
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

School of Informatics, University of Edinburgh

Institute for Communicating and Collaborative Systems

The JAPE riddle generator: technical specification

by

Graeme Ritchie

Informatics Research Report EDI-INF-RR-0158

School of Informatics February 2003
http://www.informatics.ed.ac.uk/

The JAPE riddle generator: technical specification

Graeme Ritchie

Informatics Research Report EDI-INF-RR-0158

SCHOOL of INFORMATICS
Institute for Communicating and Collaborative Systems

February 2003

Abstract :
Although the JAPE riddle generator has attracted significant attention and there are published accounts of its

performance, there has been no detailed technical statement of its internal workings. This paper remedies that, by
providing formal definitions of the program’s data structures, rules and procedures. The most important rules, the
schemata, are listed in full in an appendix.

Keywords : humour, riddles, puns, generation

Copyright c
�

2003 by Graeme Ritchie, The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

The JAPE riddle generator: technical specification

Graeme Ritchie

School of Informatics, University of Edinburgh

Abstract

Although the JAPE riddle generator has attracted significant attention and there are
published accounts of its performance, there has been no detailed technical statement
of its internal workings. This paper remedies that, by providing formal definitions of
the program’s data structures, rules and procedures. The most important rules, the
schemata, are listed in full in an appendix.

1 What is JAPE?

JAPE is a computer program, originally constructed (in Prolog (Clocksin and Mellish,
1981)) by Kim Binsted under the supervision of Graeme Ritchie and Helen Pain, in the
Department of Artificial Intelligence at the University of Edinburgh. It produces short texts
which are intended to be punning riddles (see Section 3 below for more details).

There have been several versions ofJAPE. JAPE-1 was a pilot version, which Binsted
wrote in 1993 as part of her MSc (Binsted and Ritchie, 1994, 1997).JAPE-2, written
mainly during 1995, was the central program in Binsted’s PhD thesis (Binsted, 1996).
JAPE-3 is a revised version ofJAPE-2, produced by Ritchie in 1999. The motivation for
JAPE-3 was thatJAPE-2 had certain limitations in terms of clarity and structure. Although
JAPE-3 generates riddles in the same way asJAPE-2, using largely the same rules, its
internal interfaces and data-structures are simpler, clearer and more systematic, and the
task of connecting the program to an alternative source of lexical information should be
more straightforward (a point verified by Griffiths (2000) in constructingJAPE-4, which
interfacesJAPE-3 to a more flexible dictionary module). That is,JAPE-3 is to some extent
a rational reconstruction(Bundy, 1990; Campbell, 1990) ofJAPE-2. Most of the account
given here is an accurate description of bothJAPE-2 andJAPE-3, but where these systems
differ, JAPE-3 is described.

The various rule types (described below) are sufficiently well-defined and stable that it
is worthwhile distinguishing between the rule-sets and the Prolog code which manipulates
them. The former could vary (with addition or modification of schemas, for example),
while the latter remains stable. For example, schemaVN and its supporting rules were
added some time after the main development ofJAPE-3, but required no changes to the
underlying rule-interpreters. Hence it may be useful in the future to consider different
version-numbering for code and for rules.

2 Motivation for this document

The aim here is to set out a formally precise, implementation-independent account of how
JAPE generates punning riddles. The reason for doing this is that experimental AI pro-
grams are usually under-documented, making it difficult for other researchers to replicate
the work, or to know what theoretical claims are actually embodied in the implementation
(Ritchie and Hanna, 1984).

The account here presents all the mechanisms whichJAPE uses in the construction of a
riddle, but many of these devices are of no interest to a humour theorist, or to a linguist. All
these stages are included because the formalisation aims to be comprehensive and explicit
about theJAPE model.

Although we are describing an implemented system, we will work at a fairly abstract
level, glossing over how some of the more basic mappings (e.g. lexical look-up) might

1

be performed. All the mappings are described here in a direction which follows the flow
of processing withinJAPE (from underlying structures to surface text). Ideally, these
mappings should be bijective (two-way), allowing recovery of the semantic structures from
the surface forms, but the definitions here are simply one-way.

