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Temporal Prepositions and their Logic

Ian Pratt-Hartmann
Department of Computer Science

University of Manchester
Manchester M13 9PL, UK∗

Abstract

This paper investigates the computational complexity of reasoning with
English sentences featuring temporal prepositions, temporal subordinat-
ing conjunctions and the order-denoting adjectives first and last. A frag-
ment of English featuring these constructions, called T PE , is defined by
means of a context-free grammar. The phrase-structures which this gram-
mar assigns to the sentences it recognizes can be viewed as formulas of an
interval temporal logic, called T PL, and given intuitively correct seman-
tics. It is shown that the satisfiability problem for T PL is NEXPTIME-
complete.

1 Introduction

Consider the following sentences:
(1) An interrupt was received during every cycle

(2) The main process ran after the last cycle

(3) While the main process ran, an interrupt was received before loop 1 was
executed for the first time.

These sentences speak of events and their temporal locations: of what hap-
pened and when. The principal devices they employ to encode this information
are temporal prepositions, temporal subordinating conjunctions and the adjec-
tives first and last. The aim of this paper is to answer the question: What is
the computational complexity of reasoning with sentences encoding temporal
information using such devices?

This question is of theoretical interest, because the events mentioned in (1)–
(3)—cycles, executions of processes, receipts of interrupts—are extended in time;
∗This paper was written during a visit by the author to the Institute for Communicating

and Collaborative Systems, Division of Informatics, University of Edinburgh. The hospitality
of the ICCS and the support of the EPSRC (grant reference GR/S22509) are gratefully ac-
knowledged. The author would also like to thank Mark Steedman and David Brée for helpful
discussions.
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and temporal logics which deal with extended events—so-called interval tem-
poral logics—typically exhibit high computational complexity. Thus, the best-
known interval temporal logic, HS (Halpern and Shoham [6], see also Ven-
ema [19]), is undecidable, with little known about its decidable fragments. (For
a forthcoming discussion, see [5]). Indeed, the best-known decidable interval
temporal logic, ITL (Moszkowski [10]), assumes that its non-logical primitives
are in fact point-events, and yet still has a non-elementary satisfiability problem.
Given that the syntax of these logics has little affinity with that of temporal
expressions in English, it is natural to ask whether the meanings of sentences
such as (1)–(3) can be captured in a computationally manageable logic.

Further theoretical motivation comes from the side of natural language se-
mantics. The formal semantics of temporal constructions in English has been
addressed by a succession of researchers (Crouch and Pullman [2], Dowty [4],
Hwang and Schubert [8], Kamp and Reyle [9], Ogihara [11], Stump [16], ter
Meulen [17] to name but a few). Yet natural language semanticists typically
employ whatever formalism is sufficiently expressive to capture the sentence-
meanings they identify and sufficiently familiar to command the assent of the
relevant academic community. In particular, most accounts of the semantics of
temporal constructions in English represent sentence-meanings in a first-order
language having variables which range over time-intervals and predicates corre-
sponding to event-types and temporal order-relations; and such a logic is easily
shown to be undecidable. Given the recent surge of interest in logical fragments
of limited computational complexity, this situation is unsatisfactory. There are
evident practical and theoretical reasons for developing the semantics of various
natural language constructions, where possible, using formal systems of limited
expressive power.

The plan of this paper is as follows. Section 2 presents an outline of the
semantics of the English temporal constructions considered in this paper. Sec-
tion 3 then uses a simple context-free grammar to define a fragment of English
featuring these constructions; we call this fragment T PE , a rough acronym for
temporal preposition English. We show how the phrase-structures assigned to
T PE-sentences by this grammar can in fact be viewed as expressions in an inter-
val temporal logic, which we call T PL. Section 4 presents formal semantics for
T PL. Sections 5 and 6 provide matching upper and lower complexity-bounds
for T PL-satisfiability, showing that this problem is NEXPTIME-complete.

2 Semantics

In this section, we sketch an outline of the semantics of temporal prepositions
and temporal subordinating conjunctions in English. We begin with the simplest
cases.

2.1 Cascading and context

Consider the following sentences:
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(4) An interrupt was received

(5) An interrupt was received during every cycle

(6) An interrupt was received during every cycle until the main process ran

(7) After the initialization phase, an interrupt was received during every
cycle until the main process ran.

Sentence (4) is true just in case, at some time within some contextually given
interval of interest, an interrupt was received. Interpreting the unary predicate
int-rec so that it is satisfied by all and only those time intervals over which an
interrupt was received, we may represent these truth-conditions by:

(8) ∃J0(int-rec(J0) ∧ J0 ⊂ I).
Throughout this paper, the letters I, J , . . . , with or without decorations, range
over time intervals, which we take to be closed, bounded, (non-empty) convex
subsets of the real line.

The fragment of temporal English considered here deals only with events,
as opposed to states—that is, only with telic as opposed to atelic eventualities
(Vendler [18]; see, e.g. Steedman [15] for an extended discussion). The thesis
that simple, event-reporting sentences are implicitly existentially quantified was
proposed by Davidson [3], and is defended in Parsons [12]. These authors take
the quantification in question to be over events rather than time intervals; but
this issue may be ignored for present purposes. (A recent collection of papers on
this topic can be found in Higginbotham et al. [7].) One could doubtless quibble
about whether the ⊂ in (8) should be ⊆; however, the operative concepts seem
too vague for this issue to admit of resolution.

Notice that the contextually given interval to which the quantification in (4)
is limited is represented by the free variable I in (8). That is: a sentence
meaning is a temporal abstract, which receives a truth-value (in a model) only
relative to an interval of evaluation. It turns out that viewing sentence meanings
in this way clarifies the logical relationships between the sentences (4)–(7). The
following notation will help keep things concise. If I and J denote the intervals
[a, b] and [c, d], respectively, with a, b, c, d ∈ R ∪ {−∞,∞} and a ≤ c ≤ d ≤ b,
we let the terms init(J, I) and fin(J, I) denote the intervals [a, c] and [d, b],
respectively. In other words, whenever J ⊆ I is true, we take init(J, I) to
denote the initial segment of I up to the start of J , and fin(J, I) to denote the
final segment of I from the end of J . (Recall that intervals may be punctual.)
Helping ourselves to a suitable signature of unary predicates of intervals, we
may then formalize sentences (5)–(7) as follows:

(9) ∀J1(cyc(J1) ∧ J1 ⊂ I → ∃J0(int-rec(J0) ∧ J0 ⊂ J1))

(10)
ιJ2(main(J2) ∧ J2 ⊂ I,
∀J1(cyc(J1) ∧ J1 ⊂ init(J2, I)→ ∃J0(int-rec(J0) ∧ J0 ⊂ J1)))

(11)

ιJ3(init-phase(J3) ∧ J3 ⊂ I,
ιJ2(main(J2) ∧ J2 ⊂ fin(J3, I),
∀J1(cyc(J1) ∧ J1 ⊂ init(J2,fin(J3, I))→
∃J0(int-rec(J0) ∧ J0 ⊂ J1)))).
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The ι operator is the standard Russellian definite quantifier. We pass over the
usual issues as to the faithfulness of this interpretation of definite quantification
(either expressed or implied) in these sentences. Notice how the quantifiers in-
troduced by successive temporal preposition phrases bind the temporal context
variables associated with the sentence they modify. This cascading of restric-
tions on quantification, typical of iterated temporal preposition phrases, was
pointed out in Pratt and Francez [13], and is discussed further in von Ste-
chow [20].

2.2 Complications

It is impossible, within the space of a few pages, to do full justice to the complex-
ities of the English temporal constructions featured in this paper. Nevertheless,
some elaboration of the foregoing account is required; we confine ourselves to
those features of greatest relevance to the ensuing computational analysis. For
a more thorough guide to the linguistic subtleties surrounding temporal con-
structions in English, see e.g. Bennett [1] or Quirk et al. [14].

We begin with some remarks on the temporal preposition (or subordinating
conjunction) before. The sentence
(12) An interrupt was received before the main process ran

is true in a temporal context I when there is a unique running of the main
process during I, and an interrupt is received over some subinterval of I prior
thereto. Ordinary usage is vague as to whether it is the start- or end-times of
the events in question that are being compared. To resolve any uncertainly, we
simply take (12) to require that some interrupt-event finished before the run of
the main process began. We therefore propose to render the meaning of (12) by

(13)
ιJ1(main(J1) ∧ J1 ⊂ I,
∃J0(int-rec(J0) ∧ J0 ⊂ init(J1, I))).

