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1 Introduction

A central topic in finite model theory has always been a comparison of the expressive power of differ-
ent logics on finite relational structures. In particular, the expressive power of fragments of monadic
second-order logic and various fixed-point logics has already been investigated in some of the earli-
est papers in finite model theory [Fag75,CH82]. One of the main motivations for such studies was an
interest in the expressive power of query languages for relational databases.

In recent years, the focus in database theory has shifted from relational to semi-structured data
and in particular data stored as XML-documents. A lot of current research in the database commu-
nity is concerned with the design and implementation of XML query languages (see, for example,
[FSW00,HP00,GK02] or the monograph [ABS99] for a general introduction into semi-structured data
and XML). The languages studied in the present paper may be viewed as node-selecting query lan-
guages for XML. They all contain the core of the language XPath, which is an important building block
of several major XML-related technologies. Recently, monadic datalog has been proposed as a node-
selecting query language with a nice balance between expressive power and very good algorithmic
properties [GK02,Koc03].

XML-documents are best modelled by trees, or more precisely, finite labelled ordered unranked
trees. It turns out that when studying node-selecting query languages for XML-documents, expres-
sive power is not the central issue. Quite to the contrary: Neven and Schwentick [NS02] proposed to
take the expressive power of monadic second-order logic (MSO) as a benchmark for node-selecting
XML-query languages and, in some sense, suggested that such languages should at least have the ex-
pressive power of MSO. However, even languages with the same expressive power may have vastly
different complexities. For example, monadic datalog and MSO have the same expressive power over
trees [GK02]. However, monadic datalog queries can be evaluated in time linear both in the size of the
datalog program and the size of the input tree [GK02], and thus the combined complexity of monadic
datalog is in polynomial time, whereas the evaluation of MSO queries is PSPACE complete. The dif-
ference becomes even more obvious if we look at parameterized complexity: Unless PTIME �� NP,
there is no algorithm evaluating a monadic second-order query in time ��� size of query 	�
�� size of tree 	
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for any elementary function � and polynomial 
 [FG03]. Similar statements hold for the complexity
of the satisfiability problem for monadic datalog and MSO over trees. The reason for this different
behaviour is that even though the languages have the same expressive power on trees, in MSO we can
express queries much more succinctly. Indeed, there is no elementary translation from a given MSO-
formula into an equivalent monadic datalog program. We also say that MSO is non-elementarily more
succinct than monadic datalog. Just to illustrate the connection between succinctness and complexity,
let us point out that if there was an elementary translation from MSO to monadic datalog, then there
would be an algorithm evaluating a monadic second-order query in time ��� size of query 	�
�� size of tree 	
for an elementary function � and a polynomial 
 .

In this paper, we study the succinctness (in the sense just described) of a variety of fixed point logics
on finite trees. Our main results are the following:

1. MSO is non-elementarily more succinct than monadic least fixed point logic MLFP (see Theo-
rem 3.2). Unfortunately, we are only able to prove this result under the odd, but plausible com-
plexity theoretic assumption that for some ����� , NP is not contained in DTIME ����� 	�


��
��������
	 , where����� �����

denotes the � times iterated logarithm.

2. MLFP is non-elementarily more succinct than its � -variable fragment MLFP � (see Corollary 6.16).

3. MLFP � is exponentially more succinct than the full modal � -calculus, that is, the modal � -calculus
with future and past modalities (see Theorem 4.5, Example 4.3, and Theorem 4.6).

4. The full modal � -calculus is at most exponentially more succinct than stratified monadic datalog,
and conversely, stratified monadic datalog is at most exponentially more succinct than the full
modal � -calculus (see Theorem 6.10 and 6.11). Furthermore, stratified monadic datalog is at most
exponentially more succinct than monadic datalog (see Theorem 6.9).

The exact relationship between these three languages remains open.

Of course we are a not the first to study the succinctness of logics with the same expressive power. Most
known results are about modal and temporal logics. The motivation for these results has not come from
database theory, but from automated verification and model-checking. The setting, however, is very
similar. For example, Kamp’s well know theorem states that first-order logic and linear time temporal
logic have the same expressive power on strings [Kam68], but there is no elementary translation from
first-order logic to linear time temporal logic on strings. Even closer to our results, monadic second-
order logic and the modal � -calculus have the same expressive power on (ordered) trees, but again is
well-known that there is no elementary translation from the former to the latter. Both of these results can
be proved by simple automata theoretic arguments. More refined results are known for various temporal
logics [Wil99,AI00,AI01,EVW02]. By and large, however, succinctness has received surprisingly little
attention in the finite model theory community. Apart from automata theoretic arguments, almost no
good techniques for proving lower bounds on formula sizes are known. A notable exception are Adler
and Immerman’s [AI01] nice games for proving such lower bounds. Unfortunately, we found that these
games (adapted to fixed point logic) were of little use in our context. So we mainly rely on automata
theoretic arguments. An exception is the, complexity theoretically conditioned, result that MSO is non-
elementarily more succinct than MLFP. To prove this result, we are building on a technique introduced
in [FG03].

The paper is organised as follows: In Section 2 we fix the basic notations used throughout the paper.
Section 3 concentrates on the translation from MSO to MLFP. In Section 4 we present our results
concerning the two-variable fragment of MLFP and the full modal � -calculus. Section 5 compares
MLFP with its extension by simultaneous least fixed point operators. In Section 6 we concentrate on
monadic datalog, stratified monadic datalog, and their relations to finite automata and to MLFP. Finally,
Section 7 concludes the paper by pointing out several open questions.

Detailed proofs of our results are provided in an appendix.
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2 Preliminaries

2.1 Basic Notations

Given a set � we write ��� to denote the set of all finite strings over � , and we use � to denote the empty
string. We use � to denote the set ���	� �
�����
����� of natural numbers. We use

���
to denote the logarithm

with respect to base 2. With a function � that maps natural numbers to real numbers we associate the
corresponding function from � to � defined by ������ ����� 	�� . For simplicity we often simply write ��� � 	
instead of � ����� 	�� .

The function Tower ����� � is inductively defined via Tower ��� 	�� � � and Tower ����� � 	 �
� Tower

�! �
, for all �#"#� . I.e., Tower �$� 	 is a tower of 2s of height � .

We say that a function �%�&�'�(� has bound ���*) 	,+ Tower -�. �$���*) 	0/ , for some function �1��2��� , if there is a function 34"5. �$� 	 and a )#67"5� such that for all ) �8)96 we have ����) 	:+
Tower - 3 �*) 	 / .

Note that, in particular, every elementary function � has bound ���*) 	;+ Tower - . ��) 	 / . Indeed, for
every elementary function � there is a �<"<� such that, for all �="<� , ��� � 	 is less than or equal to the
tower of 2s of height � with an � on top.

2.2 Structures

A signature > is a finite set of relation symbols and constant symbols. Each relation symbol ?@"A>
has a fixed arity ar ��? 	 . A > -structure B consists of a set CED called the universe of B , an interpretationF DG"HCID of each constant symbol F "%> , and an interpretation ?ED@J �KCID 	 ar

�ML �
of each relation

symbol ?N"9> . All structures considered in this paper are assumed to have a finite universe.
The main focus of this paper lies on the class Trees of finite binary trees. Precisely, finite binary

trees are particular structures over the signature

> Trees � � � Root ��� stChild � � ndChild � Has-No- � stChild � Has-No- � ndChild �
�
where Root, Has-No- � stChild, Has-No- � ndChild are unary relation symbols and � stChild, � ndChild are
binary relation symbols. We define Trees to be the set of all > Trees-structures O that satisfy the following
conditions:

1. CIP=QR���S� �T�U� and for every string V �W":C�P with �W"X���
���T� we also have VE":C�P .
2. Root P consists of the empty string � .
3. � stChild P consists of the pairs - V
�YV � / , for all V �I":CIP .
4. � ndChild P consists of the pairs - V
�YV � / , for all V �Z"�C P .
5. Has-No- � stChild P consists of all strings V�":CIP with V � �"�CIP .
6. Has-No- � ndChild P consists of all strings VE"�CIP with V � �":CIP .

For O1" Trees and [\"�C�P we write O^] to denote the subtree of O with root [ .
A schema _ is a set of unary relation symbols each of which is distinct from Has-No- � stChild,

Has-No- � ndChild, Root. A _ -labelled tree is a ��> Trees ` _ 	 -structure consisting of some ON" Trees and
additional interpretations aEPbJ=CIP for all symbols a8"#_ . We sometimes write label ��[ 	 to denote the
set ��a8"#_c�d[;"#aEPd� of labels at vertex [ in O .

We identify a string e � e 6Wf
f�f e �Tgih of length j eZj � � � � over an alphabet � with a _ -labelled
tree Olk in the following way: We choose _ to consist of a unary relation symbol a&m for each letter n�"� , we choose Olk to be the (unique) element in Trees with universe CoPqp � ����� �
� � �
���
��� � �Tgrh � , and we
choose a�P�pm � � ��� � �se � � nq� , for each n�"�� . This corresponds to the conventional representation
of strings by structures in the sense that tKC�P p � � stChild � ��a�P pm 	 m�u
vsw is isomorphic to the structuret����	���
��� �dx �S�
� Succ � �$a�km 	 myu
v;w where Succ denotes the binary successor relation on �y�z���
��� �dx �S� anda�km consists of all positions of e that carry the letter n . When reasoning about strings in the context
of first-order logic, we sometimes also need the linear ordering { on ���	���
��� �dx �U� (respectively, the
transitive closure of the relation � stChild). In these cases we explicitly write FO �|{ 	 rather than FO to
indicate that the linear ordering is necessary.
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XML-documents are usually modelled as ordered unranked trees and not as binary trees. Here
ordered refers to the fact that the order of the children of a vertex is given. However, a standard repre-
sentation of ordered unranked trees as relational structures uses binary relations � stChild � Next-Sibling
and unary relations Root, Leaf, Last-Sibling (for details, see [GK02]) and thus essentially represents
ordered unranked trees as binary trees. Therefore, all our results also apply to ordered unranked trees.

2.3 Logics and Queries

We assume that the reader is familiar with first-order logic, for short: FO, and with monadic second-
order logic, for short: MSO (cf., e.g., the textbooks [EF99,Imm99]). We use FO �*> 	 and MSO �*> 	 ,
respectively, to denote the class of all first-order formulas and monadic second-order formulas, respec-
tively, of signature > . We write � ��� h �
���������T� � h �
��������� 	 to indicate that the free first-order variables of
the formula � are � h ���
���	�
� and the free set variables are � h ���
������� . Sometimes we use � and � as
abbreviations for sequences � h ���
���	�
� and � h �
���
�	��� of variables.

A formula � ��� 	 of signature > defines the unary query which associates with every > -structureB the set of elements n%"%C�D such that B j � � ��n 	 , i.e., B satisfies � when interpreting the free
occurrences of the variable � by the element n . A sentence � of signature > (i.e., a formula that has
no free variables) defines the Boolean query that associates the answer “yes” with all > -structures that
satisfy � and the answer “no” with all other > -structures.

