming function such that f(gid) = gid′ and f(sid) = sid′. Notice that the selection
only selects those blocks containing gid which have a equi-colored block containing gid’, and vice
versa. If no such blocks exists, as is the case for gid 120231, the resulting tuple is unannotated.

If we use projection to remove one of the two gid attributes, we end up with a different block
structure, depending on which attribute we project out. The two situations are depicted in Figures
6(a) and (b). We can avoid such an undesirable situation by using the merge{pig, gid},{gid’, sid’}

operator. After the merge operator is applied, irrespectively of which of the two attributes is
projected out, the resulting relation is the same. This is shown in Figure 6(c).

Recolor : The recolor operator ρ takes as input any two instances 〈s, χs〉 and 〈r, χr〉 and returns
the instance 〈r′, χ′〉 of sort sort(R) defined by r′ = r and for any tuple t ∈ r′ and set of attributes
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( a ) A r e l a t i o n ( b ) A n o t h e r r e l a t i o n
( c ) C a r t e s i a n � p r o d u c t f o l l o w e d b y s e l e c t i o n

Figure 5: Selection and product operators

1 2 0 2 3 2A 4 5 7 7 0 1 2 0 2 3 1I 7 8 8 5 2p i d g i d1 2 0 2 3 4A 2 5 2 1 8 s i d 'P 2 1 3 5 9P 3 5 2 4 0P 0 8 1 3 8( a ) P r o j e c t i n g o u t g i d ' A 4 5 7 7 0I 7 8 8 5 2p i dA 2 5 2 1 8 1 2 0 2 3 1g i d ' s i d 'P 2 1 3 5 91 2 0 2 3 2 P 3 5 2 4 01 2 0 2 3 4 P 0 8 1 3 8
( c ) P r o j e c t i o n a f t e r t h e m e r g e o p e r a t o r i s a p p l i e d

( b ) P r o j e c t i n g o u t g i dA 4 5 7 7 0I 7 8 8 5 2p i dA 2 5 2 1 8 1 2 0 2 3 1g i d ' s i d 'P 2 1 3 5 91 2 0 2 3 2 P 3 5 2 4 01 2 0 2 3 4 P 0 8 1 3 8
Figure 6: The merge operator

9



Y ⊆ sort(R′),

χ′(t, Y ) =

{

getcolor(〈s, χs〉) if χr(t, Y ) 6= ∅;

∅ otherwise.

Here getcolor(〈s, χs〉) gets all the colors of all the blocks in 〈s, χs〉.

This concludes the introduction of the basic operators of the positive color algebra (CA). Since
the result of each operator on a colored relation is again a colored relation, we can compose all
operators. Note that our algebra does not account for negation. Its consideration is part of our
future work.

Definition 1. The (positive) color algebra (CA) consist of all expressions obtained by composing
a finite number of the operators introduced above.

Before we characterize the expressive power of this algebra, we make the following observations.
The first observation concerns the color queries that are written using the color operators that
have a relational algebra counter-part (e.g. selection, projection, product). Each such color query
results in the same set of tuples as we would get by applying the relational algebra counterpart on
an unannotated database. The difference between the two queries is the presence of blocks. Thus,
by using the CA algebra, we don’t lose any data.

Our second observation relates to our discussion on annotation properties. By default, we
offer a projection operator that treats a coloring function as inheriting and a merge operator that
assumes a transitive one. To offer additional flexibility, we choose not to encode these properties
in each individual block. Instead, at query time, we allow each user to decide how she wants
to interpret the coloring functions by applying appropriate operators. E.g., a projection which
treats a coloring function as non-inheriting can be easily expressed in CA. Indeed, the expression
πA1,··· ,Ak

(ΠU
A1,··· ,Ak

(r)) does exactly this.
Our final observation is that we can define the join in CA as well. The join identifies attributes

based on both their values and block structure and merges the “common” blocks. More specifically,
we define 〈r, χr〉 ⊲⊳ 〈s, χs〉 by the expression (assuming that Ai and Aj are the attributes to join
on)

πsort(r)∪sort(s)\{Aj}

(

mergesort(r),sort(s)(Π
L
Ai

(σAi=Aj
(r × s)) ∪ (ΠL

Aj
σAi=Aj

(r × s)))
)

As noted in Example 5, we obtain an equivalent expression when projection includes Aj instead
of Ai.