In the actual implementations, all rules are stated in a notation suitable for use by the
program. It can be quite hard to grasp their true import and possible interactions from that
representation. We will present an abstract, non-programming, version of these rule-types,
in a way which stays as close to the central ideas of the actualJAPE program as possible.
In defining the various rules, two aspects will generally be stated: the overall functionality
of the rule will be stated, and an outline will be given of the internal details of how that
functionality is achieved.

An example will be used as a running illustration.

3 What did JAPE do?

JAPE produced short texts which were attempts at punning riddles, such as the following:

(1) How is a nice girl like a sugary bird?
Each is a sweet chick.

(2) What is the difference between leaves and a car? One you brush and rake, the other
you rush and brake

(3) What is the difference between a pretty glove and a silent c at? One is a cute mitten,
the other is a mute kitten.

(4) What do you call a naked bruin?
A grizzly bare.

(5) What do you call a strange market? A bizarre bazaar.

The best of these were found to be comparable to those published in joke books for
children (Binsted, 1996, Chapter 5),(Binsted et al., 1997).

4 Some linguistic constructs assumed

TheJAPE system assumes a very simplified model of language processing, which can be
summarised in the following definitions.

Alphabets and strings. The textual strings created byJAPE are orthographic rather than
phonetic forms, but the internal computations by the rules make explicit use of both ortho-
graphic and phonetic representations (as well as lexical entries). The similarity of sound
that is critical to puns is embodied in a number of predicates which relate these levels of
representation (see Section 7.1 below). All of these computations occur within the rules,
so that the only data-types passed between modules are lexemes and orthographic forms.
Therefore, our abstract specification (which does not describe the internal workings of
rules) will not mention phonetic forms. We will abstractly assume an abstract alphabet of
symbols, with strings of these symbols being calledtext strings.

Syntax. There is a set SYN ofsyntactic categories; these are, informally, labels such as
‘noun’, ‘verb’, etc.

2

Lexicon. A lexemeis a triple 〈String, Syn, Sense〉 whereString is a text string and
Syn ∈ SY N is a syntactic category.Sense is simply a unique identity marker to distin-
guish between separate lexemes with the same string and syntactic category (e.g.chickas
a small bird or as a slang term for a young woman). This allows individual senses with the
same syntax and surface form to enter into different lexical relationships. Alexicon is a
set of lexemes, together with a set of relations between lexemes (e.g. synonymy, antonymy,
hyponymy).

A lexicon L induces a (partial) mappingLEXL from text strings to sets of lexemes,
whereLEXL(w) = {E ∈ L|E = 〈w,Syn, Sense〉}. The mapping is partial because
not every textual fragment corresponds to a word with a syntactic label. Where the lexicon
maps a string to a non-singleton set, that string is deemed to have several lexical entries
(i.e. to be ambiguous).

Given a lexiconL, a text stringT realisesa sequenceE1, . . . , En of lexemes ifT can
be segmented into substringsT1 . . . Tn such that for eachi, Ei = 〈Ti, Syni, Sensei〉.

Given an alphabet and a lexicon for strings over that alphabet, there are various possi-
ble conditions that can be true or false of a lexeme, a string or some combination of these.
For example, if the syntactic labelNOUN occurs in the lexicon, then there is an associated
predicatenounwhich can be applied to a lexeme; if the lexicon contains a relationSYN-
ONYM, then there is an associated predicatesynonymwhich can be applied to two lexemes;
if a stringT realises a lexical sequenceE1, . . . , Em, then there is a predicate, which we
can callwritten-form, such thatwritten-form(〈E1, . . . , Em〉, T). In this way, choice of an
alphabet and lexicon indirectly defines a collection of predicates (unary and binary) which
can be used to state conditions on text strings and lexemes. We shall call these thelexically
definable predicates.

This version of the lexicon is less sophisticated than that typically discussed within lin-
guistics. It represents an association between information and text strings, but the manner
of computing this association is of no interest. Therefore, it is not essential to include any
form of morphological processing to ensure that various forms of a verb are all related to
the same lexical entry in some way. In our abstract version,walk andwalkshave separate
entries.

5 An overview of JAPE’s mechanisms

Before presenting mathematical definitions of structures and rules, we will briefly sum-
marise the overall picture (see Figure 1).