Apart from FO and MSO we will also consider monadic least fixed point logic MLFP (cf., e.g.,
[EF99]) which is the extension of first-order logic by unary least fixed point operators, defined as
follows: Let > be a signature and let � ��� �	� 	 be a formula of signature > which is positive in the
variable � , i.e., every atom of the form � ��
 	 occurs in � within an even number of negation symbols.
� defines for every > -structure B a monotone operator1 � D�� � � ���

� � ���
�

via � D�� � ��� 	o� � ��nX"CID@�sB j � � �$nq��� 	 � , for every �8J CID . A set � is called a fixed point (respectively, pre fixed point,
respectively, post fixed point) of � in B iff � D�� � ��� 	 � � (respectively, � D�� � ��� 	�J�� , respectively,� D�� � ��� 	���� ).
For all VE"7� we define � 6 D�� � � � � , �"!$#

h
D�� � � � � D�� � ��� !D�� � 	 , and % 6 D�� � � � C D , %&!$#

h
D�� � � � � D�� � ��% !D�� � 	 .

Since � D�� � is monotone we have � !D�� � J �"!$#
h

D�� � and % !D�� � �'%&!$#
h

D�� � , for all V " � . Since C D is finite,

a fixed point will be reached eventually, i.e., there is a V 6 such that � !$(D�� � � � !$(	#
h

D�� � � �)�+*D�� � and

% !$(D�� � � % !$(�#
h

D�� � � �,%&*D�� � . We define �+*D�� � to be the least fixed point and %�*D�� � to be the greatest fixed
point of � in B . It is straightforward to see that ��*D�� � is indeed contained in every pre fixed point of
� in B , and that every post fixed point of � in B is contained in % *D�� � . The sets � !D�� � , for V:"b� , are
called the stages of the least fixed point of � in B .

The logic MLFP ��> 	 is the extension of FO �*> 	 by least and greatest fixed point operators. I.e.:
MLFP �*> 	 contains FO �*> 	 and is closed under Boolean connectives and first-order quantifications; and
if � ��� ���7� -r� . 	 is an MLFP �*> 	 -formula which is positive in the variable � then / LFP 0 � 1 �32 ��
 	 and
/GFP 0 � 1 �42 ��
 	 are MLFP ��> 	 -formulas such that for every - > ` � -^� . � / -structure B and every element
n�"�CID we have B j � /LFP 0 � 1 �32 ��n 	 iff n�"5�+*D�� � , and B j � /GFP 0 � 1 �32 �$n 	 iff n�"6%&*D�� � �It is well-known that the greatest fixed point is the dual of the least fixed point, i.e., that the formula
/GFP 0 � 1 �32 ��
 	 is equivalent to the formula 7�/ LFP 0 � 1 78�:9;2 ��
 	 , where �89 is obtained from � by replac-
ing every atom of the form � ��< 	 by the literal 7:� ��< 	 . Therefore, every MLFP-formula = can easily
be transformed into an equivalent MLFP-formula =>9 in negation normal form, where negation symbols
“ 7 ” only occur directly in front of atomic subformulas.

2.4 Formula size and succinctness

In a natural way, we view formulas as finite trees, where leaves correspond to the atoms of the formulas
and inner vertices correspond to Boolean connectives, quantifiers, and fixed-point operators. We define
the size jMj � jMj of a formula � to be the number of vertices of the tree that corresponds to � .

1 An operator ?A@CB�DFEGBHD is monotone iff ?JI�K�L3MN?JI�OPL for all KQMNO'MSR .
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Note that this measure of formula size is a uniform cost measure in the sense that it accounts just
1 cost unit for each variable and relation symbol appearing in a formula, no matter what its index is.
An alternative is to define the size of a formula as the length of a binary encoding of the formula.
Such a logarithmic cost measure is, for example, used in [FG03]. Switching between a uniform and a
logarithmic measure usually involves a logarithmic factor.

Definition 2.1 (Succinctness). Let � h and � � be logics, let � be a class of functions from � to � , and
let � be a class of structures.
We say that � h is � -succinct in � � on � if there is a function �<" � such that for every formula � h " � h
there is a formula � � " � � of size jMj � � jKj�+ ��� jKj � h jMj 	 which is equivalent to � h on all structures in � . �

Intuitively, a logic � h being � -succinct in a logic � � means that � gives an upper bound for the size of
� h -formulas needed to express all of � � . This definition may seem slightly at odds with the common use
of the term “succinctness” in statements such as “ � � is exponentially more succinct than � h ” meaning
that there is some � � -formula that is not equivalent to any � h -formula of subexponential size. In our
terminology, we would rephrase this last statement as “ � h is not ���

�����
-succinct in � � ” (here we interpret

subexponential as ���
�����

, but of course this is not the issue). The reason for defining � -succinctness the
way we did is that it makes the formal statements of our results much more convenient. We will continue
to use statements such as “ � � is exponentially more succinct than � h ” in informal discussions.

Example 2.2. MLFP is � ��) 	 -succinct in MSO on the class of all finite structures, because every for-
mula /LFP 0 � 1 � ��� �	�7� -r� . 	$2 ��
 	 is equivalent to �
� - � 
��	�,�>7:� ��
 � ��� ���7� -^� . 	 / . �

Example 2.3. MLFP is � ��) 	 -succinct in the fragment of MLFP whose formulas are in negation nor-
mal form on the class of all structures.

This allows us to usually work with formulas in negation normal form. �

3 From MSO to MLFP

By the standard translation from MSO-logic to tree automata (cf., e.g., [Tho96]) one knows that every
MSO-sentence � can be translated into a nondeterministic tree automaton with Tower - � � jKj � jKj 	 / states
that accepts exactly those labelled trees that satisfy � . This leads to

Theorem 3.1 (Folklore). MSO-sentences are Tower - � �*) 	 / -succinct in MLFP on the class of all la-
belled trees. �
To show that we cannot do essentially better, i.e., that there is no translation from MSO to MLFP
of size Tower - . ��) 	 / we need a complexity theoretic assumption that, however, does not seem to be
too far-fetched. Let SAT denote the NP-complete satisfiability problem for propositional formulas in
conjunctive normal form. Until now, all known deterministic algorithms that solve SAT have worst-
case complexity ��


�����
(cf., [DGH # 02]). Although not answering the P vs. NP question, the exposition

of a deterministic algorithm for SAT with worst-case complexity + � � 

�

would be a surprising and
unexpected breakthrough in the SAT-solving community.

In the following, we write
��� �����

to denote the � times iterated logarithm, inductively defined by��� �!h � ��� 	o� � ��� � � 	 and
��� ��� #

h �
��� 	o� � ��� � ���

�����
� � 	 	 . Moreover, we we write

��� � to denote the “inverse”
of the Tower function, that is, the (unique) integer valued function with Tower � ��� � � � 	 x � 	X{ � +
Tower � ��� � ��� 	 	 .
Theorem 3.2. Unless SAT is solvable by a deterministic algorithm that has, for every �9" � , time
bound jMj �djKj � 
 ��
�� ����� (where � is the input formula and � the number of propositional variables occurring
in � ), MSO is not Tower -�. �*) 	0/ -succinct in MLFP on the class of all finite strings. �

The overall proof idea is to assume that the function � specifies the size of the translation from MSO
to MLFP and to exhibit a SAT-solving algorithm which

– constructs a string e that represents the SAT-instance � ,
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– constructs an MSO-formula � ��
 	 of extremely small size that, when evaluated in e , specifies a
canonical satisfying assignment for � (if � is satisfiable at all),

– tests, for all MLFP-formulas = ��
 	 of size + ��� jMj � jMj 	 , whether = specifies a satisfying assignment
for � .

Before presenting the proof in detail we provide the necessary notations and lemmas:
It is straightforward to see

Lemma 3.3. There is an algorithm that, given an MLFP-formula = ��
 	 , a string e , and a position 
 ine , decides in time j eZj � ����� ����� �
whether e j � = � 
 	 . �

Let us now concentrate on the construction of a string e that represents a SAT-instance � and of an
MSO-formula � ��
 	 that specifies a canonical satisfying assignment of � (provided that � is satisfiable
at all). Since we want � to be extremely short, we cannot choose e to be the straightforward string-
representation of � . Instead, we use the following, more complicated, representation of [FG03]:

For all � � � let �  � ��� �z� �S� <1> � </1> �
���
� <h> � </h> � . The “tags” <i> and </i> represent
single letters of the alphabet and are just chosen to improve readability. For every � � � let � ��� 	 be
the length of the binary representation of the number �dx � , i.e., � �$� 	 � � , � � � 	 � � , and � � � 	 �	 ��� � �dx � 	�
s� � , for all � � � . By bit � �Y� � 	 we denote the � -th bit of the binary representation of � , i.e.,
bit � � � � 	 is 1 if � �� 

� is odd, and bit � � � � 	 is � otherwise.
We encode every number �5"�� by a string �  ��� 	 over the alphabet �  , where �  � � 	 is inductively
defined as follows: � h �$� 	;� � <1></1>, and

� h ��� 	�� � <1> bit ���	� �dx � 	 bit � �
� �dx � 	 f
f�f bit ��� ��� 	 x �
� �dx � 	 </1> �
for � � � . For � � � we let �  ��� 	;� � <h></h> and

��� I�� L6@ � <h>
������� I���L bit I���������� L
������� I � L bit I �!������� L

...
������� I�"�I�� L#�$� L bit I�"�I�� L#���!���%��� L

</h> �
for � ��� . Here empty spaces and line breaks are just used to improve readability.

To encode a CNF-formula � by a string we use the alphabet&('� @ � & �$)�!* �+�$� <lit> � </lit> � <clause> � </clause> � <cnf> � </cnf> �,)�.- � <ass> � </ass> � <val> � </val> �0/
Let �&"�� and let � � be a propositional variable. The literal � � is encoded by the string

�  ��� � 	b� � <lit> �  � � 	q� </lit> �
and the literal 7:� � is encoded by �  � 7:� � 	b� � <lit> �  ��� 	^x </lit> �
A clause 1Z� �32 h � f�f
f � 2.4 of literals is encoded by

�  �51 	=� � <clause> �  � 2 h 	 f�f
f �  � 264 	 </clause> �
A CNF-formula �7� � 1 h 
 f�f
f 
7198 is encoded by the string

�  � � 	b� � <cnf> �  �:1 h 	 f�f
f �  �5198 	 </cnf> �
We write CNF � � 	 to denote the class of all CNF-formulas the propositional variables of which are
among � 6 �
������� �Tgrh . To provide the “infrastructure” for specifying a truth assignment to the variables
� 6 ���
���	� �Tgih , we use the string

���,I�;=<!�>/
/
�?;=@ �6� L5@ � <ass>
<val> ���,I���L - </val>
<val> ���,I � L - </val>

...
<val> ���,I������ L - </val>

</ass> /
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Remark 3.4. There is a 1–1-correspondence between assignments ��@ � ; < �>/
/ �?; @ ��� ��E �
true � false � ,

on the one hand, and sets a of positions of �  ��� 6 �����
�	� �Tgih 	 that carry the letter � , on the other hand:
Such a set a specifies the assignment �

�
that, for each � {�� , maps the variable � � to the value true

iff the � -position directly after the substring �  � � 	 in �  ��� 6S�
������� �Tgrh 	 belongs to a . Conversely, a
given assignment � specifies the set a �

consisting of exactly those � -positions of �  ��� 6S�
������� �Tgrh 	
that occur directly after a substring �  � � 	 where � ��� � 	 � true. �

Finally, we encode a formula �X" CNF � � 	 by the string

�  � � ��� 	 � � �  � � 	 �  ��� 6 �
������� �Tgrh 	r�
�  � � ��� 	 is the string e that we will furtheron use as the representative of a SAT-instance � . We use the
following result of [FG03]:

Lemma 3.5.