Notice that these truth-conditions impose no limit on how long before the run-
ning of the main process the interrupt was received (except that imposed by
the temporal context I). That is: before is here used in the sense of some time
before. In some situations, however, before is more naturally taken to mean just
before or shortly before. This latter sense reflects the possibility of adding a
time-measure as a specifier, as in the phrase five minutes before. In this paper,
we ignore this latter sense of before entirely: incorporating it into our account
would involve us in a discussion of either vagueness or the semantics of temporal
measure-phrases, both of which we choose to avoid.

Actually, the previous paragraph is misleading in glossing the sense of before
assumed here as some time before. For the existential quantification in the
meaning (13) of (12) is not provided by the before-phrase at all, but rather by the
sentence An interrupt was received occurring in its scope; the before-phrase serves
merely to specify a temporal context to which that quantification is restricted.
In fact, there is no reason why this quantification need be existential at all, thus:
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(14) An interrupt was received during every cycle before the main process
ran.

We take (14) to have the meaning (10); that is, we take it to be synomymous
with (6). Here again, the before-phrase in (14) serves merely to identify a tem-
poral context to which the quantification in its scope is restricted; in particular,
it provides no universal quantification of its own.

As for before, so for until: until-phrases serve only to create temporal contexts
restricting the quantification provided by the sentences in their scope; but they
do not provide that quantification. This is most aparent by considering the
pair of sentences (5) and (6), where the universal quantification evidently arises
from the determiner every. This treatment of until may surprise readers familiar
with so-called until-operators in temporal logic, whose semantics do typically
contribute universal quantification. Apparently, there is an association of until
with universal quantification, at least in the minds of temporal logicians; and it
is natural to ask how this apparent association can be reconciled with the view
adopted here.

The answer is as follows. Sentence (5), which the until-phrase in sentence (6)
modifies, is downward monotonic: if it is true over some interval I, then it is also
true over all subintervals of I. (Downward monotonicity is, of course, charac-
teristic of sentences which universally quantify over subintervals.) It transpires
that until-phrases require a downward-monotonic scope, as witnessed by the
anomalous:
(15) ? An interrupt was received until the main process ran.

(16) ? An interrupt was received during some cycle until the main process
ran.

Thus, on our account, the universal quantification—or more accurately, down-
ward monotonicity—is not provided by until; but the presence of until requires it
to be provided by something else. Before, of course imposes no such requirement,
as we have seen. Thus, on our account, the difference between before (in the
sense adopted here) and until, lies not in their contribution to truth-conditions,
but merely in the situations in which they can be used. Actually, the linguistic
data on until are rather awkward, and appear to fit no very appealing logical
pattern. In particular, downward monotonicity is not always sufficient for appli-
cability of until-phrases (see e.g. Zucchi and White [21]). The exploration of this
issue—and indeed of the myriad other differences between before and until—lies
outside the scope of the present enquiry.

The subordinating conjunction when creates another sort of difficulty. When
serves primarily to indicate proximity between the the events identified in its
scope and complement, thus:
(17) An interrupt was received when the main process ran.
Sentences such as (17) in fact impose remarkably loose constraints on the tem-
poral relation between the events in question, as various writers have noted.
But whatever the final verdict on the nature of those constraints, we cannot
usefully treat the associated vagueness in the present paper, and some further
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regimentation is necessary. To simplify issues, we treat (17) as synomymous
with
(18) An interrupt was received while the main process ran.
and give it the semantics

(19)
ιJ1(main(J1) ∧ J1 ⊂ I,
∃J0(int-rec(J0) ∧ J0 ⊂ J1)).

Our excuse for doing so is simply that containment is an easier relation to work
with than approximate collocation. Readers who find this expedient too brutal
can simply omit when from our fragment.

We have already discussed quantification in the scope of temporal preposi-
tions and subordinating conjunctions; we now move to the issue of quantification
in their complements. Temporal prepositions have noun-phrase complements
which typically include determiners; and these determiners contribute quantifi-
cation to the meanings of sentences containing them. This is evident, for exam-
ple, with the occurrences of during every cycle in (5)–(7), which contribute the
universal quantifiers to (9)–(11). Temporal subordinating conjunctions, by con-
trast, take sentential complements lacking any overt analogue of a determiner;
and the question therefore arises as to how the variables in these complements
get quantified.

The answer is that the complements of temporal subordinating conjunc-
tions are (almost always) taken to be definitely quantified—i.e. bound by an
ι-operator. Thus, until the main process ran in (6) is interpreted as until the
unique time over which the main process ran, as reflected by the ι-quantifier
in (10). It may seem harsh to count (6) as false if there are two runs of the
main process within the temporal context; it would perhaps be fairer to inter-
pret the relevant until-phrase as picking out the period before the first time over
which the main process ran. But since this facility is available in our fragment
anyway, as discussed in Section 2.3, the issue need not detain us.

The obvious exception to the definite quantification of complements of tem-
poral subordinating conjunctions is whenever. Thus, we take
(20) Whenever the main process ran, an interrupt was received

to have the truth-conditions
(21) ∀J1(main(J1) ∧ J1 ⊂ I → ∃J0(int-rec(J0) ∧ J0 ⊂ J1))).
That is: the variable contributed by the complement of the whenever-phrase
is universally quantified. In the sequel, we shall assume that all quantification
of the complements of temporal subordinating conjunctions is definite, except
in the case of whenever, where is it universal. Note that we are mimicking our
earlier discussion of when in again taking the operative temporal relation here to
be containment rather than approximate collocation. As before, this represents
a certain deviation from ordinary usage; again, however, we cannot sensibly deal
with vague truth-conditions here, and so we pass over the issue. Interestingly
enough, the English word whilever does not exist.

Some temporal prepositions have been conspicuous by their absence from
the foregoing discussion. The temporal prepositions on and in, in phrases such
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as on Mondays or in January, are specific to certain categories of arguments,
but are otherwise equivalent to during: these may be ignored for the purposes
of this paper. The preposition at, which in English is used in conjunction with
clock-times (and some religious festivals) may also fall into this category, though
there are further complications here concerning its inherent approximateness.
The propositions for and in, in phrases such as for/in five minutes, take as com-
plements temporal measure-phrases. These lie outside the scope of the logic
considered here.

The preposition by, in its temporal sense, functions analogously to until,
except that it prefers upward-monotonic sentences in its scope; moreover, like
until, it dislikes complements which are not explicitly temporal, thus:
(22) An interrupt was received by 5 o’clock

(23) ? An interrupt was received by the first cycle.
(Note that (23) has a perfectly natural reading in which by is interpreted non-
temporally.) In addition, by exhibits interesting interactions with aspect:
(24) The main process ran/had run/was running by 5 o’clock.
Finally, we observe that by occurs frequently in the construction by the time . . .
with a sentential complement, with the same preference for qualifying upward-
monotonic sentences. Dealing with the rather difficult behaviour of by in our
fragment would complicate the grammar without adding anything of logical
interest, and so we ignore it.

In some respects, the mirror-image of both until and by is since:
(25) An interrupt has been received since the main process ran

(26) An interrupt has been received during every cycle since the main process ran.

(When used in its temporal sense, since requires the sentence in its scope to
have perfect aspect.) Unlike until and by, however, since resists embedding in
contexts established by quantification, as we see by comparing
(27) During every cycle, an interrupt did not occur until the main process

ran

(28) ? During every cycle, an interrupt has/had not occurred since the main
process ran.

Because of these complications, we do not include since in our fragment. How-
ever, we do include after, which we take (again, ignoring some linguistic sub-
tleties) to function as a mirror image of before. Given the inclusion of after, our
omission of since does not affect the fragment’s expressive power.

2.3 First and Last

Our fragment will also contain sentences such as
(29) An interrupt was received during the first cycle

(30) An interrupt was received before the main process ran for the last time.
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We briefly consider the issue of assigning truth-conditions to such sentences.
Suppose that, in the relevant temporal context I, there is an unambiguously

first cycle: that is, a cycle which begins and ends before all the others. Then (29)
asserts that, if J is the interval over which this cycle occurs, then an interrupt
was received over some sub-interval of J . A corresponding account can of course
be given for (30). Problems arise, however, when there is no unambiguously
first cycle within I. Suppose, for example, cycles occur during intervals J1, J2,
and nowhere else, in either of the following arrangements. (In such diagrams,
left-to-right arrangement depicts temporal order; vertical arrangement has no
significance.)