4 Connection with relational model

4.1 Relational representation

In this section, we provide a relational representation of colored databases. In what follows, we
define a mapping rep from colored databases to a special type of relational databases. Let CD
denote the class of colored databases, and let S denote the image set rep(CD) in the class of all
relational databases. We also define the inverse mapping rep

−1, but only on S.
Let 〈r, χ〉 be a colored relation instance over R. Let sort(R) = {A1, . . . , Ak}. We define

the relation S of sort {A1, . . . , Ak, B1, . . . , Bk, γ}, where the attributes Ai are of type data, the
attributes Bi are of type Boolean, and the γ attribute is of type color. Moreover, we assume that
there is a bijection between the data and Boolean attributes. We denote by assoc(Ai, Bi) that Ai

are Bi are mapped onto each other by this bijection. The Boolean attributes are used to determine
which of the corresponding data attributes belong to a block. We denote the class of relational
databases satisfying the above schema constraints by S.

For each annotated tuple t ∈ r and each Y ⊆ sort(R) such that χ(t, Y ) 6= ∅, we populate the
relation rep(〈r, χ〉) by adding to it the set of tuples

{(t, B1, . . . , Bk, c) | c ∈ χ(t, Y )},
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where Bi = 1 if Ai ∈ Y and assoc(Ai, Bi) holds, and bi = 0 otherwise. Furthermore, for each
tuple t ∈ r, we insert an unannotated tuple (t, 0, . . . , 0, c) in the representation, where c is some
arbitrary color. This concludes the definition of mapping rep on single colored relations. The
extension to colored databases, i.e., a set of colored relations, is defined analogously.

Concerning rep
−1, if we are given a relational instance s in class S, whose schema is {A1,

. . . , Ak, B1, . . . , Bk, γ}, we can easily convert s back to a colored relation rep
−1(〈r, χ〉). Due to

lack of space, we omit the details of how this is achieved.

Example 6. Consider again the colored relation 〈r, χ〉 given in Figure 2. The following relation
contains the three tuples in rep(〈r, χ〉) which correspond to the representation of the first tuple in
〈r, χ〉. We assume that assoc(pid, bpid), assoc(gid, bgid), and assoc(sid, bsid).

pid gid sid bpid bgid bsid γ

I78852 120231 P21359 0 0 0 c

I78852 120231 P21359 1 1 0 John

I78852 120231 P21359 0 1 1 Mary

where c is arbitrary color. The other tuples in rep(〈r, χ〉) are obtained similarly.

A few words about the choice of representation. First, we note that we can normalize our rep-
resentation so that the values of a tuple are not repeated for every block. Second, our experience
shows that our representation offers significant savings, in terms of space, over alternative repre-
sentations. Consider, for example, a representation where a column is created for each element in
the power-set of the set of attributes of a relation. Assuming single-colored blocks, for each block
in an annotated tuple, its color becomes the value of the column that corresponds to the set of
attributes in the block. Such a representation has a schema which is exponential, in the size of
the schema of the annotated relation, and it requires one tuple for each annotated tuple in the
relation. Our representation has a schema of linear size but it requires one tuple for each color
of each block. Thus, exponential number of tuples might be necessary to represent an annotated
tuple. However, in our representation, apart from the unannotated tuples, a tuple is created only
if a block exists. In the alternative representation, we have a column for each set of attributes,
irrespectively of whether a block for this set exists, or not. Furthermore, our encoding of blocks
through Boolean attributes offers additional space savings.