JAPE’s rules were of four different types, performing different tasks in the overall
model: schemata(defining configurations of lexemes underlying riddles),sentence forms
(patterns of fixed text with slots for further text strings to be inserted),templates(defining
conditions for particular items to be inserted into sentence forms), andSAD generation
rules (which create abstract linguistic structures from lexemes). The term “SAD”, orig-
inally short forsmall adequate description, is used here for compatibility with Binsted’s
terminology. JAPE-3 contains 15 schemata, 18 SADrules, 9 templates and 9 sentence
forms.

There is alexiconwhich containslexemes, where a lexeme is a cluster of linguistic
information about one sense of a noun, verb, or adjective (see Section4 above).

A schema contains somelexical preconditions, which describe, in terms of their proper-
ties and relationships, a configuration of lexemes which would form the central underlying
structure of a riddle. A schema also contains anoutput specification, which indicates which
of these lexemes are to be used in the surface form, very roughly how they are to be ex-
pressed, and any abstract relations which will hold between the constituents which express
these lexemes.

The SAD generator acts on the information supplied by a schema, fleshing out the
lexemes (or sequences of lexemes) into SADs, which are more detailed descriptions of

3

SCHEMATA

LEXICON

SAD RULES

TEMPLATES

SENTENCE
FORMS

SAD

Generator

Grammar rule
generator

Template

Matcher

Matcher

Schema

TEXT

SAD relation specifications

SAD relations

Choice of form + parameters

Figure 1: An overview of JAPE

4

linguistic structures. For this purpose, it contains variousSAD rules, which are rules of
thumb for creating linguistic data based on the outline information given by the schema.
Each rule has some pre-conditions (similar in form to the preconditions in a schema) which
take the lexemes provided by the schema as parameters. The remaining part of a SAD rule
shows how, using some of the items mentioned in its preconditions, a linguistic structure is
to be formed.

The information passed to the SAD generator from the schema processing indicates not
only what lexemes are to be used to create constituents, but also what the relations are to be
between these constituents once created. TheJAPE system made use of only a few such
relations, principally one which can be glossed as “describes the same concept”. These
equation-like structures –SAD relations– are passed on to the template stage.

A template contains some conditions describing the internal structure of the SAD re-
lations it receives, and a computation to extract information (typically lexemes and text
strings) from the items within SAD relations; these items are the constituent structures
drafted by the SAD-generator. This extracted data is then paired with the name of a sen-
tence form (a pattern of pieces of text and slots to be filled with linguistic constituents) and
passed to a generator which carries out the last stage of text creation.

The reason that there are so many schemata is that different lexical preconditions must
be available for each variation on how the comparable strings are to be constructed. For
example, jokes (6), (7) and (8) use, intuitively, the same punchline structure (the initial part
of an established word or phrase is replaced by a phonetically similar item), but because
grammatically different forms (compound noun or word) and different notions of phonetic
similarity (homophony or rhyming) are involved, separate schemata are used.

(6) What kind of murderer has fibre?
A cereal killer.

(7) What do you call a bath tour?
A tub crawl.

(8) What do you call a depressed train? A lowcomotive.

Similarly, output specifications vary according to the broad linguistic structure of the
set-up question. With hindsight, it might be possible to generalise across similar schemata,
and delegate the finer details of the punchline-construction to another module or rule-set.

6 A formalisation of JAPE

6.1 Types of objects and structures

6.1.1 Basic units

For the more basic structures (alphabet, text strings, lexicon, etc.) we shall rely on the
definitions in Section 4 earlier. Simple words will be used here to indicate lexemes, but
abstractly a lexeme is a structure within a lexicon, not a printed word. Notions such as
rhymingandalliteration can be regarded as lexically definable predicates, based on identity
of pronunciation of substrings of the text strings being compared.

In the examples below, we shall write lexically definable predicates in standard predi-
cate notation, indicating the syntactic category of a lexeme as a function applied to it (e.g.
NOUN(bazaar)) and lexical relations as predicates applied to pairs of lexemes (e.g.SYN-
ONYM(bizarre ,strange)).

5

6.1.2 SADs

A SAD is a relatively abstract characterisation of a text string, not explicitly showing the
actual text to be used but indicating the important attributes of that constituent. For ex-
ample, for a text string which (informally speaking) represents a transitive verb phrase, a
SAD might indicate the verb and the head noun of the object. These are a rather crude
andJAPE-specific form of linguistic structure, whose essential import is defined solely by
how they are manipulated by the various rules. That is, they have no empirical justification
beyond their role as an internal construct within the model.