I

J1 cycle

J2 cycle

I

J2 cycle

J1 cycle.

It is unclear what the truth-value of (29) should be in such cases. Apparently,
we need to legislate.

We take the mathematically simplest way out. Since we may assume that
only finitely many events of any given type e occur within a given interval I,
we proceed as follows. Let J be the collection of all subintervals of I over
which an event of type e occurs, and assume J is nonempty. Since J is by
hypothesis finite, we can select the (non-empty) subset J ′ whose elements have
the (unique) earliest end-point. In case J ′ has more than one element, let us
select the unique element J ∈ J ′ whose start-point is latest. Thus, J is the
smallest of the earliest-ending sub-intervals I of type e. In the sequel, then,
we interpret the phrase the first e, within a temporal context I, to pick out
this interval. (In the situations depicted above, these are the intervals marked
J1.) Similarly, we interpret the phrase the last e, within a temporal context I
containing at least one occurrence of e, to pick out the smallest of the latest-
beginning sub-intervals of I over which an e-event occurs. To re-iterate, we are
simply legislating here in the most convenient way in cases where native-speaker
intuition returns an unclear verdict.

3 A Fragment of Temporal English

The task of this section is to define a fragment of temporal English. We do this
by writing a definite clause grammar to recognize its sentences. This grammar
assigns phrase-structures to these sentences in the familiar way, and we shall
see that, following some cosmetic re-arrangement, these phrase-structures can
be regarded as expressions in a formal language. This formal language will
constitute the basis of the temporal logic T PL defined in Section 4.
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3.1 Delineating the fragment

We begin with the simplest types of sentences in our fragment:
(31) An interrupt was received

(32) An interrupt was not received.
For present purposes, sentence (31) is taken as atomic: that is, we ignore its
internal structure. Accordingly we treat such sentences as vocabulary items, of
class S0, and write the grammar rules:

S → S0 S0 → an interrupt was received/int-rec.

Furthermore, the only property of sentence (32) which concerns us is its relation
to (31): that is, we ignore other aspects of its structure. Accordingly, we pretend
that (32) is obtained by simply prefixing the word not to (31), and write the
grammar rules

S → Neg, S0 Neg → not.

This expedient removes needless clutter from our grammar, while affecting noth-
ing of logical substance. (It is a simple exercise to restore the clutter.) Thus,
our grammar assigns (31) and (32) the respective phrase-structures:

S

S0

int-rec

S

tttttt
JJJJJJ

Neg S0

not int-rec.

These phrase-structure diagrams feature the symbol int-rec, as specified in the
above lexical entry for an interrupt was received. This symbol may be regarded
as an abbreviation.

Temporal prepositions belong in our grammar to the category PN, and occur
in phrases such as
(33) during every cycle

(34) after the initialization phase

(35) before the first interrupt.
Nominal expressions such as cycle, initialization phase and interrupt are taken to
be of (lexical) category N0 and to denote event-types in the same way as items
of category S0. Again, we regard them as structureless:

N0 → cycle/cyc N0 → initialization phase/init N0 → interrupt/int-rec.

We allow these expressions to be optionally modified (once) by the order-
specifying adjectives first and last, resulting in a phrase which in turn com-
bines with a determiner to produce the complement of a temporal preposition.
Accordingly, we write the grammar rules:
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NPD → DetD, N1
D PP → PN,D, NPD Det∀ → every/[ ] PN,D → during/=

N1
D → N0 OAdj → first/f Det! → the/{ } PN,! → after/>

N1
! → OAdj, N0 OAdj → last/l Det∃ → some/〈 〉 PN,! → before/<.

Thus, our grammar assigns (33)–(35) the respective phrase-structures:

PP

tttttt
JJJJJJ

PN,∀ NP∀

tttttt
JJJJJJ

= Det∀ N1
∀

[ ] N0
∀

cyc

PP

tttttt
JJJJJJ

PN,! NP!

tttttt
JJJJJJ

> Det! N1
!

{ } N0
!

init

PP

tttttt
JJJJJJ

PN,! NP!

tttttt
JJJJJJ

< Det! N1
!

tttttt
JJJJJJ

{ } OAdj N0

f int-rec

As before, we have replaced terminal nodes with the corresponding mnemonics
to the right of the slashes in the lexicon; again, this removes clutter from the
diagrams.

The variable subscript D in the above rules ranges over the set {∀,∃, !}.
These items are simply tags indicating subcategorization of NP, N1 and PN.
This subcategorization restricts the use of determiners in two ways. First, it
requires that phrases involving first and last only ever combine with the defi-
nite article. This requirement reflects the observation that (outside university
mathematics departments) locutions such as during a first interrupt and during
every first interrupt are anomalous.

Our second restriction on the use of determiners requires that complements
of the temporal prepositions until, before and after also incorporate the definite
article. For until, this requirement serves to rule out some clearly anomalous
sentences (it is the italicized every which causes the problem):
(36) ? An interrupt occurred during every cycle until every reset point.

For before and after, the requirement reflects our earlier decision to interpret
before in the sense of some time before, rather than shortly before. For common
usage (again: professional mathematicians excepted) does not take the sentences

(37) An interrupt was received before every reset point

(38) An interrupt was received before the first reset point

to be equivalent in contexts where there is a unique first reset point, as our as-
sumed sense of before would require. We conclude that the term before can only
have the shortly-before sense in (37), and so we banish that sentence from our
fragment. Admittedly, existentially quantified complements with these preposi-
tions sound fine, even with our chosen sense of before:



3 A FRAGMENT OF TEMPORAL ENGLISH 11

(39) An interrupt occurred before some reset point.

(40) An interrupt occurred during every cycle until some reset point

Indeed, such sentences could be admitted into our fragment without compromis-
ing the complexity-theoretic results derived below. However, banning sentences
such as (36) while admitting those such as (40) will generate a logical fragment
not fully closed under negation; and, while such fragments are unproblematic
in principle, they tend to make for notational and conceptual clutter. For sim-
plicity, therefore, we duck the issue, and simply decree that these temporal
prepositions require complements with the definite article.

Temporal subordinating conjunctions belong in our grammar to the category
PS, and occur in phrases such as
(41) before the main process ran

(42) whenever the main process ran

(43) while the main process ran for the last time.
Unmodified sentential complements are taken to be atomic, again of category
S0. Our grammar permits modification (once) of these complements by the
adverbials for the first/last time, analogous to the modification of nominal com-
plements by the adjectives first/last. Negation is not allowed in PS-complements.
This restriction reflects the fact that such complements are generally interpreted
as providing a definitely quantified event-type (universally quantified in the case
of whenever); and negated event-types make little sense in this regard. Accord-
ingly, we write the grammar rules:

PP → PS,D, S1
D OAdv → for the first time/f PS,! → when/(=, { })

S1
! → S0, OAdv OAdv → for the last time/l PS,! → before/(<, { })

S1
D → S0 PS,∀ → whenever/(=, [ ]),

thus assigning (41)–(43) the respective phrase-structures:

PP

tttttt
JJJJJJ

PS,! S1
!

(<, { }) S0

main

PP

tttttt
JJJJJJ

PS,∀ S1
∀

(=, [ ]) S0

main

PP

tttttt
JJJJJJ

PS,! S1
!

tttttt
JJJJJJ

(=, { }) S0 OAdv

main l.

Recall that, alone among temporal subordinating conjunctions, whenever is as-
sociated with universal, rather than definite, quantification of its complement.
That is why the grammar rule for whenever incorporates the symbol [ ], rather
than { }, to the right of the slash. The motivation for these mnemonics will
become clear in Section 4.
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S

S0

int-rec

S

vvvvvv
HHHHHH

S PP

vvvvvv
HHHHHH

S0 PN NP

vvvvvv
HHHHHH

int-rec = Det N1

[ ] N0

cyc

S

kkkkkkkkkk
SSSSSSSSSS

S

vvvvvv
HHHHHH PP

vvvvvv
HHHHHH

S PP

vvvvvv
HHHHHH PS S1

S0 PN NP

vvvvvv
HHHHHH ({ }, <) S0

int-rec = Det N main

[ ] cyc

Figure 1: The structure of sentences (4)–(6)

Apart from the absence of determiners in subordinate clauses, temporal
prepositions and temporal subordinating conjunctions are thus given parallel
treatments. We allow that expressions of categories S0 and N0 may correspond
to the same event-type, as indicated by the mnemonics in the lexicon, thus:

S0 → the main process ran/main
N0 → run of the main process/main.