4.2 Expressiveness

The relational representation of colored databases suggests another candidate query language,
namely the normal relational algebra on this representation and specifically the fragment consisting
of the union of conjunctive queries. In this section, we establish a link between the CA algebra
and this fragment of the normal relational algebra. In what follows, we only consider positive
algebra queries.

4.2.1 Colored relational algebra (CRA)

It is clear that not every relational algebra query on a representation of a colored relation results
in a representation of a colored relation again. For example, any projection consisting only of data
attributes, does not correspond to a colored database. It would therefore be desirable to identify
the class of algebra expressions which, when applied to any representation of a colored relation,
results in a representation of a colored relation.

Recall the S is the set of relational databases which represent a colored database through the
rep mapping.

Definition 2. A positive relational algebra query Q is colored if for every relational database
D ∈ S, the query result Q(D) ∈ S as well.
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We identify the following three necessary and sufficient syntactic conditions for a positive
relational algebra query to be colored. Without loss of generality we may assume that such
query is given in normal form [4]. More specifically it is the union of conjunctive queries of
the form πXσF (R1 × · · · × Rk). Clearly, a positive query is colored if it is the union of colored
conjunctive queries. It is easily verified that a conjunctive query is colored iff it satisfies the
following three properties: (i) the projection must contain a single color attribute, (ii) since each
data attribute corresponds to a unique Boolean attribute (and vice versa), queries should “respect”
this relationship. In other words, if a data attribute is part of a query result schema, then the
associated Boolean attribute should also be (and vice versa); and (iii) if some new data attributes
are introduced which are in the schema of the query result, also associated new Boolean attribute
should be introduced (and vice versa).

The above characterization is simple and provides an easy test (which runs in linear time in
the size of the expression) to check whether a query, written as a union of conjunctive queries,
is colored. However, such a query can perform arbitrary operations on our representation and
ignores the specific semantics of colors and blocks. Our algebra discourages users from expressing
such color and block-agnostic queries.

Definition 3. The colored relational algebra (CRA) consists of the class of colored positive rela-
tional algebra queries.

4.2.2 Color algebra vs Color relational algebra

The color algebra (CA) and the class of color relational algebra (CRA) queries are closely con-
nected. First of all, there exists a translation of any CA query into a CRA query. More specifically,

Theorem 1 (Soundness). For every colored database 〈D, χ〉 and every CA expression Q, there
exists a color relational algebra (CRA) expression P such that

rep(Q(〈D, χ〉)) = P (rep(〈D, χ〉)).

Moreover, given the CA expression Q, the CRA expression P is of polynomial size, to that of Q.

Proof: The proof consists of translating each operator in CA into a CRA query. (see [14] for
the translation rules) .

The previous theorem gives us a way of implementing the CA on top of existing relational
DBMS. Our colored DBMS, represents colored databases as described in Section 4 and when
a CA query is issued, it translates it first into the corresponding CRA query and then to the
equivalent SQL query. Then, the SQL query is executed in a standard relational DBMS.

Our theoretical result is that the CA has the same functionality (expressive power) as the
CRA. More specifically:

Theorem 2 (Completeness). For every relational database D in S, and every color relational
algebra expression P , there exists a color algebra expression Q such that

rep
−1(P (D)) = Q(rep−1(D)).

Proof: The proof consists of a translation of any CRA query into a CA query and relies heavily
on the fact that CRA queries only have a single color attribute in their projection. See [14] for
details.

Without providing a formal proof, we claim that the set of introduced CA operators is minimal.
All operators are very natural and hence reducing (if possible) the set of operators would only
result in more complex and artificial queries for the user.

5 The MONDRIAN System

In this section, we describe the implementation of the MONDRIAN annotation system. MON-
DRIAN is implemented on top of the MySQL relational DBMS. The MySQL server is running on
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a linux-based Pentium 4 PC (CPU 1.8GHz, 2GB RAM). On top of the relational database, we
have implemented a module that accepts as input CA written queries. The module is responsible
for translating each such query first to its equivalent CRA query and then to an equivalent SQL
query. The resulting SQL query is then sent to the underlying database and is executed against
the representation of an annotated database.

