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Abstract

Feature selection refers to the problem of selecting those input features that are most
predictive of a given outcome; a problem encountered in many areas such as machine
learning, pattern recognition and signal processing. In particular, solution to this has
found successful application in tasks that involve datasets containing huge numbers
of features (in the order of tens of thousands), which would be impossible to process
further. Recent examples include text processing and web content classification.
Rough set theory has been used as such a dataset pre-processor with much success,
but current methods are inadequate at finding minimal reductions, the smallest sets
of features possible. To alleviate this difficulty, a feature selection technique that
employs a hybrid variant of rough sets, fuzzy-rough sets, has been developed recently
and has been shown to be effective. However, this method is still not able to find the
optimal subsets regularly. This paper proposes a new feature selection mechanism
based on Ant Colony Optimization in an attempt to combat this. The method is then
applied to the problem of finding optimal feature subsets in the fuzzy-rough data
reduction process. The present work is applied to complex systems monitoring and
experimentally compared with the original fuzzy-rough method, an entropy-based
feature selector, and a transformation-based reduction method, PCA. Comparisons
with the use of a support vector classifier are also included.

Key words: Data Reduction; Fuzzy-Rough Sets; Ant Colony Optimization;
Feature Selection.

1 Introduction

The main aim of feature selection (FS) is to determine a minimal feature
subset from a problem domain while retaining a suitably high accuracy in
representing the original features [5]. In real world problems FS is a must due
to the abundance of noisy, irrelevant or misleading features. For instance, by
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removing these factors, learning from data techniques such as text processing
and web content classification can benefit greatly. Given a feature set size n,
the task of FS can be seen as a search for an “optimal” feature subset through
the competing 2n candidate subsets. The definition of what an optimal subset
is may vary, depending on the problem to be solved. Although an exhaustive
method may be used for this purpose, it is quite impractical for most datasets.
Usually FS algorithms involve heuristic or random search strategies in an
attempt to avoid this prohibitive complexity. However, the degree of optimality
of the final feature subset is often reduced.

Rough set theory (RST) [18] has been used successfully as a selection tool
to discover data dependencies and reduce the number of attributes contained
in a dataset by purely structural methods [4,11]. Given a dataset with dis-
cretized attribute values, by the use of rough sets it is possible to find a subset
(termed a reduct) of the original attributes using rough sets that are the most
informative; all other attributes can be removed from the dataset with min-
imal information loss. However, it is most often the case that the values of
attributes may be both crisp and real-valued, and this is where traditional
rough set theory encounters a problem. It is not possible in the theory to
say whether two attribute values are similar and to what extent they are the
same; for example, two close values may only differ as a result of noise, but
in the standard RST-based approach they are considered to be as different as
two values of a different order of magnitude. Dataset discretization must take
place before reduction methods based on crisp rough sets can be applied. This
is often still inadequate, however, as the degrees of membership of values to
discretised values are not considered at all.

In order to combat this, a data reduction method based on fuzzy-rough sets
has been developed [13]. Fuzzy-rough sets encapsulate the related but distinct
concepts of vagueness (for fuzzy sets [23]) and indiscernibility (for rough sets),
both of which occur as a result of uncertainty in knowledge [8]. The fuzzy-
rough set-based approach considers the extent to which fuzzified values are
similar. Previously, an incremental hill-climbing algorithm was employed to
discover the best feature subset. However, this often led to the discovery of non-
optimal feature subsets, both in terms of the resulting dependency measure
and the subset size.

Swarm Intelligence (SI) is the property of a system whereby the collective
behaviours of simple agents interacting locally with their environment cause
coherent functional global patterns to emerge [2]. SI provides a basis with
which it is possible to explore collective (or distributed) problem solving with-
out centralized control or the provision of a global model. For example, ants
are capable of finding the shortest route between a food source and their
nest without the use of visual information and hence possess no global world
model, adapting to changes in the environment. Those SI techniques based
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on the behaviour of real ant colonies used to solve discrete optimization prob-
lems are classed as Ant Colony Optimization (ACO) techniques [2]. These
have been successfully applied to a large number of difficult combinatorial
problems like the quadratic assignment [14] and the traveling salesman [7]
problems, to routing in telecommunications networks, scheduling, and other
problems. This method is particularly attractive for feature selection as there
seems to be no heuristic that can guide search to the optimal minimal subset
every time. Additionally, it can be the case that ants discover the best feature
combinations as they proceed throughout the search space. This paper inves-
tigates how ant colony optimization may be applied to the difficult problem
of finding optimal feature subsets.