Since we want to finesse issues of subsentential and subnominal structure, we
leave it to grammar-writers’ common sense to spot such nominalizations where
they occur. The task of providing a more complex grammar to automate this
job is independent of the issues addressed here.

Finally, we require grammar rules for applying prepositions and subordin-
ating conjunctions to the sentences in their scope. In addition, we allow co-
ordination of sentences (not lower phrases) using and and or. There are no
surprises here:

S → S, PP S → S, Conj, S Conj → and/∧ Conj → or/∨.

Fig 1 shows the phrase-structures of sentences (4)–(6). (We have suppressed
subcategorization information for clarity.) As usual, the leaf nodes have been
replaced by the symbolic abbreviations specified in the lexicon. We note in
passing that we have ignored the phenomenon of preposed preposition-phrases,
as in Sentence (7). It should be obvious that this defect can be easily rectified.

This completes our explanation of the fragment of English studied in this
paper. We dub this fragment T PE , a rough acronym for temporal preposition
English; the full list of grammar rules is given in the Appendix to this paper.
Technically, of course, T PE is not a fragment, but a family of fragments: one
of each choice of lexicon for the terminal categories N0 and S0. In practice,
however, we may ignore this technicality.
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3.2 Interpreting the fragment

Our strategy is to treat phrase-structures in T PE as logical forms—that is, as
formulas in a language for which a recursive semantics can be given in the style
due to Tarski. To this end, we subject T PE phrase-structures to some minor
geometrical re-arrangement. Any phrase structure whose root is labelled S and
which dominates no PP will be re-written more compactly as one of the forms
〈e〉=> or [e]=⊥ as follows:

S

S0

e

⇒ 〈e〉=>

S

rrrrrrr
LLLLLLL

Neg S0

e

⇒ [e]=⊥.

Similarly, any phrase-structure whose root is labelled N1 will be re-written more
compactly as one of the forms e, ef or el as follows:

N1

N0

e

⇒ e

N1

rrrrrrr
LLLLLLL

OAdj N0

f e

⇒ ef

N1

rrrrrrr
LLLLLLL

OAdj N0

l e

⇒ el.

(Phrase-structures whose root is labelled S1 will be re-written analogously.)
Phrase-structures immediately dominating PP-phrases will be re-written more
compactly in the form ‖α‖τψ as follows, where ψ is the result of re-witing the
structure ∆, α the result of re-witing the structure Γ, τ is one of the symbols
<, >, or =, and ‖ ‖ is one of the bracket-pairs 〈 〉, [ ] or { }:

S

rrrrrrr
LLLLLLL

S:∆ PP

rrrrrrr
LLLLLLL

P NP

rrrrrrr
LLLLLLL

τ Det N1:Γ

‖ ‖

⇒ ‖α‖τψ

S

rrrrrrr
LLLLLLL

S:∆ PP

rrrrrrr
LLLLLLL

P S1:Γ

(τ, ‖ ‖)

⇒ ‖α‖τψ.

Finally, sentences involving and and or will be re-written more compactly as
expressions with major connectives ∧ and ∨ in the obvious way.

For example, subjecting the three trees drawn in Fig. 1 to this re-arrangement
we obtain the respective formulas:
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〈int-rec〉=> [cyc]=〈int-rec〉=> {main}<[cyc]=〈int-rec〉=>.

Apart from some unusual brackets and decorations, which will be explained
later, the results of this re-arrangement look remarkably like formulas of propo-
sitional dynamic logic, with the event-classifying mnemonics occupying the place
of atomic programs. So they look; and so they are. We shall give a standard
account of the semantics of these formulas along the lines of the usual seman-
tics for propositional dynamic logic. We stress (though it is obvious) that no
information has been created or destroyed in this re-arrangement process: it is
a simple graphical matter of replacing an unfamiliar logical typography with a
more familiar (and more compact) one. We could have stuck with trees if we
had really wanted.

Let us take stock. In Section 2, we proposed truth-conditions for a range
of sentences involving temporal prepositions, temporal subordinating conjunc-
tions, and the order-denoting adjectives first and last. In this section, we have
formalized the English fragment we are working with using a simple context-
free grammar. We observed that the phrase-structures which this grammar
associates with the sentences it recognizes can be re-arranged as formulas of a
language resembling propositional dynamic logic. Of course, the point of this
re-arrangement is that the resulting formulas can be given a formal semantics
which reproduces the truth-conditions proposed in Section 2. It is to this task
we now turn.

4 The Temporal Logic

The previous section explained how PPs in T PE can be regarded as modal
operators of the form ‖α‖τ , where α is an expression of one of the forms e, ef

or el, ‖ ‖ is one of 〈 〉, [ ] or { }, and τ is one of =, < or >. However, we have
already agreed to restrictions on the quantification in PP-complements which
ensure that, if τ ∈ {<,>} or if α has one of the forms ef , el, then ‖ ‖ is { }. In
addition, to avoid clutter, we drop the =-subscripts, e.g. writing [e] instead of
[e]=. This cuts down the set of modal operators to the forms

〈e〉, [e], {e}, {e}τ , {eω}, {eω}τ ,

where τ ∈ {<,>} and ω ∈ {f, l}.
In the sequel, let E be a fixed infinite set. We refer to elements of E as

event-atoms.

Definition 1. Let e range over the set E of event-atoms. We define the cate-
gories of event-relation α and formula φ by the syntax:

α := e | ef | el;
φ := 〈e〉φ | [e]φ | {α}φ | {α}>φ | {α}<φ | φ ∧ φ

′ | φ ∨ φ′ | ¬φ | > | ⊥.

We take the language T PL to be the set of formulas, so defined.
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This syntax corresponds exactly to that of the fragment of English T PE , ex-
cept in one detail, namely, the inclusion of Boolean negation. The availability
of negation tidies up the logical analysis by ensuring the usual duality of the
satisfiability and entailment problems. In the sequel, we avail ourselves of the
Boolean connectives → and ↔, understood as abbreviations in the usual way.
This aids readability only: in fact, a simple check shows that ¬ is not required
for the lower-complexity bound obtained below, so that our conclusions about
the complexity of reasoning in T PE are not compromised.

Recall that I denotes the set of intervals, that is, the set of closed, bounded,
convex (non-empty) subsets of R. We continue to use the (partial) functions
init(J, I) and fin(J, I) as before.

Definition 2. A T PL-interpretation (henceforth: interpretation) is a finite
subset of I ×E. For any J ∈ I, we write A(J) for {e ∈ E | 〈J, e〉 ∈ A}, and for
any e ∈ E, we write A(e) for {J ∈ I | 〈J, e〉 ∈ A}.

The motivation for restricting attention to finite models is simply that we have in
mind situations in which event-atoms denote everyday event-types instantiated
in finite contexts. Interpretations in which infinitely many events of a given
type occur in a finite space of time are of no interest.

We now turn to the interpretation of event-relations. Recalling our (rather
artificial) stipulations about the meanings of words first and last applied to event-
types of which there is no unambiguously first or last instance, we adopt the
following terminology.

Definition 3. Let I be an interval and J ⊂ I where J satisfies some property
P. We say that J = [a, b] is the minimal-first subinterval of I satisfying P just
in case for every J ′ = [a′, b′] ⊂ I satisfying P, either b < b′ or b = b′ and a ≥ a′.
Likewise, we say that J = [a, b] is the minimal-last subinterval of I satisfying P
just in case for every J ′ = [a′, b′] ⊂ I satisfying P, either a > a′ or a = a′ and
b ≤ b′.

Definition 4. Let α be an event-relation, A an interpretation, and I, J ∈ I.
We define A |=I,J α by cases as follows:

1. A |=I,J e iff J ⊂ I and e ∈ A(J)

2. A |=I,J e
f iff A |=I,J e and J is the minimal-first such interval;

3. A |=I,J e
l iff A |=I,J e and J is the minimal-last such interval.

It is obvious that, since A is finite, if there exists any J ⊂ I such that 〈J, e〉 ∈ A,
then the minimal-first and minimal-last such J exist and are unique.