Our experiments were conducted using real biological data from the Swissprot [3] database.
The relational representation of the Swissprot data was based on the schema of the USCS Genome
Browser database [12]. From this relational representation, we extracted two relations for our
experiments, namely, relation Protein containing 200,000 protein tuples (560MB in size), and
relation Public that contained four million tuples that concern publications related to proteins
(750MB in size). Relation Protein has eight attributes in its schema, while relation Public has five.
We used the above two relations as pools from which we generated three different experimental
data sets. Each set contained five unannotated relations for each of the two pools. The sizes
of these five relations varied from 10,000 to 50,000 tuples (in 10,000 tuple increments). Thus,
the total number of created relations was 30. Each experimental data set allowed for executing
experiments with different relation sizes. Different data sets were used to avoid any possible bias
in the measurements due to characteristics of the underlying data. Thus, all reported times are
averaged over executions involving all three data sets.

A second module of the implementation was responsible for annotating unannotated relations.
The annotation process is based on a number of parameters whose values are user specified.
Our experience with annotations shows that there are three parameters we should consider while
annotating databases. The first parameter, called MaxNo, limits the number of blocks that can
appear in each annotated tuple. The user specifies a number for MaxNo and the system randomly
decides, for each tuple, to generate a number of blocks that is less than, or equal to, MaxNo. The
second parameter, called AvgNo, specifies the average size of each generated block. Again, the
user specifies a number that is less than, or equal to, the number of attributes in the relation,
and the system generates blocks that, in majority, are of size AvgNo. The last parameter is the
cardinality of C (the number of colors allowed in the database). In general, C can vary between
one (all blocks have the same color) and the number of blocks in the relation (each block has its
own color).

In the above setting, we conducted two sets of experiments.
(1): The first set of experiments compared the extra cost of executing CA queries over annotated
databases versus the cost of executing equivalent CRA queries over the corresponding unannotated
databases.
(2): The second set of experiments investigated how the described annotation parameters influ-
ence the evaluation cost of CA queries.
All reported times are averaged over five runs of each experiment, over each of the different sets of
(un)annotated relation instances (to rule out CPU interference and any bias from using a single
instance). For annotated relations, their size is reported as the number of annotated tuples and
not the number of representation tuples. The cumulative size of the (un)annotated data sets used
in these experiments is 26GB.

5.1 Costs of using colors and blocks

The objective of this experiment is to investigate the added cost we have to pay, in terms of
time, due to the annotation of relational databases and the evaluation of color queries (instead
of regular relational algebra queries over unannotated databases). We do this by comparing the
evaluation cost of operators that are common in the two algebras. The experiment has two parts.
Initially, we considered three types of queries, all written in relational algebra, where each type
uses one of the operators of selection, projection and join. For example, one query projects on the
id and description of a protein, while another selected only proteins of tomatoes. For the join,
we used a query that joined Protein relation with Public relation instances to get proteins along
with their associated publications. For each query type, we measured the evaluation time over our
experimental data sets.
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Figure 7: Color vs. normal algebra

In the second part, we annotated the relations used in the first part. While generating the
annotated relations, we used what we consider to be representative parameter values. We as-
sumed blocks with MaxNo equal to three, since blocks are expected to involve a small number of
attributes. We assumed that AvgNo is also equal to three. Furthermore, we assumed that C is
100. Our choice on number of colors is influenced by the fact that different colors often represent
different curators. In a scientific database, we don’t expect that this number will be greater than
100. Our assumption is validated by the fact that the number of researchers currently curating
Swissprot, one of the most heavily curated databases, is close to 40.