Example: The following (from theJAPE program) could be glossed as “that which can
be brushed and can be raked”, withNPindicating a parameter to be instantiated.

joint_object(NP, brush, rake)

6.1.3 SAD specifications

The information from which the description generator works is asmall adequate descrip-
tion specification, or “SAD-spec” for short. A SAD-spec consists of two parts: atag from
a small built-in set of symbolic labels, and a tuple of lexemes.

Example:

(shared_object,[brush, rake])

Informally, the tag is used by the generator to select a rule for the computation, and the
lexemes are the arguments on which the rule is to work.

6.1.4 SAD relations

Another non-primitive object used withinJAPE is theSAD relation. This consists of a
triple of items: the first is a label indicating one of a small set of relation-names used within
JAPE, and each of the other two items can be either a text string or a SAD. Informally,
this means that later rules are to treat the two items as if the relation named by the label
held between them. (For almost all of the jokes generated byJAPE, the relation label
is the mnemonicsame). In all the riddles covered byJAPE, it happens that all such
pairings consist of an item which is to appear in the question part of the text paired with
an item which is to appear in the answer part. As with SADs, these abstract constructs
are meaningful only as internal representations within the system, and are not directly
accessible to intuitive judgements about appropriateness.

Example: The following (from theJAPE program) indicates that a phrase expressing the
lexemeleaves directly describes roughly the same concept asthat which can be brushed
and raked.

<same, same_lexeme(NP,leaves), joint_object(NP,brush,rake)>

6.1.5 SAD equations

A SAD equationis a sketch of a SAD relation, in that it has a similar overall structure (a
relation-name and two other items), but instead of SADs it contains SAD-specs. A SAD
equation acts as a blueprint for the building of a SAD relation, since the SAD generator
(see below) creates a SAD relation by replacing each of the SAD-specs with the result of
applying the generation rules to that spec.

6

Example:

<same, (shared_object, [brush, rake]), (conjoin_inacts, [brush, rake])>

These structures are used in the output conditions of schemata (below).

6.2 Types of rule

6.2.1 Schemata

A schemaconsists of two parts. The first is a set ofpreconditions, stated in terms of
lexically definable predicates. In all theJAPE schema so far, the conditions are of the
logical form

∃X1, . . . , Xn : P1 ∧ P2 . . . ∧ Pm

where the variousPi are propositions involving some or all of the itemsXj . That is, the
preconditions always test for theexistenceof a set of lexemes and text strings related in
particular ways. The preconditions take account of information encoded in the lexicon
in order to determine their results. If the preconditions are satisfied by some particular
set of valuesA1, . . . , An, then these values are available for use in the second part of the
schema, theoutput specification. (That is, the formal mechanism borrows heavily from
the treatment of variables in Prolog, rather than relying on pure first-order logic.) Thus
the preconditions are formally a mapping from the supporting information (the lexicon) to
a sequence of values (for the various variables mentioned in the existential quantifiers at
the start). In the case where the preconditions are not satisfied by any items, the mapping
yieldsfalse.

The second part of a schema is a mapping from the values which satisfied the precon-
ditions (i.e. in effect the parameters of the schema) to a set ofk SAD equations (usually
k = 1 or k = 2).

Example: The schema known mnemonically asbrushrake has the following precon-
ditions (where all the capitalised words indicate variables which are implicitly existentially
quantified and the commas indicate logical conjunction of the propositions they separate):

spoonerizes([WordA, WordD],[WordB,WordC]),
written_form([LexA], [WordA]),
written_form([LexB], [WordB]),
written_form([LexC], [WordC]),
written_form([LexD], [WordD]),
verb(LexA),
verb(LexB),
verb(LexC),
verb(LexD)

This schema has the output specification:

<same, (shared_object,[LexA, LexD]),
(conjoin_inacts, [LexA, LexD])>,

<same, (shared_object,[LexB, LexC]),
(conjoin_inacts, [LexB, LexC])>

In the output specification, the uninstantiated variables (LexA , etc.) embody the mapping
from schema parameters (the values found by the preconditions) to SAD equations: instan-
tiating these variables forms the actual SAD equations.