(a) There is an algorithm that, given �b"=� and �4" CNF � � 	 , computes (a binary representation of)
the string �  � � ��� 	 in time � - � f � ��� � 	 f � ��� � 	 � f � jKj �&jKj
� � 	 / (cf., [FG03, Lemma 9]).
The string �  � � ��� 	 has length j �  � � ��� 	�j � � - � f � ��� � 	 � f � jMj �djKj
� � 	 / .

(b) There is an algorithm that, given �#"#� , computes (the binary representation of) a FO �|{ 	 -formula
�  � � 	 in time � - � f ��� � / , such that for all � + Tower �$� 	 , for all � " CNF ��� 	 , and for all sets a
of � -positions in the string �  � � ��� 	 we have

�  � � ��� 	 j � �  ��a 	 iff �
�

is a satisfying assignment for �

(cf., [FG03, Lemma 10]). The formula �  � � 	 has size2 jKj �  � � 	�jKj � � ��� 	 . �

Given a CNF ��� 	 -formula � and its representative �  � � ��� 	 , we now specify a canonical satisfying
assignment of � , provided that � is satisfiable at all. As observed in Remark 3.4, every assignment
�8�;��� 6 ���
���	� �Tgih �<� � true � false � corresponds to a set a �

of positions in �  � � ��� 	 that carry the
letter � . a �

, again, can be identified with the 0-1-string of length j �  � � ��� 	�j that carries the letter 1
exactly at those positions that belong to a �

. Now, the lexicographic ordering of these strings gives us
a linear ordering on the set of all assignments �1� ��� 6 ���
����� ��grh ����� true � false � . As the canonical
satisfying assignment of � we choose the lexicographically smallest satisfying assignment.

Lemma 3.6. There is an algorithm that, given � " � , computes (the binary representation of) an
MSO-formula �  ��
 	 in time � - � f ��� � / , such that for all �b+ Tower ��� 	 , for all � " CNF ��� 	 , and for
all positions 
 of �  � � ��� 	 that carry the letter � , we have

�  � � ��� 	 j � �  � 
 	 iff in the lexicographically smallest satisfying assignment
for � , the propositional variable corresponding to posi-
tion 
 is assigned the value true.

The formula �  ��
 	 has size jKj �  jMj � � �$� 	 . �

Finally, we are ready for the Proof of Theorem 3.2:

Proof of Theorem 3.2.
Let �4�	� � � be a function such that there is, for every MSO-formula � ��
 	 , a MLFP-formula = ��
 	
of size jKj =ojMj^+ ��� jKj � jKj 	 which defines the same query as � on the class of all finite strings (recall that
such an � does indeed exist, because MSO and MLFP have the same expressive power over the class
of finite strings).
Consider the algorithm displayed in Figure 1, which decides if the input formula � is satisfiable.
The correctness of this algorithm directly follows from Lemma 3.6 and from the fact that at least one
of the formulas = ��
 	 of size + ��� jMj �  jMj 	 defines the same query as �  ��
 	 .

2 In [FG03], an additional factor �
	�� occurs because there a logarithmic cost measure is used for the formula
size, whereas here we use a uniform measure (cf., Section 2.4).
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Input: a SAT-instance � in CNF

1. Count the number � of propositional variables occurring in � , and
modify � in such a way that only the propositional variables ; < �
/
/
�?; @ �6� occur in it.

2. Compute � @ � �
	���I�� L , i.e., choose ����� such that Tower I �6��� L�� �
	 Tower I �,L .
3. Construct the string � � I���� - L that represents � (see Lemma 3.5 (a)).
4. Construct an MSO-formula ���,I�
CL that has the following property:

Whenever � is a position in ���,I���� - L that carries the letter
-

, we have

��� I���� - L�� ��� � I�� L iff in the lexicographically smallest satisfying assignment
for � , the propositional variable corresponding to posi-
tion � is assigned the value true

(cf., Lemma 3.6).
5. For all MLFP-formulas � I�
CL of size ��� ������	���I���� ������� L do:

(a) Initialise the assignment �5@ ��� .
(b) For all positions � in ��� I���� - L that carry the letter

-
do

check whether ��� I���� - L�� ��� I�� L ;
if so, then insert the propositional variable corresponding to � into � .

(c) Check whether � is a satisfying assignment for � ;
if so, then STOP with output “ � is satisfiable via assignment � ”.

6. STOP with output “ � is not satisfiable”.

Fig. 1. A SAT-solving algorithm.

It remains to determine the worst-case running time of the algorithm. Let � be an input CNF-
formula for the algorithm, let � be the number of propositional variables of � , and let �#� � ��� � � � 	 .
The steps 1–4 of the algorithm will be performed within a number of steps polynomial in jKj �&jKj , and the
MSO-formula �  ��
 	 produced in step 4 will have size jMj �  jKjT+ F f � , for a suitable constant F "#� (cf.,
Lemma 3.5 (a) and Lemma 3.6).
The loop in step 5 will be performed for ���� "! # �:��� $&%���� � ! � 
 � # �:��� $&% ��� ��� times, for a suitable constant F h " � .
To see this, note that formulas of length + ��� jMj �  jKj 	 use at most ��� jMj �  jKj 	 different first-order variables
and at most ��� jKj �  jMj 	 different set variables. I.e., these formulas can be viewed as strings of length
��� jKj �  jKj 	 over an alphabet of size F � ��� f ��� jKj �  jKj 	 , for a suitable constant F � "%� . Therefore, the
number of such formulas is + � F � � � f ��� jKj �  jMj 	 	"# �:��� $&% ��� � + �'�� (! # ����� $&%���� � ! � 
 � # �:��� $&%���� ��� .
Each performance of the loop in step 5 will take a number of steps polynomial in

j �  � � ��� 	�j � � # �:��� $&%���� ��� + � F*) f � f � ��� � 	 � f jKj �&jMj 	 �,+*! # � �"!  � �
for suitable constants F ) � F.- "�� (cf., Lemma 3.3 and Lemma 3.5 (a)). Altogether, for suitable constantsF �"/:"�� , the algorithm will perform the steps 1–6 within jKj �&jKj 01! # � �"!  � ! � 
 � # � �"!  ��� steps.

Now let us suppose that � has bound ����) 	 + Tower -�. �*) 	0/ . From Lemma 3.7 below we then ob-

tain that our SAT-solving algorithm has, for every �W"#� , time bound jMj �&jMj � 
 � 
�� ����� . This finally completes
the proof of Theorem 3.2. 2
Lemma 3.7. Let � �^�N� � be a function with bound ���*) 	E+ Tower - . �*) 	 / , and let F �3/<"4� . For
every �W"�� there is an �i6E"#� such that for all � � �i6 we have

4�5 �76�8 5 � 	 � I�� L:9 5 � 	;6<��I=8 5 � 	 � I�� L$L:9>	 � 	@?�ACB	I�� L / �

4 The Two-Variable Fragment of MLFP and the Full Modal D -Calculus

Defining the 2-variable fragment of MLFP requires some care, as the following theorem illustrates.
To the best of our knowledge, this theorem has not appeared in the literature before, although other
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researchers have noticed that just restricting least fixed-point logic to formulas with at most two first-
order variables does not yield a logic that behaves as a “proper 2-variable logic” [GOR99,GO99,Dzi96].
Note that the following theorem holds for arbitrary finite structures and not just for trees.

Theorem 4.1. Let > be a signature that consists of relation symbols of arity + � . Every MLFP �*> 	 -
sentence � is equivalent to an MLFP ��> 	 -sentence ��9 of size jKj �89 jKj^" � � jKj �sjKj 	 with just two first-order
variables. �

The following restriction MLFP � of MLFP is more interesting. MLFP � is the monadic version of the
logic FP � considered by [GOR99,GO99], which is denoted by �FP � in [Dzi96].

Definition 4.2 (MLFP
�
). An MLFP-formula is strict if no parameters are allowed in the fixed points,

that is, if for all subformulas of the form / LFP 0 � 1 �32 ��- 	 , � is the only free first-order variable of � .
We define 2-variable monadic least fixed point logic, denoted by MLFP � to be the restriction of

MLFP to strict formulas with at most 2 first-order variables. �
We first note that MLFP � , and actually FO � , the two variable fragment of first-order logic, is doubly
exponentially more succinct than nondeterministic automata on the class of all finite strings:

Example 4.3. Let _<� � ��� � ?Z� a h �
���
� a � � and

� @ @ ����� � "�� E
	�� 6�
 ��� @�
A�� � I�� A ���
� A � L 9�� /

We claim that every nondeterministic finite automaton accepting precisely those strings over alphabet
��� that satisfy � has at least � ��� states. To see this, for every �HJ ��� h �! " � �$# , we define strings � � �%� 	
and . � �&� 	 such that

– ��1 �
�(' � � CJ1 �

�)'��
and ?�* �

�)'�� � C�* �
�)'��

– For all VE"+� there exists an �7":C 1 �
�(' �

and an - " C * �
�(' �

such that
V � � �\jC�7"9a 1 �

�)'��� � � � �sj�-�"�a * �
�(' �� � .

Let , � �&� �0O 	 � � � � �%� 	 . � �*O 	 be the concatenation of � � �%� 	 and . � �*O 	 . Then , � �%�d�0O 	5j �
� -/. � J O � Clearly, a nondeterministic finite automaton accepting precisely those strings, � �&� �0O 	 with ��J O needs at least � �0� states. �
Let us return to binary trees now. Following Vardi [Var98], we define the full modal � -calculus FL 1 on
binary trees as follows:

Definition 4.4 (FL 2 ). For each schema _ , an FL 1 -formula of schema _ is either:

– true, false, a , or 7 a , where aN"#_ ` � Root � Has-No- � stChild � Has-No- � ndChild � ;
– � h 
 � � or � h � � � , where � h and � � are FL 1 -formulas of schema _ ;
– � , where � is a propositional variable;
– t�? w � or / ?>2 � , where ? " ��� stChild � � ndChild � � stChild

gih � � ndChild
grh � and � is an FL 1 -

formula of schema _ ;
– � �7� � or 3,�7� � , where � is a propositional variable and � is an FL 1 -formula of schema _ . �

Instead of formally defining the semantics of FL 1 , we just give a translation of FL 1 into MLFP � . For a_ -labelled tree O and a node [ "�C�P , we write �*O � [ 	�j � � to denote that the FL 1 -formula � holds at
[ in O . We identify propositional variables in FL 1 -formulas and set variables in MLFP � -formulas. For
every FL 1 -formula � we define an MLFP � -formula � ��� 	 in such a way that for all trees O and nodes[\"�C P we have ��O �0[ 	 j � �4-/. O%j � � ��[ 	 �

– If � � true then � ��� 	s� � ��� � � 	 . If � � false then � ��� 	s� � 7 ��� � � 	 .
If � � a then � ��� 	 � � a ��� 	 . If � � 7 a then � ��� 	 � � 7 a ��� 	 .

– If � � � then � ��� 	 � � � ��� 	 .
– If � � � h � � � then � ��� 	 � � � h ��� 	 � � � ��� 	 .

If � � � h 
 � � then � ��� 	 � � � h ��� 	 
 � � ��� 	 .
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– If � � � t�? w � = for ? "%��� stChild � � ndChild � then � ��� 	,� � �,- - ? ��� ��- 	 
�� ��- 	 / , where � ��- 	 is
obtained from � ��� 	 by simultaneously replacing all occurrences of � by - and vice-versa. Similarly,
if � � � t�? gih w � = for ? " ��� stChild ��� ndChild � then � ��� 	 � � �,- - ? ��-^�	� 	 
�� ��- 	 / .