Given the annotated relations, we considered queries that, syntactically, are identical to the
queries in the first part of the experiment. However, instead of the normal relational algebra
operators, the queries used their color counterparts, i.e., they contained a CA projection instead
of a projection, a CA selection instead of a selection and a color join instead of a normal join (note
that a color join can be expressed through the select, merge and project CA operators). So, for
example, the query that projects on the id and description of proteins was translated to a query
that projects on the data and blocks of these two attributes. Given the queries, we measured
their evaluation time over the annotated databases, and we compared these times with the times
collected from the first part.

Figure 7 shows the results of this comparison for various relation sizes. Next to the cost of each
relational operator, we show the cost of its color counter-part. In general, each color operator costs
three times as much as its relational counterpart. There are two main reasons for this behavior.
First, remember that color operators are actually applied on the representation of the annotated
relation. This representation is bigger in size than the corresponding unannotated relation since it
includes one tuple for each color of each block. With MaxNo equal to three, annotating a relation
with 10,000 tuples results in a relation that is close to 30,000 tuples (assuming single colored
blocks). Thus, while a normal projection is applied on 10,000 tuples, a color projection is actually
applied on 30,000. Another reason for the extra cost is that color operators must also consider,
for each attribute, the corresponding Boolean attributes and operate on them.

5.2 Query evaluation cost parameters

As the number of blocks and colors vary in an annotated database, we expect that query evaluation
will be affected. In what follows, we vary the three annotation parameters and we investigate how
exactly these parameters influence color query evaluation.

During these experiments, we considered three different types of color queries. The first type
included color queries that involved only the selection operator where the selection was on a data
value. Note that the size of the result set of such queries is expected to be independent of blocks.
The second type of color queries involved operators that are mostly block-dependent, namely,
the operators of block projection and block selection. Finally, the third type of queries involved
both block-independent and block-dependent operators. We used three different parameter con-
figurations to annotate relations. For each resulting annotated relation, in each configuration, we
executed queries of all three types and measured the corresponding evaluation times. In what
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Figure 8: Varying the maximum number of blocks

follows, we present each parameter configuration and we review our key findings.
Configuration 1 : Here, we investigated the influence of the MaxNo parameter on query eval-
uation time. In more detail, we annotated the relations in our experimental data sets once for
each value of MaxNo between one and five. The AvgNo parameter was set to three and the C
was 100. In Figure 8, we show the running times for the first and second type of queries, for the
different relation sizes (the third type exhibits the same running time trends as the second type).
The main conclusion from these experiments is that the evaluation cost of most CA operators,
with the exception of selections on data values, is heavily influenced by the maximum number of
blocks per tuple. This is because this number increases the number of tuples in the underlying
representation. The trend shown in Figure 8(b) is explained as follows. In the representation,
there is one tuple for each color of each block. Assuming single-colored blocks, for an annotated
relation with X tuples, there are (MaxNo + 1) × X representation tuples. As the figure shows,
we expect sharp increases in evaluation time, when both MaxNo and X increase. In spite of the
increase representation size, operations on the data side, like selections on data values, are not
influenced by the variance of MaxNo, as Figure 8(a) illustrates.
Configuration 2 : For our second configuration, we annotated relations of various sizes by vary-
ing, this time, the AvgNo parameter between the values of one and five. As for the remaining
parameters, MaxNo was set to three and C to 100. Again, we executed color queries from all the
types and we recorded their evaluation times. Our experiments showed that varying the AvgNo
parameter had negligible effects on the running times of various queries, for a fixed number of
annotated tuples. To a large extent, this is to be expected since any variance of AvgNo does
not influence the number of tuples in the underlying representation. As AvgNo increases, the
only change, representation-wise, is that more Boolean attributes are set to 1, instead of 0. It is
interesting to note the interaction between the value of AvgNo and the size of the result of block
projections. As an example, in Figure 9 we show that, for a relation of fixed size, as we increase
AvgNo we decrease the number of tuples in the result size of a U-type block projection on three
attributes. This is because as we increase AvgNo, increasingly less blocks are contained within the
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projected attribute set.
Configuration 3 : Our last configuration considered annotated relations where both MaxNo and
AvgNo were set to three. Here, five different values where considered for C, namely, 1, 10, 100,
1000 and as many colors as there are blocks. Our experiments showed that the parameter has
negligible effects on the evaluation times of algebra operators (since again availability of colors
does not affect the representation size) with the exception of the block selection operator. As
Figure 10(a) shows, when C is 10, there is a sharp increase on the evaluation time of the operator.
The reason for this is shown in Figure 10(b). With less available colors, there is a large number
of blocks sharing a color.