7

6.2.2 The SAD generator

The SAD generator is a mapping from SAD-specs to SADs. Informally, the resulting SAD
should be made up of linguistic properties and relations that a entity might have if it was in
some way created from the lexemes in the tuple. The tag is a way for the schema (which
prepares the input for the generator) to guide the building of the SAD, as there might be
more than one way to construct a SAD from the lexemes; for example, given a noun and a
verb, the noun could be the head of the verb’s subject or of the verb’s object.

The main part of the SAD generator is a set ofSAD-generation rules. Each rule is
a mapping from a sequence of lexemes to a SAD. Internally, a rule consists of a set of
preconditions and an output specification. (That is, it has the same broad structure as a
schema, but differs in the way that it receives its input and in the type of output structures
it creates). The SAD generator also contains a mapping from the set of guiding tags to a
set of sets of these SAD rules. That is, given a particular symbolic tag (which originates
in a schema’s output specifications) there is a candidate set of rules for carrying out the
generation.

The preconditions (unlike those of a schema) start with some values already selected,
in the form of the lexeme sequence supplied in the SAD-spec. The existence (typically in
the lexicon) of other related values will be tested, and (as with schema preconditions) all
the values found are available for use by the rule’s output specification. Hence the pre-
conditions are a mapping from the input lexemes, together with the lexicon, to a sequence
of lexemes (or possibly text strings, although this does not happen in theJAPE rules at
present).

The rule’s output specification maps some subset of the sequence of lexemes which
satisfied the preconditions into a SAD.

Formally, ann-m-ary SAD rule is a pair(C,S). C represents the preconditions, a
mapping from a sequence ofn lexemes (and the lexicon) to eitherfalse or a sequence of
m lexemes.S is a mapping fromm lexemes to a SAD.

The whole SAD generatorSG is then of the form(select, {(Ci, Si)}) whereselect is
the mapping from tags to subsets of{(Ci, Si)}, the set of rules. Regarded as a mapping
from SAD-specs to SADs (relative to a lexiconLEX), SG((tag, 〈l1, . . . , ln〉), LEX) =
V iff there is a rule(C,S) in SG such that(C,S) ∈ select(tag) andC(〈l1, . . . , ln〉, LEX) =
〈v1, . . . , vm〉 andS(〈v1, . . . , vm〉) = V .

Example: Theselect function operating on the tagconjoin_inacts will yield a set
of SAD-rules which includes the following one.

Input Parameters: [V1, V2],
Preconditions:

inact_verb(X,V1),
inact_verb(X,V2)

Output specification:
[joint_object(NP, V1, V2)]

6.2.3 Templates

A template is a mapping from one or more arguments, each of which is a SAD relation (see
above), to a sentence form and a set of parameters for that sentence form. It achieves this
by checking its arguments for suitability, then manipulating the arguments (e.g. extracting
subparts, or combining arguments) so as to form items suitable for use by the particular
sentence form. The written text can then be created directly by this sentence form.

More formally, ank-ary template (over an alphabetA) consists of three parts:k con-
ditions,P1, . . . , Pk, to be applied to the template’sk arguments; ann-ary sentence form
sf overA; a functionF which maps the template’sk arguments into a tuple ofn values
suitable as input tosf .

8

Thus, a template of the form(P1, . . . , Pk, sf, F), given argumentsA1, . . . , Ak such
thatPi(Ai) is true for each1 ≤ i ≤ k, will pass on then-tuple of valuesF (A1, . . . , Ak)
to the sentence formsf .

The conditions in a template test only the internal structure of the arguments and are
independent of the lexicon or any other information source outside the parameter values
supplied. That is, they perform local structure-matching, rather than any form of inference
or verification against a database.

Example: The following is an English summary of the computation carried out by one
of the templates, which is coded in Prolog withinJAPE:

Inputs: SAD-Reln1, SAD-Reln2
Conditions:

Both SAD-Reln1, SAD-Reln2 should have relation ‘same’.
Each of these relations should have an ‘answer’ side

which is a SAD of the general form:
joint_object(X, V1, V2).