We are now ready to give the truth-conditions for formulas in T PL.

Definition 5. Let φ be a formula, A an interpretation, and I ∈ I. We define
A |=I φ recursively as follows:

1. A |=I 〈e〉ψ iff for some J , A |=I,J e and A |=J ψ;
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2. A |=I [e]ψ iff for all J , A |=I,J e implies A |=J ψ;

3. A |=I {α}ψ iff there is a unique J ⊂ I such that A |=I,J α, and for that
J , A |=J ψ;

4. A |=I {α}<ψ iff there is a unique J ⊂ I such that A |=I,J α, and for that
J , A |=init(J,I) ψ;

5. A |=I {α}>ψ iff there is a unique J ⊂ I such that A |=I,J α, and for that
J , A |=fin(J,I) ψ;

6. The usual rules for >, ⊥, ∧, ∨ and ¬.

If A |=I φ, we say that φ is true at I in A. If, for all A and I, A |=I φ implies
A |=I φ

′ we say that φ entails φ′. If φ and φ′ entail each other, we say they are
logically equivalent and write φ ≡ φ′. If Φ is a set of formulas, we write A |=I Φ
if A |=I φ for all φ ∈ Φ; Φ is said to be satisfiable if some such A and I exist.

This completes the formal specification of the logic T PL. Remember that
the phrase-structure of every sentence of the English temporal fragment T PE
is a ¬-free T PL-formula; conversely, every ¬-free T PL-formula is the phrase-
structure of a sentence of T PE . It is transparent that, on the above semantics
for T PL, the phrase-structures (formulas) which the grammar of T PE assigns
to sentences (4)–(7) are equivalent to the truth-conditions (8)–(11) proposed in
Section 2.

We conclude this section with some simple logical equivalences in T PL.

Lemma 1. For all e ∈ E, φ ∈ T PL, τ ∈ {<,>}, ω ∈ {t, f}:

¬〈e〉φ ≡ [e]¬φ ¬[e]φ ≡ 〈e〉¬φ
¬{e}τφ ≡ ¬{e}> ∨ {e}τ¬φ ¬{eω}τφ ≡ [e]⊥ ∨ {eω}τ¬φ

Proof. Trivial.

5 Upper Complexity Bound

The aim of this section is to show that the satisfiability problem for T PL is in
NEXPTIME. This is achieved by establishing an exponential bound on the size
of satisfying structures.

Lemma 2. Every T PL-formula is equivalent to one in which ¬ appears only
in subformulas of the forms ¬{e}>.

Proof. The logical equivalences of Lemma 1, together with familiar propositional
validities, allow negations to be moved successively inwards until the desired
form is reached.



5 UPPER COMPLEXITY BOUND 17

Definition 6. Let A 6= ∅ be a structure. The depth of A is the greatest m for
which there exist J1 ⊃ . . . ⊃ Jm with A(Ji) 6= ∅ for all i (1 ≤ i ≤ m). If A is
empty, we take its depth to be 0.

Lemma 3. Let φ be a formula, A a structure and I an interval, such that
A |=I φ. Then there exists a structure A∗ ⊆ A with depth at most O(|φ|2) such
that A∗ |=I φ.

Proof. We may assume that φ has the form guaranteed by Lemma 2. Let Φ be
the set of subformulas of φ. For every event-atom e and every interval J , define

L(J) = {ψ ∈ Φ | A |=J ψ}

L∗e(J) = L(J) \
⋃
{L(K)|K ⊂ J,K ∈ A(e)}.

Thus, L∗e(J) records which subformulas of φ are true at an interval J , ignoring
those subformulas which are true at subintervals of J satisfying e. Say that a
pair 〈J, e〉 ∈ A is redundant if Le(J) = ∅ and there exist K,K ′ ∈ A(e) such that
K ⊂ K ′ ⊂ J . Now set

A∗ = A \ {〈J, e〉 | 〈J, e〉 is not redundant}.

It is obvious that, if J ⊂ J ′ with J, J ′ ∈ A(e), then Le(J) and Le(J ′) are
disjoint. It follows that the depth of A∗ is bounded by m(m′ + 2), where m is
the number of event-atoms occurring in φ and m′ the number of subformulas
of φ. It thus suffices to show that, for all I and all ψ ∈ Φ, A |=I ψ implies
A∗ |=I ψ.

We proceed by induction on the complexity of ψ. The base cases are of the forms
ψ = >,⊥,¬{e}>. The first two of these are trivial. For the case ψ = ¬{e}>,
suppose A |=I ψ. If there is no J ⊂ I with J ∈ A(e), then since A∗ ⊆ A, we
certainly have A∗ |=I ψ. Otherwise, there exist J ⊂ I and J ′ ⊂ I with J 6= J ′

and J, J ′ ∈ A(e). If either J or J ′ is redundant, there exist K ⊂ K ′ ⊂ I with
K,K ′ ∈ A∗(e); and if neither is redundant, J, J ′ ∈ A∗(e). Either way, A∗ |=I ψ.

The recursive cases are of the forms ψ = [e]π, 〈e〉π, {α}τπ, where α is of the
forms e, ef or el. For the case ψ = [e]π, we need only observe that A∗ ⊆ A. For
the case ψ = 〈e〉π, suppose A |=I ψ. Then then there exists J ⊂ I such that
J ∈ A(e) and A |=J π. By the finiteness of A, choose such a J which is minimal
under the order ⊂, so that J ∈ A∗(e). By inductive hypothesis, A∗ |=J π; hence
A∗ |=I ψ. For the case ψ = {e}π, suppose A |=I ψ. Then there exists a unique
J ⊂ I such that J ∈ A(e); and for this J , A |=J π. In particular, there is no
K ⊂ J such that K ∈ A(e), whence J ∈ A∗(e). By inductive hypothesis and
the fact that A∗ ⊆ A, we then easily have A∗ |=I ψ. The remaining cases are
dealt with exactly as for ψ = {e}π, noting, in particular, that A |=I,J e

f implies
A∗ |=I,J e

f and A |=I,J e
l implies A∗ |=I,J e

l.

Theorem 1. Let φ be a formula of T PL. If φ is satisfiable, then φ is satisfied
in a structure of size bounded by 2p(|φ|), for some fixed polynomial p.
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Proof. Suppose that A |=I0 φ. We may assume that φ has the form guaranteed
by by Lemma 2, and by Lemma 3, we may assume that the depth of A is of order
|φ|2. As before, let Φ be the set of subformulas of φ. For any interval I and any
ψ ∈ Φ, denote by S(ψ, I) the set of all maximal subformulas χ of ψ such that
A |=I χ and the major connective of χ is neither ∧ nor ∨. Note that, for any ψ
and J with A |=I ψ, S(ψ, I) entails ψ. We now construct a submodel A∗ of A,
starting with the interval I0 and choosing witnesses, tableau-style, for formulas
in Φ. In this construction, (V,E) denotes a tree with nodes V and edges E, Q
a subset of V , L a mapping L : V → P(Φ) and λ a mapping λ : V → I. We
update the values of Q, V , E, L and λ in the course of the construction.

Initialize both Q and V to the singleton {v0} and E to ∅. Set L(v0) = S(φ, I0)
and λ(v0) = I0. Thus, for all v ∈ V , we have A |=λ(v) L(v). This property will
be maintained throughout. Now execute the following steps until Q = ∅:

Select some v ∈ Q and set Q := Q \ {v}.

For each ψ ∈ L(v), do the following:

1. If ψ = 〈e〉π, let J be such that A |=I,J e and A |= π. Select w 6∈ V
and set Q := Q ∪ {w}, V := V ∪ {w}, E := E ∪ {(v, w)}, L(w) :=
S(π, J) and λ(w) := J .

2. If ψ = {α}π, let J be such that A |=I,J α. Select w 6∈ V and set
Q := Q ∪ {w}, V := V ∪ {w}, E := E ∪ {(v, w)}, L(w) := S(π, J)
and λ(w) := J .