– If � � � / ?>2 � = for ? "8� � stChild ��� ndChild � then � ��� 	�� � �
-d-�? ��� �	- 	,��� ��- 	0/ . Similarly, if
� � � / ? grh 2�� = for ? " ��� stChild ��� ndChild � then � ��� 	 � � ��- - ? ��-^�	� 	&��� ��- 	 / .

– If � � � � �7� = then � ��� 	s� � / LFP 0 � 1 � ��� 	 2 ��� 	 .
If � � � 3,�7� = then � ��� 	s� � /GFP 0 � 1 � ��� 	$2 ��� 	 .

What we have seen above is that FL 1 is � �*) 	 -succinct in MLFP � . Our next result is that there also is
a reverse translation from MLFP � to FL 1 which only incurs an exponential blow-up in size:

Theorem 4.5. MLFP � is � poly
� 8 �

-succinct in FL 1 on the class of labelled trees. More precisely: There
is a number F "7� such that for every MLFP � -formula � ��� 	 there is an FL 1 -formula � of size jMj � jKjz+
�
���
�
��� �

such that for all labelled trees O and all nodes [\":C P , O%j � � ��[ 	 iff ��O �0[ 	 j � � . �

Theorem 4.6 (Vardi [Var98]). For every formula � of the full modal � -calculus FL 1 there is a nonde-
terministic tree automaton of size � poly

�:��� $%��� �
that accepts exactly those labelled trees in which � holds

at the root. �

As a matter of fact, Vardi [Var98] proved a stronger version of this theorem for infinite trees and parity
tree automata. But on finite trees, a parity acceptance condition can always be replaced by a normal
acceptance for finite tree automata.
The Theorems 4.5 and 4.6 directly imply

Corollary 4.7. For every MLFP � -formula � ��� 	 there is a nondeterministic tree automaton of size

� � poly
��� � �	� � �

that accepts exactly those labelled trees in which � holds at the root. �

5 Simultaneous Least Fixed Point Logic

In this section we consider the simultaneous least fixed point operator which is defined as follows (cf.,
e.g., the textbook [EF99]):

Let > be a signature and let � h ��� h �	� h �
���
�	� � 	 �
������� � ��� � �	� h �
������� � 	 be formulas over the signa-
ture > , each of which is positive in all the variables � h ���
����� � . For every > -structure B every formula
� � defines a monotone operator � D�� � 
 �&- ���

� /
�
� ���

�
via � D�� � 
 ��� h �����
��� � 	 � � ��n#"9CID@�sB j �

� � ��n���� h �����
��� � 	Y�
� A tuple ��� h �����
��� � 	 is called a simultaneous fixed point of ��� h �
���
��� � 	 in B iff,
for all �&+ � , � D�� � 
 ��� h �����
��� � 	 � � � .
For all �X+ � and VA" � we define � 6 D�� � 
 � � � and � !$#

h
D�� � 
 � � � D�� � 
 - � !D�� �  ���
����� !D�� � � / . Since

� D�� � 
 is monotone we have � !D�� � 
�J � !$#
h

D�� � 
 for all V9"4� ; and since B is finite a fixed point will be

reached eventually, i.e., there is a V 6 such that �+! (D�� � 
 � �"! ( #
h

D�� � 
 � ���+*D�� � 
 for all �,+ � . We define
- �+*D�� �  �
�������"*D�� � � / to be the simultaneous least fixed point of ��� h ���
����� � 	 in B . It is straightforward
to see that the simultaneous least fixed point is included in every simultaneous fixed point ��� h �
���
��� � 	
of ��� h �
���
��� � 	 in B , i.e., �+*D�� � 
\J�� � , for all �W+ � (cf., e.g., [EF99, Lemma 8.1.17]).

The logic Sim-MLFP ��> 	 is the extension of MLFP ��> 	 by simultaneous least fixed point operators.
I.e.: Sim-MLFP ��> 	 contains MLFP ��> 	 and is closed under Boolean connectives and first-order quantifi-
cations; and if �1" � and � h ��� h ��� h ���
���	� � � -q� . 	 �
���
��� � ��� � �	� h �
���
�	� � � -�� . 	 are Sim-MLFP �*> 	 -
formulas each of which is positive in the variables � h ���
���	� � then, for every �\+ � ,

/ Sim-LFP 0  � 1  �!  � 0 � � 1 � �
h �����
��� � 2 1 
 ��� 	

is a Sim-MLFP ��> 	 -formula such that for every - > ` � -^� . � / -structure B and every element nb"XC�D
we have B2j � / Sim-LFP 0  �� 1  �! " 	� 0 � � 1 � �

h �
���
��� � 2 1 
 �$n 	 iff n�"6�"*D�� � 
��
Remark 5.1. It is straightforward to see that Sim-MLFP is � ��) 	 -succinct in MSO. �
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Every simultaneous least fixed point can be expressed by an MLFP-formula of exponential size:

Proposition 5.2. Let > be a signature, let �d�YV1" � , and let, for each �=+ � , � � ��� � �	� h �
������� � 	
be an MLFP �*> 	 -formula of size jMj � � jKjl+@V and positive in � h �
���
�	� � . For every �#+ � there is a
MLFP �*> 	 -formula � 1 
 ��� 	 of size jKj � 1 
 jKjq+RV

�
such that, for all > -structures B , B j � �
� � 1 
 ��� 	��/ Sim-LFP 0  � 1  �!  � 0 � � 1 � �

h �����
��� � 2 1 
 ��� 	 .
Furthermore, if � h �����
��� � are in MLFP � , then also � 1 
 is, for every �W+ � . �
Using Proposition 5.2 one easily obtains the following result by induction on the construction of
Sim-MLFP-formulas:

Corollary 5.3. Sim-MLFP is � �
� ��� �

-succinct in MLFP on the class of all finite structures. �
Together with Theorem 3.2 this leads to

Corollary 5.4. Unless SAT is solvable by a deterministic algorithm that has, for every �:"R� , time
bound jMj �djKj � 
 ��
�� ����� (where � is the input formula and � the number of propositional variables occurring
in � ), MSO is not Tower - . �*) 	 / -succinct in Sim-MLFP on the class of all finite strings. �

6 Monadic Datalog and Stratified Monadic Datalog

We assume that the reader is familiar with datalog, which may be viewed as logic programming with-
out function symbols (cf., e.g., the textbook [AHV95]). A datalog program is monadic if all its IDB-
predicates (i.e., its intensional predicates that appear in the head of some rule of the program) are unary.
In this paper we restrict attention to monadic datalog programs that are interpreted over labelled trees.
A monadic datalog program of schema _ may use as EDB-predicates (i.e., extensional predicates which
are determined by the structure the program is interpreted over) the predicates in > Trees, the predicates
in _ , and a predicate 7 a for every a8"�_ which is interpreted as the complement of a . We use IDB � � 	
to denote the set of IDB-predicates of

�
, and we write MonDatalog to denote the class of all monadic

datalog programs.
More formally, a monadic datalog program

�
of schema _ is a finite set of rules of the form

� ��� 	�� ����� � - 	 , where � is a conjunction of atomic formulas over the signature > Trees ` _ ` �C7 a �aN"#_ � ` IDB � � 	 . We define the size jMj � jMj of
�

in the same way as we defined the size of formulas.
Instead of formally defining the semantics of MonDatalog, we just give a translation of MonDatalog
into Sim-MLFP on the class of all labelled trees:
Given a MonDatalog-program

�
of schema _ with IDB � � 	 � �H� h ���
���	� � � , we can assume w.l.o.g.

that there is a unique first-order variable � such that every rule in
�

is of the form � � ��� 	�� ����� � - 	 , for
some �W+ � . Let � � �

h ��� � - 	 ���
��� � � � � 
 ��� � - 	 be a list of all bodies of rules with head � � ��� 	 in
�

. Of course,
the FO-formula � � ��� ��� h ���
����� � 	7� �
	 � 
�
� h � - � � � � ��� � - 	 is positive in all the variables � h �
���
�	� � .
When evaluated in a _ -labelled tree O , the program

�
defines the unary relations ��� � 	 *� �*O 	 , for �W+ � ,

to be the simultaneous least fixed point of ��� h �����
��� � 	 in O .
A MonDatalog-program

�
of schema _ , together with a designated goal predicate � " IDB � � 	 ,

defines the unary query which yields, for every _ -labelled tree O , the set � *� �*O 	 of vertices of O . We
say that O belongs to the Boolean query defined by � � �	� 	 iff the root of O belongs to � *� �*O 	 .
Let us sum up what we have seen above:

Lemma 6.1. For every MonDatalog-program
�

with IDB � � 	 � �H� h �����
�	� � � there are FO-formulas
� � ��� �	� h �����
�	� � 	 , for every �\"<� �S���
��� � � , positive in � h �
���
�	� � , such that jMj � � h jKj!� �����#jKj � � jKjT+ jMj � jMj
and / Sim-LFP 0 � 1  ��!  � 0 � 1 � �

h ���
����� � 2 1 
 ��� 	 defines the same unary query as � � ��� � 	 on the class of all
labelled trees. �
Gottlob and Koch [GK02] proposed the following useful normal form for monadic datalog:

Definition 6.2 (TMNF). A MonDatalog-program
�

of schema _ is in tree marking normal form
(TMNF, for short) iff each rule is of one of the four forms

1. � ��� 	�� � ��� 	 ,
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2. � ��� 	�� �N9 ��� 	 
 � 9 9 ��� 	 ,
3. � ��� 	�� ? ��� �	- 	 
 � 9 ��- 	 ,
4. � ��� 	�� ? ��-���� 	 
 � 9 ��- 	 , where

�7�	� 9��	� 9 9r" IDB � � 	 , ?c" ��� stChild ��� ndChild � , and�4"#_ ` ��7 a �&aN"�_ � ` � Root � Has-No- � stChild � Has-No- � ndChild � . �

Theorem 6.3 ([GK02, Theorem 4.11]). For every MonDatalog-program
�

and every � " IDB � � 	
there is a TMNF-program

�
1 of size � � jKj � jKj 	 with � " IDB � � 1 	 such that � � 1 ��� 	 defines the same

unary query as � � �	� 	 on the class of labelled trees. �

One way of adding negation to datalog is to consider stratified datalog (cf., [AHV95]): A stratified
monadic datalog program

�
of schema _ is a finite set of rules of the form � ��� 	 � � ��� � - 	 , where �

is a conjunction of atomic formulas over the signature > Trees ` _ ` �C7 a �&a8"9_ � ` IDB � � 	 ` �C7:� �
� " IDB � � 	Y� that has the following property: There is a partition of

�
into sets

� h �
���
� � � , for some
� "8� , such that each

� � is a MonDatalog-program of schema _ ` � ��� � IDB � � � 	 . The programs� h �����
� � � are called the strata of
�

, and � � h ���
��� � � 	 is called a decomposition of
�

into strata.
We write S-MonDatalog to denote the class of all stratified monadic datalog programs.

In [GK02] it was shown that MonDatalog can define the same unary queries on the class of labelled
trees as monadic second-order logic. In the remainder of this section we will compare the succinctness
of MonDatalog, S-MonDatalog, FL 1 , MLFP, and a particular kind of tree automaton.