The rest of this paper is structured as follows. The second section describes
the theory of fuzzy-rough set data reduction, with the aid of a simple example.
Section 3 introduces the main concepts in ACO and details how this may be
applied to the problem of feature selection in general, and fuzzy-rough feature
selection in particular. The fourth section describes the experimentation car-
ried out on the real problem case of complex system monitoring and presents
the results. Section 5 concludes the paper, and proposes further work in this
area.

2 Fuzzy-Rough Data Reduction

The crisp rough set-based feature selection (RSFS) process described in [4]
can only operate effectively with datasets containing discrete values. As most
datasets contain real-valued features, it is necessary to perform a discretiza-
tion step beforehand. This is typically implemented by standard fuzzification
techniques [15]. However, membership degrees of feature values to fuzzy sets
are not exploited in the process of dimensionality reduction. By using fuzzy-
rough sets [8,17], it is possible to use this information to better guide feature
selection.

2.1 Fuzzy Equivalence Classes

In the same way that crisp equivalence classes are central to rough sets, fuzzy
equivalence classes are central to the fuzzy-rough set approach [8]. For typical
RSFS applications, this means that the decision values and the conditional val-
ues may all be fuzzy. The concept of crisp equivalence classes can be extended
by the inclusion of a fuzzy similarity relation S on the universe, which deter-
mines the extent to which two elements are similar in S. The usual properties
of reflexivity (µS(x, x) = 1), symmetry (µS(x, y) = µS(y, x)) and transitivity
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(µS(x, z) ≥ µS(x, y) ∧ µS(y, z)) hold.

Using the fuzzy similarity relation, the fuzzy equivalence class [x]S for objects
close to x can be defined:

µ[x]S(y) = µS(x, y) (1)

The following axioms should hold for a fuzzy equivalence class F [10]:

• ∃x, µF (x) = 1
• µF (x) ∧ µS(x, y) ≤ µF (y)
• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an equivalence class is
non-empty. The second axiom states that elements in y’s neighbourhood are
in the equivalence class of y. The final axiom states that any two elements
in F are related via S. Obviously, this definition degenerates to the normal
definition of equivalence classes when S is non-fuzzy.

The family of normal fuzzy sets produced by a fuzzy partitioning of the uni-
verse of discourse can play the role of fuzzy equivalence classes [8]. Consider the
crisp partitioning Na = {1, 3, 6}, Za = {2, 4, 5} over the universe U = Na∪Za.
This contains two equivalence classes (Na and Za) that can be thought of as
degenerated fuzzy sets, with those elements belonging to the class possessing
a membership of one, zero otherwise. For the first class Na, for instance, the
objects 2, 4 and 5 have a membership of zero. Extending this to the case
of fuzzy equivalence classes is straightforward: objects can be allowed to as-
sume membership values, with respect to any given class, in the interval [0,1].
Equivalence classes are not restricted to crisp partitions only; fuzzy partitions
are equally acceptable.

2.2 Fuzzy Lower and Upper Approximations

From the literature, the fuzzy P -lower and P -upper approximations are de-
fined as [8]:

µPX(Fi) = infxmax{1− µFi
(x), µX(x)} ∀i (2)

µPX(Fi) = supxmin{µFi
(x), µX(x)} ∀i (3)

where Fi denotes a fuzzy equivalence class belonging to U/P which in turn
stands for the partition of U with respect to a given subset P of features.
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For an individual feature, a, the partition of the universe by {a} (denoted
U/IND({a})) is considered to be the set of those fuzzy equivalence classes
for that feature. For example, if the two fuzzy sets Na and Za are generated
for feature a during fuzzification, the partition U/IND({a}) = {Na, Za}. If
the fuzzy-rough reduction process is to be useful, it must be able to deal
with multiple features, finding the dependency between various subsets of the
original feature set. For example, it may be necessary to be able to determine
the degree of dependency of the decision feature(s) with respect to P = {a, b}.
In the crisp case, U/P contains sets of objects grouped together that are
indiscernible according to both features a and b. In the fuzzy case, objects may
belong to many equivalence classes, so the cartesian product of U/IND({a})
and U/IND({b}) must be considered in determining U/P . In general,

U/P = ⊗{a ∈ P : U/IND({a})} (4)

For example, if P = {a, b}, U/IND({a}) = {Na, Za} and U/IND({b}) =
{Nb, Zb}, then