3. If ψ = {α}<π, let J be such that A |=I,J α and let J ′ = init(J, I).
Select w,w′ 6∈ V and set Q := Q ∪ {w,w′}, V := V ∪ {w,w′},
E := E ∪ {(v, w), (v, w′)}, λ(w) := J , λ(w′) := J ′, L(w) := ∅ and
L(w′) := S(π, J ′).

4. If O is {α}>ψ, proceed symmetrically.

5. If ψ is ¬{e}>, and there exist J ⊂ I, J ′ ⊂ I with J 6= J ′ and
J, J ′ ∈ A(e), choose any such J, J ′. Select w,w′ 6∈ V and set Q :=
Q∪{w,w′}, V := V ∪{w,w′}, E := E ∪{(v, w), (v, w′)}, λ(w) := J ,
λ(w′) := J ′, L(w) := ∅ and L(w′) := ∅.

6. In Steps 1–5, for u = w and u = w′, and for every formula [e′]θ ∈ Φ
such that there exists L ⊃ λ(u) with A |=L [e′]θ and e′ ∈ A(λ(u)),
set L(u) := L(u) ∪ S(θ, λ(u)).

Steps 1–5 ensure, roughly, that ‘existential’ modal operators have witnesses;
Step 6, by contrast, ensures that ‘universal’ modal operators are not falsified by
these witnesses.

We show that the above construction terminates after finitely many iterations,
and that, upon termination, the tree (V,E) satisfies the size bound of the
theorem. For consider any path v0 → · · · → vm through (V,E). Evidently,
λ(v0) ⊃ · · · ⊃ λ(vm). From the above construction, for all i < m, the total size
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of L(vi+1) must be less than the total size of L(vi), unless Step 6 adds material
at the point where vi+1 is added to V . But this requires that e′ ∈ A(λ(vi+1))
for at least one event-atom e′. Since the depth of A is of order |φ|2, and each
application of Step 6 adds at most |φ|2 symbols to L(vi+1), it follows that the
length of the path v0 → · · · → vm is of order |φ|4. The bound on the eventual
size of V follows from the fact that the out-degree of any node in V is bounded
by 2|φ|. We note in passing that the steps in the above ‘construction’ are not
required to be effectively computable.

Now let A∗ = {〈J, e〉 ∈ A|for some v ∈ V , J = λ(v)}. To establish A∗ |=I0 φ,
it suffices to show that, for any interval v ∈ V and any ψ ∈ L(v), A∗ |=λ(v) ψ.
We proceed by structural induction on ψ. Denote λ(v) by I. The base cases
are of the forms ψ = >,⊥,¬{e}>. The first two of these are trivial. For the
case ψ = ¬{e}>, if ψ ∈ L(v), either (i) there is no J ⊂ I such that J ∈ A(e) or
(ii) there exist J ⊂ I, J ′ ⊂ I with J 6= J ′ such that J, J ′ ∈ A(e). In the former
case, since A∗ ⊆ A, then A∗ |=I ψ. In the latter case, Step 5 ensures that,
for some such J, J ′, we have w,w′ ∈ V with λ(w) = J and λ(w′) = J ′; hence
J, J ′ ∈ A∗(e) and A∗ |=I ψ. The inductive cases are almost as straightforward:
the following constitute a representative selection.

1. Suppose ψ is 〈e〉π. Then we have w ∈ V and and J ⊂ I such that
λ(w) = J , S(π, J) ⊆ L(w), 〈e, J〉 ∈ A, and A |=J π. By inductive
hypothesis, A∗ |=J S(π, J), and since A |=J π, S(π, J) entails π, whence
A∗ |=J π. By construction, 〈e, J〉 ∈ A∗, so that A∗ |=I ψ.

2. Suppose ψ is [e]π. Let J ⊂ I with J ∈ A∗(e). Since A∗ ⊆ A(e), we have
J ∈ A(e); and since by hypothesis ψ ∈ L(I), we have A |=I ψ. Hence,
A |=J π and so S(π, J) entails π. Consider any w ∈ V with λ(w) = J .
Step 6 will ensure that S(π, J) ⊆ L(w). By inductive hypothesis, A∗ |=J

S(π, J), whence A∗ |=J π. Hence, A∗ |=I ψ.

3. The remaining cases are handled similarly to Case 1.

Corollary 1. The satisfiability problem for T PL is in NEXPTIME.

6 Lower Complexity Bound

Denote by NN the natural numbers less than N . Recall that an exponential
tiling problem is a triple (C,H, V ), where C = {c0, . . . , cM−1} is a set and H
and V are binary relations over C. We call the elements of C colours, and we call
H and V the horizontal constraints and the vertical constraints, respectively. An
instance of (C,H, V ) is a list c′0, . . . c

′
n−1 of elements of C (repetitions allowed).

Such an instance is positive if there exists a function τ : N2n × N2n → C such
that: (i) τ(i, 0) = t′i for all i (0 ≤ i ≤ n − 1); (ii) 〈τ(i, j), τ(i + 1, j)〉 ∈ H for
all i, j (0 ≤ i < 2n − 1, 0 ≤ j ≤ 2n − 1); (iii) 〈τ(i, j), τ(i, j + 1)〉 ∈ V for all i, j
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(0 ≤ i ≤ 2n − 1, 0 ≤ j < 2n − 1); and (iv) τ(0, 2n − 1) = c0. We refer to τ as a
tiling. Intuitively, the elements of C represent colours of unit square tiles which
must be arranged so as to fill a grid of 2n × 2n squares, with the top left-hand
square required to have a specific colour. The constraints H (respectively, V )
list which colours are allowed to go to the right of (respectively, above) which
others. The problem instance c′0, . . . , c

′
n−1 lists the colours of the first n tiles in

the bottom row.
To show that a problem P is NEXPTIME-hard, it suffices to show that,

for any exponential tiling problem (C,H, V ), any instance of (C,H, V ) may be
encoded, in polynomial time, as an instance of P.

We now proceed to do this where P is T PL-satisfiability. The main technical
challenge is to encode, using a succinct formula of T PL, the information that
there are exactly 22n pairwise disjoint intervals satisfying some event-atom t
within a given interval I∗. We begin by tackling this problem; the remainder of
the reduction is more or less routine.

6.1 Fixing a large number of tiles

In the sequel, we take ψ0 to be the formula {a0}> asserting that exactly one
event of type a0 occurs.

Let m ≥ 2 and let a0, a0
1, . . . , a

0
m+1, a1

1, . . . , a
1
m+1, b1, . . . , bm, p0

0, . . . , p
0
m−1

and p1
0, . . . , p

1
m−1 be event-atoms. To simplify the notation, we write a0 alter-

natively as a0
0 or a1

0. Let ψ1 be the conjunction of the following formulas, where
0 ≤ i < m, 0 ≤ h ≤ 1 and 0 ≤ h′ ≤ 1:

[ah
′

i ]{ahi+1}〈phi 〉> [ah
′

i ]{a0
i+1}>〈a1

i+1〉>
[ah
′

i ]{bi+1}〈phi 〉> [ah
′

i ]{phi }〈a
1−h
i+2 〉>.

(1)

If A |=I∗ ψ1, then, for all i (0 ≤ i < m), any subinterval I ⊂ I∗ satisfying
either a0

i or a1
i includes a unique J satisfying a0

i+1 and a unique J ′ satisfying
a1
i+1, with J preceding J ′. The interval I also includes a unique L satisfying
bi+1; moreover, L∩J contains an interval K satisfying a1

i+2, and L∩J ′ contains
an interval K ′ satisfying a0

i+2. It is best to think of the p0
i and p1

i as auxiliary
event-atoms by means of which these relationships between J , J ′, K, K ′ and
L are secured. A representative situation conforming to these constraints is
depicted in Fig. 2.

Let q0
1 , . . . , q

0
m−1 and q1

1 , . . . , q
1
m−1 be event-atoms, and let ψ2 be the con-

junction of the following formulas, where 1 ≤ i < m and 0 ≤ h ≤ 1:

[bi]{ahi+1}〈q
1−h
i 〉> [bi]{a1

i+1}>〈a0
i+1〉>

[bi]{bi+1}〈qhi 〉> [bi]{qhi }〈a
1−h
i+2 〉>.