6.1 From MonDatalog to Finite Automata

Several mechanisms have been proposed in the literature for specifying unary queries by finite automata
operating on labelled trees (cf. [NS02]). One such mechanism, introduced in [Nev99] and further in-
vestigated in [FGK03,Koc03], is the selecting tree automaton:

Definition 6.4 (STA). Let _ be a schema. A selecting _ -tree automaton ( _ -STA, for short) is a tuple� � ��� ��� � � � �#1 ��� 	 , where � J�� is the set of selecting states and ���:��� � � � � 1 	 is a conventional
nondeterministic bottom-up tree automaton (cf., e.g., [Tho96]) with finite state space � , input alphabet
��� , accepting states � J	� , and transition function

1�� � � ` - ���U��
��

 � � / ` - � �T��
���
 � � / ` - �

���
 � � / � ���#�
A run of

�
on a _ -labelled tree O is a mapping � � CEP � � that has the following property,

for all vertices [ � [ h �0[ � "'CIP : if [ has no children then � ��[ 	 � 1 � label ��[ 	 	 ; if � stChild �*[ � [ h 	 

Has-No- � ndChild ��[ 	 then � �*[ 	 " 1 - �S��� ��[ h 	 � label �*[ 	 / ; if � ndChild ��[ �0[ � 	 
 Has-No- � stChild ��[ 	 then
� ��[ 	s" 1 - ����� ��[ � 	 � label �*[ 	 / ; if � stChild ��[ �0[ h 	 
 � ndChild ��[ �0[ � 	 then � �*[ 	;" 1 - � ��[ h 	 ��� ��[ � 	 � label ��[ 	 / .

A run � of
�

on O is said to be accepting if it maps the root of O to a state in � . The unary query
defined by

�
is the query which maps every _ -labelled tree O to the set of those vertices [I"7CZP that

satisfy the following condition: � ��[ 	;" � for every accepting run � of
�

on O . �
It was shown in [FGK03,Nev99] that STAs can define exactly those unary queries on the class of
labelled trees that are definable in monadic-second order logic.

Theorem 6.5 ([FGK03,GK02]). MonDatalog is � � � 8 �
-succinct in STAs on the class of labelled trees.

More precisely: Let
�

be a MonDatalog-program of schema _ , and let � " IDB � � 	 . There is a _ -STA�
with � � �:��� � ��� �

states that defines the same unary query as � � �	� 	 on the class of labelled trees. Given�
, the STA

�
can be computed in time � � �:��� � ��� �

. �
The next example shows that, asymptotically, the above construction is optimal:

Example 6.6. For every �="4� there is a MonDatalog-program of size � ��� 	 that defines a query not
definable by an STA with less than � � states:
Restricting attention to conventional nondeterministic finite automata (NFAs) that operate on finite
strings, it is straightforward to see that there is no NFA

�
with less than � � states such that, for all
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e h �0e � "c�y�z� �U� � ,
�

accepts the string e h � e � if and only if e h � e � . On the other hand, the fol-
lowing MonDatalog-program

� � has size � ��� 	 and has the property that, for all e h �0e � "c���	� �S� � ,��� ok 	 *��� �*e h � e � 	 contains the maximum position of the string e h �Ue � if and only if e h � e � . The
program

� � consists of the following rules:

� transfer6 ��� 	 � a 6 ��- h 	 
 Succ ��- h �	- � 	 
 f�f�f 
 Succ ��- � grh �	- � 	 
 Succ ��- � ��� 	
� transferh ��� 	 � a h ��- h 	 
 Succ ��- h �	- � 	 
 f�f�f 
 Succ ��- � grh �	- � 	 
 Succ ��- �T��� 	
� compare ��� 	 � a 6 ��� 	 
 � transfer6 ��� 	
� compare ��� 	 � a h ��� 	 
 � transferh ��� 	
� ok ��� 	 � a � ��� 	� ok ��� 	 � � ok ��- 	 
 Succ ��-���� 	 
 � compare ��� 	^� �

6.2 From S-MonDatalog to MonDatalog

In this section we show that S-MonDatalog-programs can be translated into MonDatalog-programs
of at most exponential size. It remains open if the exponential size is indeed necessary or if, on the
contrary, for every S-MonDatalog-program

�
there exists an equivalent MonDatalog-program

� 9 of
size polynomial in jMj � jMj .
Lemma 6.7. For every _ -STA

� � ��� ���$��� � �#1U�0� 	 there is a MonDatalog-program
�

of size �X-Yj �,j ) f
j ���^j ��j _&j f j ���ij / and a designated goal predicate � " IDB � � 	 such that � � � � 	 defines the complement
of the query defined by

�
on the class of all _ -labelled trees. �

Using Theorem 6.5 and Lemma 6.7 one easily obtains

Proposition 6.8. For every MonDatalog-program
�

there is a MonDatalog-program
� 9 of size � � �:��� � ��� �

with IDB � � 9 	 �%�H�<� � ��� " IDB � � 	 � such that, for every � " IDB � � 	 , � � 9���� 	 defines the same
unary query as � � ��� 	 , and � � 9 � � 	 defines the complement of the unary query defined by � � �	� 	 on
the class of labelled trees. �

Using the above proposition, it is not difficult to prove

Theorem 6.9. S-MonDatalog is � � � 8 �
-succinct in MonDatalog on the class of labelled trees. More

precisely: For every S-MonDatalog-program
�

there is a MonDatalog-program
� 9 of size � � �:��� � ��� �

such that IDB � � 9 	&� IDB � � 	 and, for every � " IDB � � 	 , � � 9���� 	 defines the same unary query as
� � �	� 	 on the class of all labelled trees.
Given

�
, the program

� 9 can be computed in time � � �:��� � ��� �
. �

6.3 S-MonDatalog vs FL 2
From Theorem 4.6 and Lemma 6.7 one directly obtains

Theorem 6.10. FL 1 is � poly
� 8 �

-succinct in S-MonDatalog on the class of labelled trees. More pre-
cisely: For every FL 1 -formula � there is an S-MonDatalog-program

�
of size � poly

�:��� $%��� �
and a predi-

cate � " IDB � � 	 , such that, for all labelled trees O , the root of O belongs to the unary query defined
by � � �	� 	 if, and only if, the root of O satisfies � . �

Conversely, using Theorem 6.3, Lemma 6.1, and Proposition 5.2 one can show the following

Theorem 6.11. S-MonDatalog is � � � 8 ! � 
 8 �
-succinct in FL 1 on the class of labelled trees. More pre-

cisely: For every S-MonDatalog-program
�

and every ��" IDB � � 	 , there is a FL 1 -formula � 1 of
size � � �:��� � ��� ! � 
 ��� � ��� �

that defines the same unary query as � � �	� 	 on the class of labelled trees. �

It remains open whether the above bounds are optimal.
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6.4 From MLFP to S-MonDatalog

Similarly to Theorem 3.1 one easily obtains

Theorem 6.12 (Folklore). MLFP-sentences are Tower - � ��) 	 / -succinct in S-MonDatalog on the class
of labelled trees. �
The aim of this section is to show that there are no essentially smaller translations from MLFP to
S-MonDatalog. We will use the following well-known observation:

Proposition 6.13 (Folklore). There is no function �7�S� � � with bound ���*) 	;+ Tower -$. ��) 	 / such
that for every FO �|{ 	 -sentence � there is a nondeterministic finite automaton

�
with at most ��� jKj �sjKj 	

states that accepts exactly those strings that satisfy � . �
Using Proposition 6.13 and the results of the Sections 6.1 and 6.2, one obtains the following:

Theorem 6.14. There is no function �<�S� � � with bound ����) 	;+ Tower - . �*) 	 / such that for every
FO �|{ 	 -sentence � there is a S-MonDatalog-program

�
of size jKj � jMjT+ ��� jKj �sjKj 	 and a designated goal

predicate � " IDB � � 	 such that � � �	� 	 defines the same Boolean query as � on the class of all finite
strings. �
Since FO �|{ 	 is included in MLFP, the above theorem directly implies the following:

Corollary 6.15. MLFP is not Tower -$. ��) 	 / -succinct in S-MonDatalog on the class of all finite strings.
�

It remains open if this result remains valid when replacing MLFP with MLFP � . Note, however, that for
the proof of Proposition 6.13 a small number � of first-order variables suffices. I.e., Proposition 6.13
remains valid when replacing FO �0{ 	 with FO

� �|{ 	 , and Corollary 6.15 remains valid when replacing
MLFP with MLFP

�
.

Together with Corollary 4.7 and Lemma 6.7, the above Corollary 6.15 implies

Corollary 6.16. MLFP is not Tower - . �*) 	 / -succinct in MLFP � on the class of all finite strings. �

7 Conclusion

We studied the succinctness of a number of fixed point logics on trees. We believe that the analysis of
succinctness, which may be viewed as a refined, “quantitative” analysis of expressive power, is a very
interesting topic that deserves much more attention.

Even though we were able to get a good overall picture of the succinctness of monadic fixed point
logics on trees, a number of questions remain open. Let us just mention a few of them:

– The exact relationship between monadic datalog, stratified monadic datalog, and the full modal
� -calculus remains unclear. In particular: Is the class of all queries whose complements can be
defined by monadic datalog programs polynomially succinct in monadic datalog, or is there an
exponential lower bound? (Recall that in Proposition 6.8 we prove an exponential upper bound.)

– Our proof that MSO is not Tower �$. �*) 	 	 -succinct in MLFP relies on a complexity theoretic as-
sumption. Is it possible to prove this result without such an assumption?

– We have only considered the 2-variable fragment of MLFP here. What about the � -variable frag-
ments, for � � �

? Do they form a strict hierarchy with respect to succinctness?
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[GO99] E. Grädel and M. Otto. On Logics with Two Variables. Theoretical Computer Science, 224:73–113,
1999.
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Appendix

A Proofs omitted in Section 3

Proof of Lemma 3.3.
It is straightforward to exhibit an algorithm B with time bound j eZj � �:��� � ��� �

such that the following is
true: Given �r���o" � , an MLFP-formula = ��� h �����
�	�
�T�	� h �
���
�	��� 	 , a string e , a sequence 
 h �����
� 

� of
positions in e , and sets a h ���
��� a4� of positions in e , B decides whether � � ��� I�� � � /
/
�=��� � � � �
/ /
� ����L .B operates by recursion on the construction of = . The only non-trivial case is when = is of the form
/LFP � � * = 9 ��-���.W��� h �����
�	�
�T�	� h �
���
�	��� 	 2 ��� � 	 . In this case, B computes the stages of the least fixed point
of = 9 . I.e., B performs the following operations:

1. Initialise the set � 6 � �'� .
2. For VE� � � to j eZj do

(a) Initialise the set � ! � � � .
(b) For �o� � � to j eZj x � do

check whether eNj � = 9 �	�T��� ! gih � 
 h �
���
� 
�� � a h ���
��� a4� 	 ;
if so, then insert � into � ! .

3. Check whether 
 � belongs to �
� k �

;
if so, then STOP with output “yes”, otherwise STOP with output “no”.