6 Conclusions and future work

We have brought the annotating of associations within the realm of relational databases through
colored blocks. A query language (color algebra), specifically aimed to query annotated (colored)
databases was introduced and its expresiveness was characterized.

The usefulness of the color algebra was illustrated through a variety of examples. The Mondrian
annotation management system was conceived and the experiments showed its feasiblity and the
effect on the query evaluation of a number of parameters.

This work is only the beginning. We believe that colored databases provide the right framework
to answer data provenance questions. Future work will be directed towards showing this. Also,
special cases studies obtained by constraining the allowed block structure on a colored database
will be performed. Moreover, by attaching a specific semantics to the colored blocks it is most like
that MONDRIAN can be applied to a number of settings outside the classical annotation world
(e.g., security, access control). Finally, an interesting topic of future work is the extension of our
algebra to account for negation.
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Appendix

Proof of Theorem 1

We have to prove that for any colored database 〈D, χ〉 and any CRA expression Q, there exists a
colored relational algebra expression P such that

rep(Q(〈D, χ〉)) = P (rep(〈D, χ〉)).

Moreover, given Q, P can be obtained in time polynomial in the size of Q.
We will treat each operator in CRA seperately: If R is a relation name of a colored relation,

then we abuse notation and denote by R also the corresponding relation name of its relational
representation.

Projection If Q ≡ πA1,...,Ak
(R), then P ≡ πA1,...,Ak,B1,...,Bk,γ(R).

Selection If Q ≡ σAi=a(R), then P ≡ σAi=a(R). If Q ≡ σAi=Aj
(R), then P consists of the union

of four queries, one which selects all blocks not containing Ai and Aj , one which selects all blocks
containing Ai and Aj , one which selects all blocks containing Ai but not Aj and for which there
exists an equi-colored block (in the same tuple) containing Aj but not Ai, and one which is
similar to the previous one but with the roles of Ai and Aj interchanged. More formally,

P ≡ σBi=0∧Bj=0(R) ∪ σBi=1∧Bj=1(R) ∪

πsort(R)(σBi=1∧Bj=0(R) ⊲⊳ δf (σBi=0∧Bj=1(R)) ∪

πδf (sort(R))(σBi=1∧Bj=0(R) ⊲⊳ δf (σBi=0∧Bj=1(R)),

where f is a renaming function renaming only the boolean attributes.

Product If Q ≡ R×S, then P is the union of two queries. One which joins the two relations (on
the data part) and extends all blocks in an instance r with zeros in the attributes of an instance
s, and a similar one where the roles of r and s are interchanged. More formally,

P ≡ R ⊲⊳ πA1,...,Ak
(〈s, χs〉) ⊲⊳ (B1, 0) ⊲⊳ · · · ⊲⊳ (Bℓ, 0))∪S ⊲⊳ (πA′

1,...,A′
m

(R) ⊲⊳ (B′
1, 0) ⊲⊳ · · · ⊲⊳ (B′

n, 0)),

where Ai (resp A′
i) are the data attributes of S (resp. R), and Bi (resp. B′

i) are the boolean
attributes of S (resp. R). Recall that the sorts of R and S are assumed to be disjoint.

Renaming if Q ≡ δf (R), then P ≡ δf (R).