(2)

If A |=I∗ ψ2, then, for all i (1 ≤ i < m), any subinterval I ⊂ I∗ satisfying
bi includes a unique J satisfying a1

i+1 and a unique J ′ satisfying a0
i+1, with J

preceding J ′. The interval I also includes a unique L satisfying bi+1; moreover,
L∩ J contains an interval K satisfying a1

i+2, and L∩ J ′ contains an interval K ′

satisfying a0
i+2. It is best to think of the q0

i and q1
i as auxiliary event-atoms by
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I
ah
′

i

L
bi+1

J
a0
i+1

J′
a1
i+1

p0
i p1

i

K
a1
i+2

K′
a0
i+2

Figure 2: Representative arrangement of intervals under each ah
′

i -interval.

I
bi

L
bi+1

J
a1
i+1

J′
a0
i+1

q0
i q1

i

K
a1
i+2

K′
a0
i+2

Figure 3: Representative arrangement of intervals under each bi-interval.

means of which these relationships between J , J ′, K, K ′ and L are secured. A
representative situation conforming to these constraints is depicted in Fig. 3.

Let A |=I∗ ψ0 ∧ ψ1. For all i (0 ≤ i ≤ m), define an i-witness inductively as
follows:

1. the unique subinterval of I∗ satisfying a0 is a 0-witness;

2. if I is an i-witness, then the unique subinterval of I satisfying a0
i+1 and

the unique subinterval of I satisfying a1
i+1 are both (i+ 1)-witnesses;

3. there are no other i-witnesses.

This definition makes sense because each i-witness satisfies either a0
i or a1

i . For
each i, the i-witnesses are evidently pairwise disjoint, and alternate on the time-
line between those satisfying a0

i and those satisfying a1
i , as depicted in Fig. 4.

Claim 1. Let A |=I∗ ψ0∧ψ1∧ψ2, and let K, K ′ be consecutive (i+1)-witnesses,
with 0 ≤ i < m. Then there exists an interval L ⊂ I∗ properly including both K
and K ′, such that L satisfies one of a0

i , a
1
i or bi.

Proof. We proceed by induction on i. If i = 0, the result is immediate.

For the inductive case, suppose the statement of the Lemma holds with 0 ≤ i <
m−1; we show the same statement holds with i replaced by i+1. Let K,K ′ be
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1 a1

1

· · · · · · · · · · · ·
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m−1 a1

m−1 · · ·
a0
m−1 a1

m−1

a0
m a1

m a0
m a1

m · · ·
a0
m a1

m a0
m a1

m

Figure 4: Arrangement of i-witnesses (0 ≤ i ≤ m).

consecutive (i + 2)-witnesses, then; without loss of generality, we can suppose
that K precedes K ′. Each (i+ 2) witness is by definition included in a unique
(i + 1)-witness; so let J be the (i + 1)-witness such that K ⊂ J and J ′ be the
(i + 1)-witness such that K ′ ⊂ J ′. Since K and K ′ are consecutive, J and J ′

are identical or consecutive. In the former case, we may put L = J = J ′, and
L satisfies either a0

i+1 or a1
i+1 as required by the Lemma. So assume the latter.

By inductive hypothesis, then, J and J ′ are included within an interval I ⊂ I∗
such that I satisfies a0

i , a
1
i , or bi. Moreover, since K and K ′ are consecutive

but not included in a common (i+ 1)-witness, K satisfies a1
i+2 and K ′ satisfies

a0
i+2.

If I satisfies ah
′

i (0 ≤ h′ ≤ 1), then ψ1 guarantees that I includes exactly
one interval satisfying a0

i+1 and exactly one interval satisfying a1
i+1, with the

former preceding the latter; these must be, respectively, J and J ′, therefore.
Again by ψ1, J includes exactly one interval satisfying a1

i+2 and J ′ exactly one
interval satisfying a0

i+2; these must be, respectively, K and K ′, therefore. Thus,
we have the arrangement of Fig. 2. In particular, ψ1 guarantees the existence
of an interval L satisfying bi+1 and including both K and K ′, as required by
the Lemma.

If I satisfies bi, then ψ2 guarantees that I includes exactly one interval satisfying
a1
i+1 and exactly one interval satisfying a0

i+1, with the former preceding the
latter; these must be, respectively, J and J ′, therefore. Moreover, by ψ1, J
includes exactly one interval satisfying a1

i+2 and J ′ exactly one interval satisfying
a0
i+2; these must be, respectively, K and K ′, therefore. Thus, we have the

arrangement of Fig. 3. In particular, ψ2 guarantees the existence of an interval
L satisfying bi+1 and including both K and K ′, as required by the Lemma.

Under the conditions of Claim 1, if K and K ′ are consecutive i-witnesses (in
that order), then no subinterval H ⊂ I∗ satisfying either a0

i or a1
i can begin

after K starts and end before K ′ ends. For if i > 0, we have some L ⊂ I∗

satisfying one of a0
i−1, a1

i−1 or bi−1, with L ⊃ K and L ⊃ K ′. Thus, L ⊃ H,
which contradicts either ψ1 or ψ2.

Let ψ3 be the conjunction of the following formulas, where i (1 ≤ i ≤ m):

[a0
1] . . . [a0

i−1]{a0
i }<〈c0i 〉> {c0i }>({a0

i }> ∧ [a1
i ]⊥)

[a1
1] . . . [a1

i−1]{a1
i }>〈c1i 〉> {c1i }<({a1

i }> ∧ [a0
i ]⊥) (3)
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If A |=I∗ ψ0 ∧ · · · ∧ ψ3 and 1 ≤ i ≤ m, let J be the first-occurring i-witness.
Then there exists a unique subinterval K ⊂ I∗ satisfying c0i ; J precedes K; and
J is the only subinterval of I∗ preceding K and satisfying either a0

i or a1
i . In

particular, no subinterval of I∗ satisfying either a0
i or a1

i can end before the first
i-witness ends. Similarly, no subinterval of I∗ satisfying either a0

i or a1
i can start

after the last i-witness starts.
For any n > 0, we define a sequence of (2n)2 = 22n consecutively numbered

intervals as follows. Set m = 2n+1, and let d1, . . . dm−1 be event atoms. (Think
of di as representing the ith digit in an (m− 1)-digit binary numeral, where the
first digit is the most significant and the (m − 1)th the least significant.) Let
ψ4 be the conjunction of the following formulas, where i (1 ≤ i < m):

[a0
i ][a

0
m][di]⊥ [a1

i ][a
0
m]〈di〉> (4)

Claim 2. Let A |=I∗ ψ0 ∧ · · · ∧ ψ4, and consider the 22n m-witness which
satisfy a0

m. Let these intervals be numbered in order of temporal precedence as
J0, . . . J22n−1. In that case, for all k (0 ≤ k < 22n), and all i (1 ≤ i ≤ 2n) the
ith digit k[i] in the 2n-digit binary numeral for k (counting the most significant
as the first) is given by:

k[i] =

{
1 if A |=Jk 〈di〉>
0 otherwise.

Proof. By inspection of Fig 4.

Finally, let ψ5 be the conjunction of the following formulas, where 0 ≤ h ≤ 1:

[a0
m][ahm]⊥. (5)

Claim 3. Let A |=I∗ ψ0 ∧ · · · ∧ψ5. Then there exist exactly 22n subintervals of
I∗ satisfying a0

m.

Proof. Certainly, there are exactly 22n m-witnesses which satisfy a0
m. Suppose

J ⊂ I∗ and J satisfies a0
m, but J is not an m-witness. By ψ5, J may not properly

include any m-witness. Hence, the following possibilities are exhaustive: (i) J
ends before the first m-witness ends; (ii) J begins after one m-witness begins and
ends before the next one ends; and (iii) J begins after the last m-witness begins.
But we have already ruled out all these possibilities. Hence, all subintervals of
I∗ satisfying a0

m are m-witnesses.

Let us refer to the (2n)2 intervals identified in Claims 2 and 3 as tiles, and let
us write a0

m more suggestively as t. Say that the kth tile in the usual temporal
order (0 ≤ k < 22n) has index k. If J is any tile, denote its index by kJ . In
that case, Claim 2 lets us read A |=J 〈di〉> as ‘saying’ that the ith digit in the
2n-digit binary representation of kJ is 1.
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6.2 Organizing the tiles into a grid

By grouping the tiles into 2n blocks, each containing 2n consecutive tiles, we
have a 2n × 2n grid. If J and J ′ are tiles, then J ′ lies immediately above J in
the grid in case kJ′ = kJ + 2n; similarly, J ′ lies immediately to the right of J in
the grid in case kJ′ = kJ + 1 and the last n bits of kJ are not all 1s. Let v be an
event-atom. We now write formulas ensuring that, for all tiles J , J ′ such that
kJ′ = kJ + 2n, there exists an interval L satisfying v such that J is the first tile
included in L and J ′ is the last.