This computation takes � - j e j � f j e j � �:��� ��
:��� � / � j eZj � �:��� � ��� �
steps. 2

Proof of Lemma 3.6.
First, use the algorithm of Lemma 3.5 (b) to construct the FO �|{ 	 -formula �  � � 	 .
It is straightforward to verify that the following formula has the desired properties:

� � I�
CL5@ � 	
� �
I(����� � E
� 
 � L���� 
 � � � I	��L �
��� ' 6 I(� ��� ' � E � 
 � L�� � �,I	� ' L 9 E�� 	 lex � ' � �

where
� + lex

� 9 is an abbreviation for the FO �|{ 	 -formula

I(� ��� � ��� ' � L�� 	�� ��� � � ��� ' � � ��� 6 � � �AE I	� � ��� ' � L 90� /
Afterwards, we replace every occurrence of an atom of the form �<{A- in �  ��
 	 by the MSO-formula
� . - .&- 
 78.&� 
 � 
 h �

 � � Succ ��
 h ��
 � 	 
 .&
 h 	&� .�
 � / . 2
Proof of Lemma 3.7.
Since � has bound ���*) 	 + Tower - . ��) 	 / , we know that there is a )96Z"<� and a function 39���A� �
with 3H"�� � � 	 such that ���*) 	 + Tower - 8� � 8 � / , for all ) � ) 6 . Therefore, for �1� � ��� � ��� 	 and
)G� � F f � we have

4�5 ��I�� L 5 � 	,I ��I�� L$L 	 4�5
Tower

� �� I�� L � 5 Tower
� �� I�� L � �0� 	 Tower

� �� I�� L
* �0� /

On the other hand, � � Tower ���ix � 	 , and thus
��� ����� � � 	 � Tower �$� x ���0� � 	 	 . It therefore suffices to

show that 8� � 8 � � � + � x ���0� � 	 , i.e., that 8� � 8 � + �ix � �|� � 	 . Since 3�"�� � � 	 , there is some ) h � )96
such that for all ) � ) h we have 3 �*) 	 � F f ���0� � 	 . Hence,

�� I�� L � 8 5 6 �6�)I� *�! L:9� I�� L
* 8 5 I� *�! L� I�� L 	 �6�)I� *�! L * � � �6�)I� * B�L /

This completes the proof of Lemma 3.7. 2
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B Proofs omitted in Section 4

Proof of Theorem 4.1.
Without loss of generality we may assume that � is in negation normal form. Let � h ���
���	� � be the first-
order variables occurring in � , and let � h �
������� � be set variables not occurring in � . We claim that for
every subformula � ��� �  �����
�	� ��� � . 	 there is a formula � 9 ��� �  �����
�	� ��� � . 	 such that � 9 is positive in
� �  �
���
�	� � � � . and for all structures B and for all n h ���
��� n � "�CID ,

� JbC � we have:

��� 	 B2j � �"9 - ��n h � �����
� �yn � � � � 	 -/. B2j � � ��n h �����
� n ��� � 	 �
�"9 is defined inductively as follows:

– If � is a positive atom, say, � � ?>� h � � , then we let �+9 ��� h �	� � 	;� � � ��" � h �,-," � � ?P� - .
If � is a negated atom, say, � � 7 ?P� h � � , then we let
�"9 ��� h �	� � 	;� � 7 �
��" � h ��-�"6� � ?P� - .

– If � � � h ��� � , then we let �+9i� � �"9h ���+9� . Conjunctions are handled analogously.
– If � starts with an existential quantifier, say, � � �,� ��� ��� h �����
�	� �
� . 	 , then we let

� 9 � � �,-����
	 LFP 0 � 1
� � � - ��� 9 ��� h �����
�	����� . 	�� ��� 	 �

Similarly, if � starts with a universal quantifier, say, � � �����
� ��� h �
���
�	� ��� . 	 , then we let

� 9 � � ��-���� 	 LFP 0 � 1
� � � - ��� 9 ��� h �����
�	����� . 	 � ��� 	 �

– If � starts with a least fixed point operator, say, � � / LFP 0 � � * � ��� h ���
����� �
��.W� . 	 2 ��� � 	 (note that
by renaming the variables and using equality we can always assume that formulas starting with a
least fixed point operator have this form), then we let� ' @ � 	�� � ; � I � L ��� LFP ��� � ����� LFP ��� � � � ��� ��� ' I�; � �
/ /
�?; � ���0� �>L���I � L� �I � L � /
The case that � starts with a greatest fixed point operator can be treated similarly.

To see that the resulting sentence ��9 is indeed equivalent to � , the crucial observation is the following:
Suppose that � ��� h ���
����� �
� . 	 and � 9 ��� h �
���
�	���
� . 	 satisfy �!� 	 . Let

� 9 9 ��� h ���
���	��� grh �	-^� . 	G� � �
��	 LFP 0 � 1
� � � - �"� 9 ��� h �
���
�	���
� . 	�� ��� 	 �

Then for all structures B and for all n h ���
��� n � ":CID ,
� J CID we have:

�!�#� 	 B j � � 9 9 ����n h �
���
������n � gih �
� n � � � 	 -/. B2j � � ��n h �
���
� n � � � 	 �
To see this, let n h ���
��� n �#" C D and

� J8C D . Suppose first that B j � � 9 9 �|��n h � ���
��� �yn � gih �
� n ��� � 	 .
Then B j � �:9 �|��n h � �����
� �yn � grh � � � � � 	 or B j � �:9 �|��n h � ���
��� �yn � gih �
����n � �
� � 	 , because otherwise the
fixed point process associated with �89 9 remains empty. Since � � only occurs positively in �89 , B j ��39 ����n h �
���
������n � gih �
� � � � 	 implies that B j � �:9 �|��n h � �����
� �yn � grh �
� �yn � �
� � 	 , so we may assume the
latter. Then by ��� 	 , B j � � ��n h ���
��� n � � � 	 .

Conversely, if B j � � �$n h ���
��� n ��� � 	 then, by �!� 	 , B j � �:9 ���yn h �
�
��������n � grh �
����n � � � � 	 . But this
implies that all elements are in � in the second stage of the fixed point process associated with ��9 9 and
hence B2j � �:9 9 ����n h �
���
������n � gih �
� n ��� � 	 .

Now we are ready to prove �!� 	 by induction on � . It is easy to prove �!� 	 for atoms and negated
atoms. The conjunction and disjunction step is trivial. In all other cases, �!� 	 follows immediately from
�!�#� 	 . For example, let � � / LFP 0 � � * � ��� h ���
���	� �
��.W� . 	 2 ��� � 	 . Then

� 9 � �,�%$H� � ��� 	 
&	 LFP � � * � 9 9 ��� h �
���
�	� � gih ��-���.W� . 	�� ��� 	('&�
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Let n h �
����� n � gih "�CID and
� JbC�D . By �!�#� 	 , for all

� J=C�D we have� n�"�C D j B j � � 9 9 �|��n h � ���
��� �yn � gih �
� n�� � � � 	�� � � n,"�C D jUB2j � � ��n h �
����� n � gih � n�� � � � 	�� �
Thus for all n�"�CID ,

B2j � 	 LFP � � * � 9 9 �|��n h � �����
� �yn � grh � �	-^� � 	 � ��n 	 -/. B2j � 	 LFP � � * � ��n h �
���
� n � gih �	-^� � 	 � �$n 	 �
This implies �!� 	 and completes the proof of Theorem 4.1. 2
Proof of Theorem 4.5.
Let the arity of a formula be the number of free variables it has.

We say that an MLFP � -formula � ��� � � 	 of the form �,- � ��� �	-^� � 	 is in normal form if it is in
negation normal form and � ��� �	-^� � 	 is a disjunction of formulas of the form � 
�� satisfying the
following conditions:

(i) � is a conjunction of at most unary formulas.
(ii) � is one of the following five basic binary formulas:

�
h � � stChild ��� ��- 	 �

� � � � ndChild ��� ��- 	 �
�
) � � stChild ��-^�	� 	 �

�
- � � ndChild ��-^�	� 	 �

��� � 7 � stChild ��� �	- 	 
67 � ndChild ��� ��- 	 
 7 � stChild ��-^�	� 	 
 7 � ndChild ��-^��� 	 �
Similarly, a formula of the form ��- � ��� �	-^� � 	 is in normal form if is a conjunction of formulas 1 of
the form �X��� , where

(i’) � is a disjunction of at most unary formulas.
(ii’) � is one of the basic binary formulas �

h �����
� � � .
Finally, an arbitrary MLFP � -formula is in normal form if all its subformulas of the form �,- � and ��- �
are.

Step 1: For every MLFP � -formula � we construct an equivalent MLFP � -formula �89 in normal form.
The construction is by induction on � , the only interesting cases being subformulas of the form �,- �
and ��- � . We only consider the universal case; the existential case can be treated similarly.

So let � ��� � � 	 � ��- � ��� �	-^� � 	 . We may view � as a Boolean combination of atomic formulas
and at most unary formulas. We bring this Boolean combination into conjunctive normal form; let � 9
be the resulting formula. Now let us look at the clauses � of � 9 . Let � be the disjunction of all at most
unary literals in � , and let �89 be the conjunction of the negations of the remaining literals. Then we may
replace � with � �:9���� 	 .

�39 is a conjunction of literals of the form � 7 	|? ��� �	- 	 and ��7 	0? ��-^�	� 	 , where ? " ��� stChild �
� ndChild � . If �:9 is not satisfiable in any tree, then we may simply discard it from � 9 , because � �89���� 	
always holds. If this makes �+9 empty, we replace the whole formula � by ��� � � 	 . So let us assume
that �:9 is satisfiable in some tree. Then �89 is equivalent to a disjunction �89 9 of some of the five basic
binary formulas. Say, �89 is equivalent to 	 ��
� h � �
	 , for some �Z+�� . Then we replace � by the clauses
� �

�  ��� 	 �
����� � � ��� ��� 	 .
We do this for all clauses of �+9 and obtain a formula �+9 9 equivalent to � that has the desired form.

This completes Step 1.

Before we translate MLFP � -formulas in normal form into FL 1 -formulas, we define a few auxiliary
MLFP � -formulas. Recall that for a tree O and a node [�"7CEP , by O^] we denote the subtree of O with
root [ .
Step 2: For every FL 1 -formula � we construct FL 1 -formulas ��� , ��
�� , and ��� � of size � � jMj � jMj 	 such
that for all labelled trees O and nodes [\":CEP ,
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1. �*O � [ 	 j � ��� if, and only if, there exists a <�"�CEP such that ��O �	< 	sj � � .
2. �*O � [ 	 j � ��
 � if, and only if, there exists a <<" CEP�� such that ��O �	< 	 j � � .
3. �*O � [ 	 j � ��� � if, and only if, there exists a <<" CEP � CIP�� such that ��O �	< 	sj � � .

Similarly, there are formulas � � , � 
 � , and � � � with the obvious meaning.

It is an easy exercise to construct the formulas. Note, however, that we make crucial use of the fact that
we are working on trees.

Step 3: For every MLFP � -formula � in normal form we construct an FL 1 -formula � such that for all
labelled trees O and all nodes [\":C�P , O%j � � ��[ 	 - . ��O �0[ 	sj � �s�

The construction is by induction on � .
For all unary subformulas that do not start with an existential or universal quantifier, we can simply

revert the translation from FL 1 to MLFP � .
For � -ary formulas � � �,� � , suppose = is the FL 1 -formula already constructed for � . We let

� � �,= . Similarly, for � -ary � � �
� � , we let � � ��= .
As the first interesting case, let us assume that � ��� � � 	 � �,- � ��� �	-^� � 	 is in normal form. Suppose

that � � 	 � � � h � � � 
 � � 	 , where � � and � � satisfy the conditions (i) and (ii) for all � . For every � we define

a formula � � equivalent to �,- � � � 
 � � 	 , and then we let � � 	 � � � h � � .
So let ��� ��� � . Let � 0 be the conjunction of all at most unary formulas of � � � 
 � � 	 that either

do not have any free first-order variables or whose only free first-order variable is � , and let � � be the
conjunction of all at most unary subformulas of � � � 
 � � 	 whose only free first-order variable is - . If
� � � ? ��� �	- 	 for ?c"X��� stChild � � ndChild � , we let � � � ��� 0 
 t�? w � �T� where � 0 and � � are the FL 1 -
formulas already constructed for � 0 and � � . Similarly, if � � � ? ��-���� 	 , we let � � � �	� 0 
bt$? gih w � ���
If � � � 7 � stChild ��� �	- 	 
67 � ndChild ��� ��- 	 
 7 � stChild ��-^�	� 	 
 7 � ndChild ��-^��� 	 , we let

� � � � � 0 
 -&t � stChild w t � stChild w ��
 � � � t � stChild w t � ndChild w ��
 � � �t � ndChild w t � stChild w ��
 � � � t � ndChild w t � ndChild w ��
 � � �t � stChild
gih w � � � � � t � ndChild

grh w ��� � ���
The case � ��� � � 	 � ��- � ��� �	-^� � 	 can be treated similarly. This completes Step 3.