U/P = {Na ∩Nb, Na ∩ Zb, Za ∩Nb, Za ∩ Zb}

Note that although the universe of discourse in feature reduction is finite,
this is not the case in general, hence the use of sup and inf above. These
definitions diverge a little from the crisp upper and lower approximations, as
the memberships of individual objects to the approximations are not explicitly
available. As a result of this, the fuzzy lower and upper approximations are
redefined as [13]:

µPX(x) = sup
F∈U/P

min(µF (x), inf
y∈U

max{1− µF (y), µX(y)}) (5)

µPX(x) = sup
F∈U/P

min(µF (x), sup
y∈U

min{µF (y), µX(y)}) (6)

In implementation, not all y ∈ U are needed to be considered - only those
where µF (y) is non-zero, i.e. where object y is a fuzzy member of (fuzzy)
equivalence class F . The tuple < PX,PX > is called a fuzzy-rough set.

Each set in U/P denotes an equivalence class. The extent to which an ob-
ject belongs to such an equivalence class is therefore calculated by using the
conjunction of constituent fuzzy equivalence classes, say Fi, i = 1, 2, ..., n:

µF1∩...∩Fn
(x) = min(µF1

(x), µF2
(x), ..., µFn

(x)) (7)
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2.3 Fuzzy-Rough Reduction Process

FRFS builds on the notion of the fuzzy lower approximation to enable re-
duction of datasets containing real-valued features. As will be shown, the
process becomes identical to the crisp approach when dealing with nominal
well-defined features.

The crisp positive region in the standard RST is defined as the union of the
lower approximations. By the extension principle, the membership of an object
x ∈ U, belonging to the fuzzy positive region can be defined by

µPOSP (Q)(x) = sup
X∈U/Q

µPX(x) (8)

Object x will not belong to the positive region only if the equivalence class
it belongs to is not a constituent of the positive region. This is equivalent
to the crisp version where objects belong to the positive region only if their
underlying equivalence class does so.

Using the definition of the fuzzy positive region, the new dependency function
can be defined as follows:

γ′
P (Q) =

|µPOSP (Q)(x)|

|U|
=

∑

x∈U µPOSP (Q)(x)

|U|
(9)

As with crisp rough sets, the dependency of Q on P is the proportion of
objects that are discernible out of the entire dataset. In the present approach,
this corresponds to determining the fuzzy cardinality of µPOSP (Q)(x) divided
by the total number of objects in the universe.

A problem may arise when this approach is compared to the crisp approach.
In conventional rough set-based feature selection, a reduct is defined as a
subset R of the features which have the same information content as the
full feature set A. In terms of the dependency function this means that the
values γ(R) and γ(A) are identical and equal to 1 if the dataset contains no
contradictory information. However, in the fuzzy-rough approach this is not
necessarily the case as the uncertainty encountered when objects belong to
many fuzzy equivalence classes results in a reduced total dependency.

A possible way of combatting this would be to determine the degree of de-
pendency of a set of decision features D upon the full feature set and use this
as the denominator rather than |U| (for normalization), allowing γ ′ to reach
1. With these issues in mind, a new QuickReduct algorithm, based on the
crisp version [4], has been developed as given in figure 1. It employs the new
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FRQuickReduct(C,D).
C, the set of all conditional features;
D, the set of decision features.

(1) R← {}, γ ′
best ← 0, γ′

prev ← 0
(2) do

(3) T ← R
(4) γ ′

prev ← γ′
best

(5) ∀x ∈ (C −R)
(6) if γ ′

R∪{x}(D) > γ ′
T (D)

(7) T ← R ∪ {x}
(8) γ ′

best ← γ′
T (D)

(9) R← T
(10) until γ ′

best = γ′
prev

(11) return R

Fig. 1. The fuzzy-rough QuickReduct algorithm.

dependency function γ ′ to choose which features to add to the current reduct
candidate. The algorithm terminates when the addition of any remaining fea-
ture does not increase the dependency. As with the original algorithm, for a
dimensionality of n, the worst case dataset will result in (n2 + n)/2 evalua-
tions of the dependency function. However, as fuzzy-rough set-based feature
selection is used for dimensionality reduction prior to any involvement of the
system which will employ those features belonging to the resultant reduct, this
operation has no negative impact upon the run-time efficiency of the system.

Note that it is also possible to reverse the search process; that is, start with
the full set of features and incrementally remove the least informative features.
This process continues until no more features can be removed without reducing
the total number of discernible objects in the dataset. This approach is less
suitable for data reduction when the dataset’s dimensionality is very large.