Block projection If Q ≡ ΠL
Ai

(R), then P ≡ σBi=1(R). Similarly, if Q ≡ ΠU
A1,...,Ak

(R), then

P ≡ σV

ℓ
j=1 B′

j=0(R),

where {B′
1, . . . , B

′
ℓ} = sort(R) \ {B1, . . . , Bk}.

Color selection If Q ≡ Σc(R), then P ≡
⋃

Ai
σBi=1∧γ=c(R), where Ai are the data attributes

of R.

Merge If Q ≡ mergeY,Z(R), then

P ≡ πsort(R)\Z∪f(Z)

(

σV

Ai∈sort(R)\Y Bi=0(R) ⊲⊳ δf (σV

Ai∈sort(R)\Z Bi=0(R))
)

,

where f is a renaming of the boolean attributes of sort(R).

Recolor If Q ≡ recolorR(S), then

P ≡ πsort(S)\{γ}(S) ⊲⊳ πγ(R).

Union If Q ≡ R ∪ S, then P ≡ R ∪ S.

Since all translations are unions of conjunctive queries and always result in a colored relational
database, so are all compositions of these queries. As a result we can easily obtain a translation
of an arbitrary CRA query into an equivalent colored relational algebra query on their respective
representations.
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Proof of Theorem 2

We have to prove that for every colored relational algebra query P , there exists an expression Q
in CRA such that for any colored relational database D, we have that

P (D) = rep(Q(rep−1(D))).

It is a well-known fact [4] any expression positive query P can be written as the (finite) union
of expressions of the form

πX1,...,Xk
σF ((Y1, a1) ⊲⊳ · · · ⊲⊳ (Yℓ, aℓ) ⊲⊳ δf1(R1) ⊲⊳ · · · ⊲⊳ δfm

(Rm)), (1)

where all {Y1, . . . , Yℓ} ⊆ {X1, . . . , Xk}, Yi 6= Yj for all i < j and i, j ∈ [1, ℓ]. The Yis do not appear
as an attribute in any rewriting δfj

(Rj). Moreover, sort(δfi
(Ri)) ∩ sort(δfj

(Rj)) = ∅. Finally, F
is positive selection condition.

So, P is the union of queries Pi of the form (1). We construct the desired CRA expression Qi

for each Pi separately, and obtain the final CRA expression Q by taking the CRA union of all Q)i.
Hence, we may assume that P is of the form (1). We obtain the corresponding CRA expression
Q as follows:

First, we push as many as possible selections in P through the joins.

• σδfi
(Ri.color)=c: This can be pushed onto the relation Ri. It is clear that we obtain the equivalent

result with the CRA expression δgi
(Σc(Ri). Here, gi is defined as the restriction of fi to the

data attributes.

• σδfi
(Ri.Aj)=a(Ri): This can be pushed onto the relation Ri, We obtain the equivalent result in

CRA with the expression δgi
(σRi.Aj=a(Ri).

• σδfi
(Ri.Bj)=1: This can be pushed onto the relation Ri. It is clear that δgi

(ΠL
(Ri.Aj)

(Ri)),

where Aj is such that ass(Ai, Bj) holds, is the equivalent CRA expression. Similarly, selec-
tions on blocks of the form σδfi

(Ri.Bj)=0 can be simulated by applying the CRA expression

δgi
(ΠU

sort(Ri)\Ri.Aj
(Ri), where Aj is such that ass(Ai, Bj) holds.

Note that we may assume that these selections do not relate to the constant expression (Y1, a1) ⊲⊳
· · · ⊲⊳ (Yℓ, aℓ) since such selections would always yield true or false.

Let Si, for i ∈ [1, m], denote the CRA expression consisting of Ri on which the relevant CRA
expression corresponding to the selections (as described above) are applied.

Next, we consider the CRA-expression

Rel = δg1(S1) × · · · × δgm
(Sm).