It remains to prove that the size of � is at most exponential in the size of � . The (operator) depth
of a formula is naturally defined as the height of its parse tree.

By induction on / , we prove that for every at most unary subformula � of � of depth / we have

jKj =ojKjT" � � � 01! ��� 
 ��� � �
Again, the only interesting cases are unary subformulas of the form �,-�� or ��-�� . So suppose that �
has either of these forms. Let � h ���
��� ���98 be the at most unary subformulas of � that are not atoms such
that � can be written as a Boolean combination of � h �����
�����98 and atomic subformulas. Let 
 h �
��������
 8
be the FL 1 -formulas corresponding to � h ���
�������98 . By induction hypothesis, for ��� ��� ) we have

jMj 
 � jMj�� � � � � 0 grh � ! ��� � 
 ��� � � � � ��� 0 grh � ! ��� 
%��� � �
An inspection of our construction shows that

jMj =ojMj�� � � �:��� 
%��� �
maxh�� ��� 8 jKj 
 � jMj�� � � ����� 
%��� �

� � ��� 0 gih � ! ��� 
 ��� � � � � � 01! ��� 
%��� � �
2

C Proofs omitted in Section 5

Proof of Proposition 5.2.
By induction on � . The base case � � � is trivial. For ��� � and a fixed �W+ � , the induction hypothesis
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gives us for every �#"�� �S���
��� � � � � � � a MLFP �*> ` �H� � � 	 -formula �� 1 	 ��� 	 of size +1V ��grh such that,
for all > ` ��� � � -structures � , �Rj � �
� �� 1 	 ��� 	 �

/ Sim-LFP 0  � 1  �!  � 0 
��  � 1 
��  � 0 
��  � 1 
��  �!  � 0 � � 1 � �
h �����
��� ��grh ��� � # h ���
��� � 2 1 	 ��� 	 �

Define �� � ��� � ��� � 	 to be the MLFP-formula obtained from � � ��� � ��� h ���
����� � 	 by replacing every atom
of the form � � ��� 	 , for � �� � , with the formula �� 1 	 ��� 	 . It should be clear that jKj �� � jMj�{ V � . To complete
the proof of Proposition 5.2 it therefore suffices to show the following

Claim. For all > -structures B we haveB2j � ��� / LFP 0 
 � 1 
 �� � 2 ��� 	 � / Sim-LFP 0  �� 1  ��!  � 0 � � 1 � �
h �����
��� � 2 1 
 ��� 	 .

For proving this claim let, for every ��J=C�D and every � �� � ,
� � �%� 	G� � �yn:"�CID � t�B:��� w j � �� 1 	 �$n 	��
�
�
� � �� � � �yn:"�C D �&B j � / LFP 0 
 � 1 
 �� � 2 ��n 	�� �
�
� 4 �� � � �yn:"�CID �&B j � / Sim-LFP 0  � 1  �! " � 0 � � 1 � �

h ���
����� � 2 1 
 ��n 	�� ��
� 4 �
� � � �yn:"�CID �&B j � / Sim-LFP 0  � 1  �! " � 0 � � 1 � �

h ���
����� � 2 1 	 ��n 	�� �
Our aim is to show that �

� � �� � �
� 4 �� .

Since �
� � �� is a fixed point of �� � , we have �

� � �� �
�
	 ����
 @�� � � � A

� 	 �$K � I�K ? � BA L#�
/
/ � K A ��� I�K ? � BA L#� K ?
� BA �$K A � � I�K ? � BA L#�
/ /
� K @ I�K ?

� BA L ��� /
From the definition of �� 1 	 we furthermore know that � � ���

� � �� 	 �
� 	 ��� 
 @�� � � ��� � 	 � K � I�K ? � BA L#� /
/
� K A �6� I�K ? � BA L#� K ?

� BA �	K A � � I�K ? � BA L#�
/
/
� K @ I�K ?
� BA L&� � /

I.e., - � h ��� � � �� 	 ���
����� ��grh ��� � � �� 	 ��� � � �� ��� � # h ���
� � �� 	 �����
��� � ��� � � �� / is a simultaneous fixed point of the for-

mulas - � h �����
��� � / in B , the least fixed point of which is - � � 4 �h �
���
��� � 4 �� / . In particular, this implies

that �
� � �� �Q�

� 4 �� .

On the other hand, -�� � 4 �h �
���
��� � 4 ���grh ��� � 4 �� # h ���
�����
� 4 �� / is a simultaneous fixed point of -�� h �
���
��� �*gih �

� � #
h ���
����� � / in t$B:��� � 4 �� w , the least fixed point of which is -�� h ��� � 4 �� 	 �
���
��� ��grh ��� � 4 �� 	 ��� � # h ���

� 4 �� 	 �
������� � ��� � 4 �� 	 / .
Therefore, � � ���

� 4 �� 	 JQ� � 4 �� , for all � �� � , and hence
� 	 ��� 
 @���� � K ?�� BA�� � ���� A I 	 L � �

��	 ��� 
 @�� � � � A 6 	 �$K � I�K ?�� BA L#�
/ /
�	K A ��� I�K ?�� BA L#�$K ?�� BA � K A � � I�K ?�� BA L#�
/
/>� K @ I�K ?�� BA L 9�� M� 	 ��� 
 @�� � � � A 6 	 �$K ?�� B� �
/
/
�	K ?�� BA �6� � K ? �"BA � K ?�� BA � � �>/
/
�$K ?�� B@ 9!� � K ?�� BA /
I.e., �

� 4 �� is a pre fixed point3 of �� � on B , and therefore �
� � �� JQ� � 4 �� .

This finally completes the proof of the above claim and of Proposition 5.2. 2

D Proofs omitted in Section 6

Proof of Theorem 6.5.
From Theorem 6.3 we know that

�
can be translated in time � � jKj � jKj 	 into a TMNF-program

� 9 of
size � � jMj � jKj 	 such that � � 9���� 	 defines the same unary query as � � �	� 	 on the class of labelled trees.
Let � be the number of IDB-predicates of

� 9 . In [FGK03, Example 20], a _ -STA with � � states was

3 Recall that a pre fixed point of a monotone operator ?'@ B D E B D is a set K�M R with ?JI�K+L�M K , and that
the least fixed point of ? is the intersection of all pre fixed points of ? .
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constructed, defining the same unary query as � � 9��	� 	 on the class of labelled trees. 2
Proof of Lemma 6.7.
The program

�
operates according to the following evaluation algorithm of [FGK03, Proposition 21]:

In a bottom-up pass of the input tree O , the set Reach ��[ 	 is computed for every vertex [ of O , where
Reach ��[ 	 consists of all states � such that there is a partial run � of

�
on O with � ��[ 	 � � . Afterwards,

in a top-down pass the set Acc �*[ 	 is computed for every [ "7CoP , where Acc �*[ 	 consists of all states �
such that there is an accepting run � of

�
on O with � ��[ 	 � � . Clearly, [ does not belong to the query

defined by
�

if and only if Acc ��[ 	 contains a state in � � � .
To store the sets Reach � f 	 and Acc � f 	 , respectively, the program

�
will use predicates � Reach� and

� Acc� , respectively, for every �Z" � . The intended meaning of these predicates is, that for all _ -labelled
trees O , [\"�CIP , and � "�� we shall have [\" ��� Reach� 	�*� �*O 	 iff �o" Reach �*[ 	 , and [;" ��� Acc� 	�*� �*O 	 iff
�o" Acc �*[ 	 .�

has one further predicate, � no for storing the vertices that do not belong to the query defined by
�

.
Now, the definition of

�
is straightforward:

1. For every n�" � � ,
�

contains the rule Input m ��� 	 � �
� u
m a ��� 	 


�
� u ��� m
7 a ��� 	 .

2. For every �o"�� � � ,
�

contains the rule � no ��� 	 � � Acc� ��� 	 .
3. For all �Z" � ,

�
contains the rule � Acc� ��� 	 � � Reach� ��� 	 
 Root ��� 	 .

4. For all n," ��� and 
�" 1 ��n 	 , � contains the rule
� Reach� ��� 	 � Input m ��� 	 
 Has-No- � stChild ��� 	 
 Has-No- � ndChild ��� 	 .

5. For all �Z" � , n�" ��� , and 
�" 1 � �S� �T� n 	 , � contains the rules
� Reach� ��� 	 � Input m ��� 	 
 � stChild ��� ��- 	 
 Has-No- � ndChild ��� 	 
 � Reach� ��- 	 , and
� Acc� ��- 	�� � Reach� ��- 	 
 � stChild ��� �	- 	 
 Input m ��� 	 
 Has-No- � ndChild ��� 	 
 � Acc� ��� 	 .

6. For all �Z" � , n�" ��� , and 
�" 1 � ��� �T� n 	 , � contains the rules
� Reach� ��� 	 � Input m ��� 	 
 Has-No- � stChild ��� 	 
 � ndChild ��� �	- 	 
 � Reach� ��- 	 , and
� Acc� ��- 	�� � Reach� ��- 	 
 � ndChild ��� �	- 	 
 Input m ��� 	 
 Has-No- � stChild ��� 	 
 � Acc� ��� 	 .

7. For all � h � � � "�� , n," ��� and 
�" 1 � � h � � � � n 	 , � contains the rules
; Reach� I � L�� Input � I � L � � stChild I ���"� � L � ; Reach	  I � � L ��B ndChild I �6�"��
 L � ; Reach	
� I ��
 L ,
; Acc	  I � � L�� ; Reach	  I � � L � � stChild I ��� � � L � B ndChild I ��� ��
 L � Input � I � L � ; Acc� I � L � ; Reach	�� I ��
 L ,
; Acc	
� I ��
 L�� ; Reach	
� I ��
 L � � stChild I ��� � � L � B ndChild I ��� ��
 L � Input � I � L � ; Acc� I � L � ; Reach	  I � � L .

One can easily verify that � � �	� no 	 defines the complement of the query defined by
�

on the class of_ -labelled trees. Furthermore, jMj � jMj � � - j �,j ) f j ���^j
�Aj _&j f j ���^j / . 2
Proof of Proposition 6.8.
Let _ be the schema of

�
, and let � " IDB � � 	 . From Theorem 6.5 we obtain a _ -STA

�
1 withj ��j � � � �:��� � ��� �

states defining the same query as � � �	� 	 . Lemma 6.7 gives us a MonDatalog-program�
1 and a predicate � " IDB � � 1 	 such that � � 1 � � 	 defines the complement of the query defined by�
1 ; and jMj � 1 jKj � � - j ��j

) f j � � j��Rj _&j f j � � j / � � � �:��� � ��� �
.