2.4 A Worked Example

Using the fuzzy-rough QuickReduct algorithm, table 1 can be reduced in
size. First of all the lower approximations need to be determined. Consider the
first feature in the dataset. Setting P = {A} produces the fuzzy partitioning
U/P = {A1, A2, A3}, and setting Q = {Plan} produces the fuzzy partitioning
U/Q = {X,Y, Z}. To determine the fuzzy P -lower approximation of Plan X
(µPX(x)), each F ∈ U/P must be considered. For F = A1:

min(µA1(x), inf
y∈U

max{1− µA1(y), µX(y)}) = min(µA1(x), 0.6)
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Table 1
Example dataset

Object A B C Plan
A1 A2 A3 B1 B2 B3 C1 C2 X Y Z

0 0.3 0.7 0.0 0.2 0.7 0.1 0.3 0.7 0.1 0.9 0.0
1 1.0 0.0 0.0 1.0 0.0 0.0 0.7 0.3 0.8 0.2 0.0
2 0.0 0.3 0.7 0.0 0.7 0.3 0.6 0.4 0.0 0.2 0.8
3 0.8 0.2 0.0 0.0 0.7 0.3 0.2 0.8 0.6 0.3 0.1
4 0.5 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.6 0.8 0.0
5 0.0 0.2 0.8 0.0 1.0 0.0 0.0 1.0 0.0 0.7 0.3
6 1.0 0.0 0.0 0.7 0.3 0.0 0.2 0.8 0.7 0.4 0.0
7 0.1 0.8 0.1 0.0 0.9 0.1 0.7 0.3 0.0 0.0 1.0
8 0.3 0.7 0.0 0.9 0.1 0.0 1.0 0.0 0.0 0.0 1.0

Similarly, for F = A2, min(µA2(x), 0.3) and F = A3, min(µA3(x), 0.0). To
calculate the extent to which an object x in the dataset belongs to the fuzzy P -
lower approximation ofX, the union of these values is calculated. For example,
object 0 belongs to PX with a membership of:

sup{min(µA1(0), 0.6), min(µA2(0), 0.3), min(µA3(0), 0.0)} = 0.3.

Likewise, for Y and Z:

µPY (0) = 0.2 µPZ(0) = 0.3

The extent to which object 0 belongs to the fuzzy positive region can be
determined by considering the union of fuzzy P -lower approximations:

µPOSP (Q)(0) = sup
S∈U/Q

µPS(0) = 0.3

Similarly, for the remaining objects,

µPOSP (Q)(1) = 0.6 µPOSP (Q)(2) = 0.3
µPOSP (Q)(3) = 0.6 µPOSP (Q)(4) = 0.5
µPOSP (Q)(5) = 0.3 µPOSP (Q)(6) = 0.6
µPOSP (Q)(7) = 0.3 µPOSP (Q)(8) = 0.3

Using these values, the degree of dependency of Q on P = {A} can be calcu-
lated:

γ′
P (Q) =

∑

x∈U µPOSP (Q)(x)

|0, 1, 2, 3, 4, 5, 6, 7, 8|
= 3.8/9

The fuzzy-rough QuickReduct algorithm uses this process to evaluate sub-
sets of features in an incremental fashion. The algorithm starts with an empty
set and considers the addition of each individual feature:

γ′
{A}(Q) = 3.8/9, γ ′

{B}(Q) = 2.1/9, γ ′
{C}(Q) = 2.7/9
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As feature A causes the greatest increase in dependency degree, it is added to
the reduct candidate and the search progresses:

γ′
{A,B}(Q) = 4.0/9, γ ′

{A,C}(Q) = 5.7/9

Here, C is added to the reduct candidate as the dependency is increased. There
is only one feature addition to be checked at the next stage, namely

γ′
{A,B,C}(Q) = 5.7/9

This causes no dependency increase, resulting in the algorithm terminating
and outputting the reduct {A,C}. Hence, the original dataset can be reduced
to these features with minimal information loss (according to the algorithm).

3 ACO for Feature Selection

The ability of real ants to find shortest routes is mainly due to their depositing
of pheromone as they travel; each ant probabilistically prefers to follow a
direction rich in this chemical. The pheromone decays over time, resulting in
much less pheromone on less popular paths. Given that over time the shortest
route will have the higher rate of ant traversal, this path will be reinforced
and the others diminished until all ants follow the same, shortest path (the
“system” has converged to a single solution). It is also possible that there are
many equally short paths. In this situation, the rates of ant traversal over the
short paths will be roughly the same, resulting in these paths being maintained
while others are ignored. Additionally, if a sudden change to the environment
occurs (e.g. a large obstacle appears on the shortest path), the ACO system
can respond to this and will eventually converge to a new solution.