The first stage is to ensure that there are enough instances of v. Let
f0, f

0
1 . . . f

0
2n, f

1
1 . . . f

1
2n be event atoms, and again write f0 alternatively as f0

0

or f1
0 . Let ψ6 be the conjunction of the following formulas, where 0 ≤ i < 2n,

1 ≤ j ≤ n and 0 ≤ h ≤ 1:

〈f0〉
[fhi ](〈f0

i+1〉> ∧ 〈f1
i+1〉>)

[f0
i+1][v]{tf}[di+1]⊥

[f1
i+1][v]{tf}〈di+1〉>

[f0
j ][fh2n]〈v〉>.

(6)

If A |=I∗ ψ0 ∧ · · ·ψ6, a little thought shows that every tile J0, . . . , J22n−2n−1 is
the first tile included in some interval satisfying v. (Notice in particular how the
modal operators [f0

j ], where 1 ≤ j ≤ n, ensure that the formulas [f0
j ][fh2n]〈v〉>

do not imply the existence of such intervals for tiles Jk with k > 22n − 2n − 1,
that is to say, for values of k which have all 1’s in their first n-bits.) We then
need only ensure that all such intervals contain exactly 2n + 1 consecutive tiles.
As a preliminary, let let d∗1, . . . d

∗
2n be event-atoms, and ψ7 be the conjunction

of the following formulas, where 1 ≤ i ≤ n:

[t]

〈d∗i 〉> ↔
[di]⊥ ∧

∧
i<j≤n

〈dj〉>

 (7)

Here and in the sequel, the use of ¬ implicit in the connectives ↔ and → is
actually completely dispensable, and the Theorem does not hinge on it; we
include it because it helps to make the formulas a little more intuitive. The
purpose of ψ7 is to enable us to simulate the incrementation operation on binary
numerals. Suppose A |=I∗ ψ1∧· · ·∧ψ7. Then it is routine to check that, for any
tile J with kJ in the range 0 ≤ kJ ≤ 22n − 2n − 1, A |=J 〈d∗i 〉> if and only if i
is the least integer such that the jth digit in the 2n-digit binary representation
of kJ is 1 for all j in the range i < j ≤ n. With this interpretation in mind, let
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Figure 5: Arrangement of event-atoms indicating vertical neighbourhood in the
grid

ψ8 be the conjunction of the following formulas, where 1 ≤ i ≤ n:

∧
1≤i≤n

[v]

{t}f 〈d∗i 〉> → {t}l( ∧
i<j≤n

[dj ]⊥ ∧ 〈di〉>)


∧

1≤i≤n

∧
1≤j<i

[v]({t}f 〈d∗i 〉> → ({t}f 〈dj〉> ↔ {t}l〈dj〉>)) (8)

∧
n<j≤2n

[v]({t}f 〈dj〉> ↔ {t}l〈dj〉>)

If A |=I∗ ψ1 ∧ · · · ∧ψ8, then we can read ψ8 as stating that in every subinterval
J ⊂ I∗ satisfying v, the indices of the first and last cells included in J differ
by precisely 2n. Pictorially, we have the arrangement of v-satisfying intervals
shown in Fig. 5. The corresponding formulas ψ9, . . . , ψ12 required to establish
a suitable arrangement of event-types h encoding horizontal neighbourhood are
analogous and need not be spelt out here.

6.3 Encoding Tiling Problems

We are now ready to prove the main result of this section.

Theorem 2. The satisfiability problem for T PL is NEXPTIME-hard.

Proof. Let (C,H, V ) be any exponential tiling problem and c′0, . . . c
′
n−1 an in-

stance of size n. Setting m = 2n + 1, construct the formulas ψ1, . . . , ψ12 as
above. If C = {c0, . . . , cM−1}, take the ci (0 ≤ i < M) to be event-atoms, and
let ψT be the conjunction of the following two formulas:

[t]
∨

0≤j<M

〈cj〉>

[t]
∧

0≤j<j′<M

([cj ]⊥ ∨ [cj′ ]⊥).

Given a tile J , we regard the realization of an event-atom cj in a subinterval of
J as indicating that the tile J is coloured by cj . The formula ψT simply states
that each tile has exactly one colour chosen from C.
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Let ψH be the conjunction of the following formulas, where (ci, cj) 6∈ H:

[h]({tf}[ci]⊥ ∨ {tl}[cj ]⊥).

Similarly, let ψV be the conjunction of the following formulas, where (ci, cj) 6∈ V :

[v]({tf}[ci]⊥ ∨ {tl}[cj ]⊥).

The motivation for ψH and ψV should be obvious. Finally, we encode the initial
tile c′0 using the formula

〈t〉([d0]⊥ ∧ · · · ∧ [d2n]⊥ ∧ 〈c′0〉>),

and similarly for the c′1, . . . , c
′
n−1. Denote the conjunction of all these formulas

by ψI . From the above constructions, it is routine to verify that the instance
c′0, . . . , c

′
n−1 of (C,H, V ) is positive if and only if

ψ0 ∧ . . . ∧ ψ12 ∧ ψT ∧ ψH ∧ ψV ∧ ψI

is satisfiable. This completes the reduction.

7 Conclusion

In this paper, we defined the fragment of temporal English T PE , together with
a matching interval temporal logic T PL. The satisfiability problem for T PL
was shown to be complete for the complexity class NEXPTIME. In view of the
intimate connection between T PE and T PL, we take this result to indicate the
complexity of performing logical deductions in the fragment of temporal English
in question, and thus to give a rough measure of the expressive resources which
the grammatical constructions it features—primarily, temporal prepositions and
subordinating conjunctions—put at speakers’ disposal. By the standards of
most interval temporal logics, T PL has low complexity. In the search for logics
of limited expressive power, fragments owing their salience to the syntax of
natural language are a natural place to look.

Throughout this paper, we have endeavoured on the one hand to be faithful
to the syntax and semantics of temporal constructions in English, and on the
other to retain a reasonably perspicuous formal system, amenable to mathemat-
ical analysis. These two aims are to some extent antagonistic, of course. Natural
languages are products of human biology and human civilization, and as such
do not always admit of a comfortable mathematical description. Thus, even the
simple fragment of English considered here skirts many delicate issues in syntax,
and includes sentences about whose exact semantics even native speakers are
uncertain. In this situation, we have occasionally had to legislate, sometimes in
whatever way is mathematically most convenient. Nevertheless, while faithful-
ness to the linguistic data is a virtue, it is all to easy, in pursuit of this virtue, to
lose sight of the remarkable logical regularity of the constructions studied here;
and it is this regularity that has been to the fore in our investigation. To what
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extent this analysis can be usefully extended to cover other temporal construc-
tions in English (and other natural languages), and what effects such extensions
will have on the complexity of satisfiability in the accompanying logic, remain
open.

Appendix: The grammar rules for T PE
Syntax

S → S, PP
S → S, Conj, S
S → S0

S → Neg, S0

S1
D → S0

S1
! → S0, OAdv

PP → PN,D, NPD
PP → PS,D, S1

D

NPD → DetD, N1
D

N1
D → N0

N1
! → OAdj, N0

S1
D → S0

S1
! → S0, OAdv

Open-class lexicon

S0 → an interrupt was received/int-rec
S0 → the main process ran/main
. . .
N0 → cycle/cyc
N0 → run of the main process/main
. . .

Closed-class lexicon

Det∀ → every/[ ]
Det∃ → some/〈 〉
Det! → the/{ }
Neg → not

Conj → and/∧
Conj → or/∨

OAdj → first/f
OAdj → last/l
PN,D → during/=

PN,! → until/<
PN,! → before/<
PN,! → after/>

OAdv → for the first time/f
OAdv → for the last time/l
PS,! → when/(=, { })
PS,∀ → whenever/(=, [ ])
PS,! → until/(<, { })
PS,! → before/(<, { })
PS,! → after/(>, { }).
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