After an appropriate renaming of IDB-predicates we can assume w.l.o.g. that IDB � � 1 	�� IDB � � 	 � �
and IDB � � 1 	�� IDB � � * 	 �'� , for all distinct �<��. " IDB � � 	 .
Obviously,

� 9 � � � ` � 1 u IDB
� � � � 1 is the desired MonDatalog-program of size jKj � 9 jMj\+GjKj � jKjS�

j IDB � � 	�j f � � �:��� � ��� � � � � ����� � ��� �
. 2

Proof of Theorem 6.9.
Let

�
be a S-MonDatalog-program of schema _ . Let � � h �
���
� � � 	 be a decomposition of

�
into

strata. I.e.,
� � � h ` f�f�f ` � � , and each

� � can be viewed as a MonDatalog-program of schema_ � � � _ ` � ��� � IDB � � � 	 . For each � , let �� � be the MonDatalog-program of schema �_ � � � _ ` �H�<� � �
��" � ��� � IDB � � � 	Y� , obtained from

� � by replacing every occurrence of a literal of the form 7:� ��- 	
by the literal � ��- 	 . Let �� 9� be the MonDatalog-program of size � � �:��� � 
 ��� � that Proposition 6.8 provides
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for �� � . After an appropriate renaming we can assume w.l.o.g. that, viewed as programs of schema �_ �
and �_ � , respectively, �� 9� and �� 9� have no IDB-predicates in common (for distinct �Y� � + � ).

It is straightforward to check that the program
� 9 � � � �� � h �� 9� , viewed as a MonDatalog-program of

schema _ , has the desired property that IDB � � 9 	 � IDB � � 	 and � � 9���� 	 defines the same query as
� � �	� 	 , for every � " IDB � � 	 .
Furthermore, jKj � 9 jMj�+��

�� � h � � �:��� � 
 ��� � + � � �:��� � ��� �
.

It is straightforward to see that
� 9 can be computed in time � � �:��� � ��� �

. 2
Proof of Theorem 6.11.
The proof proceeds in 2 steps.

Step 1: Let us first consider the special case where
�

is a MonDatalog-program. For every � " IDB � � 	
let

�
1 be a TMNF-program of size � � jMj � jKj 	 with � " IDB � � 1 	 such that � � 1 �	� 	 defines the

same unary query as � � �	� 	 on the class of labelled trees (cf., Theorem 6.3). Let � be the number
of IDB-predicates of

�
1 . Lemma 6.1 and Proposition 5.2 give us a MLFP � -formula = 1 ��� 	 of sizejMj = 1 jMj�+ jMj � 1 jKj

� + jKj � 1 jKj
��� ��� ��� + � � ����� � ��� ! � 
 ��� � ��� �

which defines the same unary query as � � �	� 	 on
the class of labelled trees. Moreover, a close look at the proofs of Lemma 6.1 and Proposition 5.2 for
the special case where

�
1 is in TMNF shows that = 1 ��� 	 is equivalent to a FL 1 -formula � 1 of size

� � jMj = 1 jMj 	 .
Step 2: Now consider the case where

�
is an S-MonDatalog-program. Let _ be the schema of

�
, and

let � � h �
���
� � � 	 be a decomposition of
�

into strata. I.e.,
� � � h ` f�f
f ` � � , and each

� � can be viewed
as a MonDatalog-program of schema _ � � � _ ` � ��� � IDB � � � 	 . Step 1 gives us, for every � + � and

every � " IDB � � � 	 , a FL 1 -formula � 1 of size jKj � 1 jKj � � � �:��� � 
 ��� ! � 
 ��� � 
 ��� �
that defines the same unary

query on the class of _ � -labelled trees as � � � ��� 	 .
By induction on � we define, for every � " IDB � � � 	 , the FL 1 –formula �� 1 of size

jKj��� 1 jKj � � � �:��� �  ��� ! � 
 ��� �  ��� # !�!�! # ��� � 
 ��� ! � 
 ��� � 
 ��� �

as follows: For every � " IDB � � � 	 let �� 1 be the formula obtained from � 1 by replacing every
occurrence of an .�" � ��� � IDB � � � 	 by the formula �� * . It is straightforward to verify for every

� " IDB � � 	 that �� 1 defines the same unary query as � � �	� 	 on the class of _ -labelled trees. 2
Proof of Proposition 6.13.
We use the following notations and results of [FG03]:
For all � � � let �  � � � �z� �
� <1> � </1> ���
��� <h> � </h> � . The “tags” <i> and </i> represent single
letters of the alphabet and are just chosen to improve readability. For every � � � let � � � 	 be the length
of the binary representation of the number �dx � , i.e., � �$� 	 � � , � � � 	 � � , and � ��� 	 � 	

log ���dx � 	 

� � ,
for all � � � . By bit ���Y� � 	 we denote the � -th bit of the binary representation of � , i.e., bit ���Y� � 	 is 1 if
� �� 
>� is odd, and bit ���Y� � 	 is � otherwise.
We encode every number �5"�� by a string �  ��� 	 over the alphabet �  , where �  � � 	 is inductively
defined as follows: � h �$� 	;� � <1></1>, and

� h ��� 	�� � <1> bit ���	� �dx � 	 bit � �
� �dx � 	 f
f�f bit ��� ��� 	 x �
� �dx � 	 </1> �
for � � � . For � � � we let �  ��� 	;� � <h></h> and

��� I�� L6@ � <h>
������� I���L bit I���������� L
� ����� I � L bit I �!������� L

...
������� I�"�I�� L#�$� L bit I�"�I�� L#���!���%��� L

</h> �
for � � � . Here empty spaces and line breaks are just used to improve readability.
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Lemma D.1 ([FG03, Lemma 8]). For every �7"7� there is a FO �0{ 	 -formula �  � h of size4 jKj �  � h jMj �� ��� 	 such that the following is true for all strings e over alphabet �  , for all positions n���� in e ,
and for all numbers ) � � "1���	�����
� Tower �$� 	Y� : If n is the first position of a substring < of e that is
isomorphic to �  ��) 	 and if � is the first position of a substring � of e that is isomorphic to �  ��� 	 , theneNj � �  � h ��n���� 	 if and only if ) � � . �

For every �#"9� let � � � Tower �$� 	 . For n 6&f�f
f n�� grh "X���	� �U� � define the string

e  � m ( !�!�! m�� �  � � <h+1> �  ��� 	�n 6 �  � � 	�n h f�f
f �  ���=x � 	�n � grh </h+1> �
We define the string-language

�  � � � e  � m ( !�!�! m�� �  ��n 6 f
f�f n � grh "X���	� �S� � � � �
and we choose a designated string e  "6�  via

e  � � e  � BIN � � 6 � e  � BIN � �!h � f�f
f e  � BIN � � � �
grh � �

where BIN � ��� 	 denotes the reverse binary representation of length � of � . For example, BIN - � � 	 �� �
�
� and BIN - � � 	 � �
� ��� . It is straightforward to see the following:

Lemma D.2. For � " � let � � � Tower �$� 	 . There is no nondeterministic finite automaton
�  with

less than � � � Tower ����� � 	 states such that the following is true for every e8" �  : �  accepts e if
and only if e � e  . �

Lemma D.3. For every �4" � there is a FO �0{ 	 -sentence �  of size � �$� 	 such that the following is
true for all e%"5�  : ecj � �  if and only if e � e  . �

Proof. To simplify notation we, in the following, write Succ ��� 	 to denote the successor of a position �
in a string e .
Using the formula �  � h of Lemma D.1, it is straightforward to build a FO �0{ 	 -sentence �  stating for
every input string e "6�  that

– the leftmost substring of e of the form <h+1> f�f
f </h+1> contains no position � witha </h> ��� 	 
9a h � Succ ��� 	 	 ,
– the rightmost substring of e of the form <h+1> f�f
f </h+1> contains no position - witha </h> ��- 	 
 a 6 � Succ ��� 	 	 ,
– for every two successive substrings < and � of e of the form <h+1> f�f�f </h+1>, there is a position
� h in < with a <h> ��� h 	 and a position - h in � with a <h> ��- h 	 such that �  � h ��� h �	- h 	 is true and
	 every position ��6 in < to the left of � h satisfies a </h> ���q6 	&� a h � Succ ���	6 	 	 ,
	 every position -S6 in � to the left of - h satisfies a </h> ��-U6 	&� a 6 � Succ ��-U6 	 	 ,
	 the first position ��9 h to the right of � h in < with a </h> ��� 9 h 	 satisfies a 6 � Succ ����9 h 	 	 ,
	 the first position - 9h to the right of - h in � with a </h> ��- 9h 	 satisfies a h � Succ ��- 9h 	 	 ,
	 for all positions � � to the right of ��9 h in < and for all positions - � to the right of - 9h in � such

that a <h> ��� � 	 
#a <h> ��- � 	 
 �  � h ��� � ��- � 	 is true, also a h � Succ ����9� 	 	 � a h � Succ ��- 9� 	 	 is true,
where � 9� is the first position to the right of � � in < with a </h> ��� 9� 	 and - 9� is the first position
to the right of - � in � with a </h> ��- 9� 	 .

It is straightforward to check that the string e  is the unique string in �  that satisfies �  , and that �  
has size � � jKj �  � h jMj 	 . Together with the bound jKj �  � h jKj � � ��� 	 of Lemma D.1, this completes the proof
of Lemma D.3. 2

4 In [FG03], an additional factor �
	�� occurs because there a logarithmic cost measure is used for the formula
size, whereas here we use a uniform measure (cf., Section 2.4).
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From Lemma D.2 and Lemma D.3 we obtain, for every �5"H� , a FO �|{ 	 -sentence �  of size � ��� 	
that defines a string-language not definable by a nondeterministic finite automaton with less than
Tower ����� � 	 states. This, in particular, completes the proof of Proposition 6.13. 2
Proof of Theorem 6.14.
By contradiction. Assume that the translation from FO �0{ 	 to S-MonDatalog can be established by a
function � with bound ���*) 	�+ Tower -�. �*) 	0/ . I.e., there is a )969"4� and a function 3b" � � � 	 such
that ���*) 	;+ Tower - 8� � 8 � / , for all ) � ) 6 ; and for every FO �|{ 	 -sentence � there is a S-MonDatalog-

program
�

of size jKj � jKjr+ ��� jMj � jMj 	�+ Tower - ���
�
���

� ����� � ��� � / and an � " IDB � � 	 such that � � ��� 	 defines
the same Boolean query as � on the class of all finite strings. According to Theorem 6.9,

�
is equivalent

to a MonDatalog-program
� 9 of size jKj � 9 jKj � � � �:��� � ��� � + Tower - ���

�
���

� ����� � ��� � � F / , for a suitable constantF "N� . From Theorem 6.5 we obtain an STA
�

that defines the same unary query on the class of
labelled trees as � � 9$��� 	 and that has j �,jW+ � � �:��� � 
���� � + Tower - ���

�
���

� �:��� � ��� � � / / states, for a suitable
constant /�"�� . Restricting attention to strings again, it is straightforward to transform the STA

�
into

a nondeterministic finite automaton
� 9 that accepts exactly those strings that belong to the Boolean

query defined by
�

and that has at most �
�
�
�

different states. I.e., every FO �|{ 	 -sentence � can be
translated into a nondeterministic finite automaton that defines the same Boolean query as � on the
class of all finite strings and that has at most Tower �$��� jKj � jKj 	 	 states, where the function � is defined via� ��) 	 � � 8� � 8 � � /�� � . Obviously, �7"#. ��) 	 , contradicting Proposition 6.13 and completing the proof
of Theorem 6.14. 2