3.1 Premise of Application of ACO Algorithms

In general, an ACO algorithm can be applied to any combinatorial problem
as far as it is possible to define:

• Appropriate problem representation. The problem can be described as a
graph with a set of nodes and edges between nodes.
• Heuristic desirability (η) of edges. A suitable heuristic measure of the “good-
ness” of paths from one node to every other connected node in the graph.
• Construction of feasible solutions. A mechanism must be in place whereby
possible solutions are efficiently created. This requires the definition of a
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suitable traversal stopping criterion to stop path construction when a solu-
tion has been reached.
• Pheromone updating rule. A suitable method of updating the pheromone
levels on edges is required with a corresponding evaporation rule, typically
involving the selection of the n best ants and updating the paths they chose.
• Probabilistic transition rule. The rule that determines the probability of an
ant traversing from one node in the graph to the next.

The feature selection task may be reformulated into an ACO-suitable problem.
ACO requires a problem to be represented as a graph - here nodes represent
features, with the edges between them denoting the choice of the next feature.
The search for the optimal feature subset is then an ant traversal through the
graph where a minimum number of nodes are visited that satisfies the traversal
stopping criterion. Figure 2 illustrates this setup - the ant is currently at node
a and has a choice of which feature to add next to its path (dotted lines).
It chooses feature b next based on the transition rule, then c and then d.
Upon arrival at d, the current subset {a, b, c, d} is determined to satisfy the
traversal stopping criterion (e.g. a suitably high classification accuracy has
been achieved with this subset). The ant terminates its traversal and outputs
this feature subset as a candidate for data reduction.

e

d

c
b

{a,b,c,d}

a

f

Fig. 2. ACO problem representation for FS.

A suitable heuristic desirability of traversing between features could be any
subset evaluation function - for example, the fuzzy-rough set dependency mea-
sure. This measure gives an indication of which features are more informative
given the currently selected subset. The heuristic desirability of traversal and
edge pheromone levels are combined to form the so-called probabilistic transi-
tion rule [2], denoting the probability of an ant at feature i choosing to travel
to feature j at time t:

pkij(t) =
[τij(t)]

α.[ηij]
β

∑

l∈Jk
i
[τil(t)]α.[ηil]β

(10)

where k is the number of ants, Jk
i is the set of ant k’s unvisited features, ηij

is the heuristic desirability of choosing feature j when at feature i and τij(t)
is the amount of virtual pheromone on edge (i, j). The choice of parameters
α and β is determined experimentally. Several parameter values are chosen in
the range [0, 1] and evaluated by experimentation.
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Depending on how optimality is defined for the particular application, the
pheromone may be updated accordingly. For instance, subset minimality and
“goodness” are two key factors so the pheromone update must be proportional
to “goodness” and inversely proportional to size. There is also the possibility
of allowing the removal of features here. If feature h has been selected already,
an alternative transition rule may be applied to determine the probability of
removing this attribute. However, this is an extension of the ant-based feature
selection approach and is not required for its operation.

The time complexity of the ant-based approach to feature selection is O(IAk),
where I is the number of iterations, A the number of original features, and k
the number of ants. This can be seen from figure 3. In the worst case, each
ant selects all the features. As the heuristic is evaluated after each feature is
added to the reduct candidate, this will result in A evaluations per ant. After
one iteration in this scenario, Ak evaluations will have been performed. After
I iterations, the heuristic will be evaluated IAk times.

3.2 ACO for Fuzzy-Rough Feature Selection

(transition rule)

continue

stop

continue

stop

Generate
Ants

Evaluate
Position

Evaluate
Position

Return Best
Subset

Ant 1

Update
Pheromone

Choose Next
Feature

Begin

Subsets
Gather

Fig. 3. ACO-based feature selection overview.