The constant part (Y1, a1) ⊲⊳ · · · ⊲⊳ (Yℓ, aℓ) in P is treated as follows. Here, we distinguish
between the following cases: If the color attribute in the projection corresponds to the colored
attribute in the constant part, then (Y1, a1) ⊲⊳ · · · ⊲⊳ (Yℓ, aℓ) is of the form (A′

1, a1) ⊲⊳ · · · ⊲⊳
(A′

p, ap) ⊲⊳ (β′
1 : b1) · · · ⊲⊳ (β′

p, bp) ⊲⊳ (γ′ : c) where p = (ℓ − 1)/2) (This is because all Yi’s are
in the projection). Hence, we need to build a tuple (a1, . . . , ap) with a block (containing the
attributes Ai for which bi = 1) of color c. Let Q1 = mergeA1;A2((A1, a1, c) × (A2, a2, c)), and
Qi = mergeatt(Qi−1);Ai

(Qi−1 × (Ai, ai, c)). Then, Const = Qp is the desired CRA expression for
the constant part.

In case that the color attribute in the projection does not correspond to the colored attribute,
we join (Y1, a1) ⊲⊳ · · · ⊲⊳ (Yℓ, aℓ) with (γ, c) and end up with an equivalent expression. We then do
the same as in the previous case.

Consider now Const × Rel. We translate the selections in F containing pairwise comparisons
into the CRA.
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• σδfi
(Si.Bk)=δfj

(Sj .Bℓ). To get the equivalent CRA expression, we replace Const×Rel by (Const×

Rel1) ∪ (Const × Rel2), where Rel1 is obtained by replacing δgi
(Si) × δgj

(Sj) in Rel by

δgi
(ΠL

Ak
(Si)) × δgj

(ΠL
Aℓ

(Sj))

and Rel2 is obtained similarly by replacing δgi
(Si) × δgj

(Sj) in Rel by

δgi
(ΠU

sort(Si)\Ak
(Si)) × δgj

(ΠU
sort(Sj)\Aℓ

(Sj)).

We can push the union outside the projection and deal with the two parts separately. So can
ignore the union for the moment and omit the subscript of Rel from now on.

• σδfi
(Si.color)=δfj

(Sj .color): Note that when Rel is applied to any colored database instance, the

blocks in the result do not cross between attributes of Si or Sj , To get the blocks of the same
color in Si and Sj we first apply

K = mergesort(Si),sort(Sj)(Si × Sj)

which merges all blocks in Si with blocks in Sj of the same color and removes all other blocks.
We then replace Si (resp. Sj) in Rel by πsort(Si)(K) (resp, πsort(Sj)(K)). Again, we can push
the union outside the expression and can ignore it for the remainder of the proof.

• σδfi
(Si.Ak)=δfj

(Sj .Aℓ): To get the corresponding CRA expression we proceed as follows. We first
compute

K = (σS′
i.Ak=(S′

j .Aℓ)(S
′
i × S′

j) × recolorSj
(recolorSi

(A, a, c))) ∪ (S′
i × S′

j × (A, a)).

Hence, in K the tuples satisfying the selection criterium will have an annotated A attribute and
will have the original block structure because of the union with the original relations. Next, we
consider

L = mergesort(Si)∪sort(Sj),A(K),

which merges all blocks in Si × Sj in the (only those) tuples satisfying the selection criterium
with the block in the A attribute. We then extract the desired tuples based on this property
with ΠL

A(L) and we are done.

Since the projection contains a single color attribute, we know exactly where the colors in the
result come from. Suppose that the color attribute of R1 is taken. As above, we can use the
recolor operator to recolor all blocks in the other relations (and also in Const) with the colors in
R1. As a result every block has at least one common color with blocks in R1.

We then apply the sequence of merges

mergeA1···Ap;sort(δf1
(R1)) ◦ · · · ◦ mergeA1···sort(δfm−1

(Rm−1);δfm (Rm)

on the expression we got so far. This creates the right block structure with the right colors.
Finally, we apply the projection corresponding to the projection in the SPJRU-expression and

we’re done.
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