The overall process of ACO feature selection can be seen in figure 3. It begins
by generating a number of ants, k, which are then placed randomly on the
graph (i.e. each ant starts with one random feature). Alternatively, the number
of ants to place on the graph may be set equal to the number of features within
the data; each ant starts path construction at a different feature. From these
initial positions, they traverse edges probabilistically until a traversal stopping
criterion is satisfied. The resulting subsets are gathered and then evaluated.
If an optimal subset has been found or the algorithm has executed a certain
number of times, then the process halts and outputs the best feature subset
encountered. If neither condition holds, then the pheromone is updated, a new
set of ants are created and the process iterates once more.
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To tailor this mechanism to find fuzzy-rough set reducts, it is necessary to use
the dependency measure given in equation (9) as the stopping criterion. This
means that an ant will stop building its feature subset when the dependency
of the subset reaches the maximum for the dataset (the value 1 for consistent
datasets). The dependency function may also be chosen as the heuristic de-
sirability measure, but this is not necessary. In fact, it may be of more use to
employ a non-rough set related heuristic for this purpose to avoid the pitfalls
of a QuickReduct style search. By using an alternative measure such as
an entropy-based heuristic [20], the method may avoid feature combinations
that may mislead the rough set-based heuristic. Again, the time complexity of
this fuzzy-rough ant-based method will be the same as that mentioned earlier,
O(IAk).

The pheromone on each edge is updated according to the following formula:

τij(t+ 1) = (1− ρ).τij(t) + ∆τij(t) (11)

where

∆τij(t) =
n

∑

k=1

(γ′(Sk)/|Sk|) (12)

This is the case if the edge (i, j) has been traversed; ∆τij(t) is 0 otherwise. The
value ρ is a decay constant used to simulate the evaporation of the pheromone,
Sk is the feature subset found by ant k. The pheromone is updated accord-
ing to both the fuzzy-rough measure of the “goodness” of the ant’s feature
subset (γ ′) and the size of the subset itself. By this definition, all ants update
the pheromone. Alternative strategies may be used for this, such as allow-
ing only the ants with the best feature subsets to proportionally increase the
pheromone. These are, however, beyond the scope of this paper.

4 Experimentation

To show the utility of fuzzy-rough feature selection (FRFS) and to compare
the hill-climbing and ant-based fuzzy-rough approaches, the two methods are
applied as pre-processors within a complex systems monitoring application.
Both methods preserve the semantics of the surviving features after removing
redundant ones. This is essential in satisfying the requirement of user readabil-
ity of the generated knowledge model, as well as ensuring the understandability
of the pattern classification process.
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4.1 Test Domain

In order to evaluate the fuzzy-rough approaches and to illustrate its domain-
independence, a challenging test dataset was chosen, namely the Water Treat-
ment Plant Database [16]. The dataset itself is a set of historical data charted
over 521 days, with 38 different input features measured daily. Each day is clas-
sified into one of thirteen categories depending on the operational status of the
plant. However, these can be collapsed into just two or three categories (i.e.
Normal and Faulty, or OK, Good and Faulty) for plant monitoring purposes
as many classifications reflect similar performance. Because of the efficiency
of the actual plant the measurements were taken from, all faults appear for
short periods (usually single days) and are dealt with immediately. This does
not allow for a lot of training examples of faults, which is a clear drawback if
a monitoring system is to be produced. Collapsing 13 categories into 2 or 3
classes helps reduce this difficulty for the present application. Note that this
dataset has been utilised in many previous studies, including that reported in
[21] (to illustrate the effectiveness of applying crisp RSFS as a pre-processing
step to rule induction).

It is likely that not all of the 38 input features are required to determine the
status of the plant, hence the dimensionality reduction step. However, choosing
the most informative features is a difficult task as there will be many depen-
dencies between subsets of features. There is also a monetary cost involved in
monitoring these inputs, so it is desirable to reduce this number.

Pre−categorization

Ruleset

Dataset
+ fuzzy sets

Dataset

Reduced dataset
+ fuzzy sets

Classification

Feature Selection

Rule Induction

Fig. 4. Modular decomposition of the implemented system.

Note that the original monitoring system (figure 4) developed in [21] con-
sisted of several modules; it is this modular structure that allows the FRFS
techniques to replace the existing crisp method. Originally, a precategoriza-
tion step preceded feature selection where feature values were quantized. To
reduce potential loss of information, the original use of just the dominant sym-
bolic labels of the discretized fuzzy terms is now replaced by a fuzzification
procedure. This leaves the underlying feature values unchanged but generates
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a series of fuzzy sets for each feature. These sets are generated entirely from
the data while exploiting the statistical properties attached to the dataset (in
keeping with the rough set ideology in that the dependence of learning upon
information provided outside of the training dataset is minimized). This mod-
ule may be replaced by alternative fuzzifiers, or expert-defined fuzzification if
available. Based on these fuzzy sets and the original real-valued dataset, the
feature selection module calculates a reduct and reduces the dataset accord-
ingly. Finally, rule induction is performed on the reduced dataset. For this set
of experiments, the decision tree method C4.5 [20] is used for induction and
the learned rules for classification.

4.2 Experimental Results

This section presents the results from the various comparative studies. The
first set of experiments compares the hill-climbing and ant-based fuzzy-rough
methods. An investigation into another feature selector based on the en-
tropy measure is then presented. This is followed by comparisons with a
transformation-based approach, PCA.

4.2.1 Comparison of Fuzzy-Rough Methods

Three sets of experiments were carried out on both the (collapsed) 2-class and
3-class datasets. The first bypasses the feature selection part of the system,
using the original water treatment dataset as input to C4.5, with all 38 con-
ditional attributes. The second method employs FRFS to perform the feature
selection before induction is carried out. The third uses the ant-based method
described in section 3 (antFRFS) to perform feature selection over a number
of runs, and the results averaged.

Table 2
Results for the 2-class dataset

Method Attributes γ’ value Training error Testing error
Unreduced 38 - 1.5% 19.1%

FRFS 10 0.58783 10.8% 25.2%
antFRFS 9.55 0.58899 6.5% 22.1%

The results for the 2-class dataset can be seen in table 2. Both FRFS and
antFRFS significantly reduce the number of original attributes with antFRFS
producing the greatest data reduction on average. As well as generating smaller
reducts, antFRFS finds reducts of a higher quality according to the fuzzy-
rough dependency measure. This higher quality is reflected in the resulting
classification errors for both the training and testing datasets, with antFRFS
outperforming FRFS.
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Table 3
Results for the 3-class dataset

Method Attributes γ’ value Training error Testing error
Unreduced 38 - 2.1% 16.8%

FRFS 11 0.59479 2.8% 19.1%
antFRFS 9.09 0.58931 5.2% 19.8%

Table 3 shows the results for the 3-class dataset experimentation. The hill-
climbing fuzzy-rough method chooses 11 out of the original 38 features. The
ant-based method chooses fewer attributes on average, however this is at the
cost of a lower dependency measure for the generated reducts. Again the effect
of this can be seen in the classification errors, with FRFS performing slightly
better than antFRFS. For both fuzzy methods, the small drop in classification
accuracy as a result of feature selection is acceptable.

By selecting a good feature subset from data it is usually expected that the
applied learning method should benefit, resulting in an improvement in results.
However, when the original training (and test) data is very noisy, selected
features may not necessarily be able to reflect all the information contained
within the original entire feature set. As a result of removing less informative
features, partial useful information may be lost. The goal of selection methods
in this situation is to minimise this loss, while reducing the number of features
to the greatest extent. Therefore, it is not surprising that the classification
performance for this challenging dataset can decrease upon data reduction, as
shown in table 3. However, the impact of feature selection can have different
effects on different classifiers. With the use of an alternative classifier in section
4.2.4, performance can be seen to improve for the test data.

4.2.2 Comparison with Entropy-based Feature Selection

To support the study of the performance of the fuzzy-rough methods for use
as pre-processors to rule induction, a conventional entropy-based technique
is used for comparison. This approach utilizes the entropy heuristic typically
employed by machine learning techniques such as C4.5 [20]. Those features
that provide the most gain in information are selected. A summary of the
results of this comparison can be seen in table 4.

Table 4
Results for the three selection methods

Approach No. of No. of Training Testing
Classes Features Error Error

FRFS 2 10 10.8% 25.2%
antFRFS 2 9.55 6.5% 22.1%
Entropy 2 13 2.3% 19.8%
FRFS 3 11 2.8% 19.1%

antFRFS 3 9.09 5.2% 19.8%
Entropy 3 14 1.8% 19.1%
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For both the 2-class and 3-class datasets, FRFS and antFRFS select at least
three fewer features than the entropy-based method. However, the entropy-
based method outperforms the other two feature selectors with the resulting
C4.5 classification accuracies. This is probably due to the fact that C4.5 uses
exactly the same entropy measure in generating decision trees. In this case,
the entropy-based measure will favour those attributes that will be the most
influential in the decision tree generation process.

4.2.3 Comparison with the use of PCA

The effect of using a different dimensionality reduction technique, namely PCA
[6], is also investigated. Here, PCA is applied to the dataset and the first n
principal components are used. A range of values is chosen for n to investigate
how the performance varies with dimensionality. As PCA irreversibly destroys
the underlying dataset semantics, the resulting decision trees are not human-
comprehensible nor directly measurable but may still provide useful automatic
classifications of new data. Table 5 shows the results from applying PCA to
the datasets.

Table 5
Results for the 2-class and 3-class datasets using PCA

No. of Features
Error Class 5 6 7 8 9 10 11 12 13

Training (%) 2 20.0 20.0 20.0 20.0 19.7 19.7 19.7 19.2 17.9
Testing (%) 2 27.5 27.5 27.5 27.5 26.7 26.7 26.7 64.9 65.6
Training (%) 3 26.4 26.4 26.4 26.4 26.4 24.1 24.1 24.1 23.6
Testing (%) 3 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.1 19.8

Both antFRFS and FRFS significantly outperform PCA on the 2-class dataset.
Of particular interest is when 10 principal components are used as this is
roughly the same number chosen by antFRFS and FRFS. The resulting error
for PCA is 19.7% for the training data and 26.7% for the test data. For
antFRFS the errors were 6.5% (training) and 22.1% (testing), and for FRFS
10.8% (training) and 25.2% (testing). In the 3-class dataset experimentation,
both fuzzy-rough methods produce much lower classification errors than PCA
for the training data. For the test data, the performance is about the same,
with PCA producing a slightly lower error than antFRFS on the whole.

4.2.4 Comparison with the use of a support vector classifier

A possible limitation of C4.5 in this context is that it performs a degree of fea-
ture selection itself during the induction process. The resulting decision trees
do not necessarily contain all the features present in the original training data.
As a result of this, it is beneficial to evaluate the use of an alternative classifier
that uses all the given features. For this purpose, a support vector classifier is
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used, trained by the sequential minimal optimization (SMO) algorithm [19].
The results of the application of this classifier can be found in table 6.

Table 6
Results for the 2-class and 3-class datasets using SMO

Approach No. of No. of Training Testing
Classes Features Error Error

Unreduced 2 38 20.0% 28.2%
FRFS 2 10 20.0% 27.5%

antFRFS 2 9.55 20.0% 27.5%
Unreduced 3 38 25.4% 19.1%

FRFS 3 11 26.4% 19.8%
antFRFS 3 9.09 26.4% 19.1%

For the 2-class dataset, the training error for both FRFS and antFRFS is
the same as that of the unreduced approach. However, this is with signif-
icantly fewer attributes. Additionally, the resulting testing error is reduced
with these feature selection methods. With the more challenging 3-class prob-
lem, the training errors are slightly worse (as seen with the C4.5 analysis).
The antFRFS method performs better than FRFS for the test data and is
equal to the unreduced method, again using fewer features.

5 Conclusion

This paper has highlighted the shortcomings of conventional hill-climbing ap-
proaches to feature selection. These techniques often fail to find minimal data
reductions. Some guiding heuristics are better than others for this, but as no
perfect heuristic exists there can be no guarantee of optimality. When mini-
mal data reductions are required, other search mechanisms must be employed.
Although these methods also cannot ensure optimality, they provide a means
by which the best feature subsets might be found. This paper has presented
a new method for feature selection based on ant colony optimization for this
purpose. This was applied to the problem of fuzzy-rough dimensionality re-
duction, with promising results. Unlike semantics-destroying approaches such
as PCA, this approach maintains the underlying semantics of the feature set,
thereby ensuring that the resulting models are interpretable and the inference
explainable.

In all experimental studies there has been no attempt to optimize the fuzzifi-
cations or the classifiers employed. It can be expected that the results obtained
with optimization would be even better than those already observed. The gen-
erality of this approach should enable it to be applied to other domains. The
decision trees generated by the induction method was not processed by any
post-processing tools so as to allow its behaviour and capabilities to be re-
vealed fully. By enhancing the induced decision tree through post-processing,
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performance can be expected to improve. Additionally, fuzzy or alternatively
other crisp rule induction algorithms [9] may be used which should benefit
more from a feature selection method that uses the fuzzification information
for data reduction. The current decision tree method may be easily replaced
due to the modularity of the system.

Work is being carried out on a fuzzified dependency function [12]. Ordinarily,
the dependency function returns values for sets of features in the range [0,1];
the fuzzy dependency function will return qualitative fuzzy labels for use in
the fuzzy-rough QuickReduct algorithm. With this mechanism in place,
several features may be chosen at one time according to their labels, speeding
up the feature selection process. Additionally, research is being carried out
into the potential utility of fuzzy reducts, which would allow features to have
a varying possibility of becoming a member of the resultant reduct. Further
work also includes broadening the comparative studies to include comparisons
with other feature selection and dimensionality reduction techniques.
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