Extraction of information:
Extract suitable lexemes for making noun phrases from

the SADs on the ‘question’ sides of the SAD-relations;
call these NPQ1 and NPQ2 respectively.

Extract the verbs (2nd and 3rd arguments) from the SADs
in the ‘answer’ sides;
call these V11, V12 (from SAD-Reln1), V21, V22 (from
SAD-Reln2).

Results:
Sentence form : vvcompare
Arguments for sentence form:

NPQ1, NPQ2, V11, V12, V21, V22

6.2.4 Sentence forms

Informally speaking, asentence formis a pattern of written strings and slots where material
can be filled in to create partly “canned” text. The data on which the “fillers” are to be
based are regarded as parameters of the sentence form, and the number of parameters might
differ from the number of blank slots in the sentence form’s text, since, for example, two
parameter values might combine to make up the filler for a single slot, or one parameter
value might be duplicated into more than one slot. The possible parameter types are those
appropriate for the rest of theJAPE architecture, which happen to be sequences of lexemes
or text strings. Thus a sentence form is a mapping from a tuple of input arguments to a
surface string.

More precisely, ann-ary sentence-formover an alphabetA consists of a tuple ofm
strings fromA (fragments of text), and for each of the(m− 1) gaps between these surface
texts (and for the beginning and end of the tuple) there is a mapping fromn parameters to
a surface text. Informally, thejth functionfj indicates what surface text (computed from
then parameter values) should be inserted between fragmentsj and(j + 1) of the tuple,
with the0th functionf0 defining anything that is to be put at the start,fm defining any text
to be placed at the end.

In this way, a sentence form (〈s1, . . . , sm〉,〈f0, . . . , fm〉) defines a mapping fromn
items〈p1, . . . , pn〉 (where each itempi is either a sequence of lexemes or a surface text) to
a surface text of the form:

f0(p1, . . . , pn)s1f1(p1, . . . , pn) . . . smfm(p1, . . . , pn)

9

Example:

Sentence form : vvcompare

Input parameters: NP1, NP2, Verb11, Verb12, Verb21, Verb22

Strings: ‘What is the difference between’,
‘and’
‘?’
‘One you’
‘and’
‘, the other you’
‘and’

Functions: f0 = empty string;
f1 = a noun phrase string from NP1;
f2 = a noun phrase string from NP2;
f3 = empty string;
f4 = surface verb form of Verb11;
f5 = surface verb form of Verb12;
f6 = surface verb form of Verb21;
f7 = surface verb form of Verb22.

This is one case where the actual program code – a Definite Clause Grammar rule (Pereira
and Warren, 1980) in Prolog notation – may be more perspicuous than the version above:

vvcompare(NP1, NP2, Verb11, Verb12, Verb21, Verb22) -->
[’What’, is, the, difference, between],
np(NP1), [and], np(NP2), [’?’],
[’One’, you], verb(Verb11), [and], verb(Verb12), [’,’],
[the, other, you], verb(Verb21), [and], verb(Verb22).

6.3 The whole system

Combining all the formal entities from the past few pages, we have a statement that aJAPE
riddle systemis 6-tuple consisting of:

An alphabet A. See Section 4 above.

A lexicon LEX. See Section 4 above.

A setSF of sentence forms overA.

A setT of templates. Each is of the form(P1, . . . , Pk, sf, F)) (for somek, F and some
sf ∈ SF).

A setS of schemata.These will have preconditions stated in terms of the lexically defin-
able predicates.

A SAD generatorSG. (of the form(select, {(Ci, Si)})) The preconditions of each rule
will be stated in terms of the lexically definable predicates.

6.4 Characterising riddles

If we assume the various formalisations given above for the structures and rules involved
in aJAPE riddle system, then we can now consider a formal definition of what counts as a
well-formed riddle according to such a rule set.

Given aJAPE riddle system:

10

〈(A,≈), LEX,SF, T, S, (select, {(Ci, Si)})〉
a textσ is aJAPE riddleif there is ann-ary schemas ∈ S of the form(CONDS,OUTPUT)
and anm-ary templatet ∈ T of the form(〈P1, . . . , Pm〉, sf, F) such that there are values
v1, . . . , vn such that:

• CONDS(LEX) = 〈v1, . . . , vn〉
• OUTPUT (v1, . . . , vn) = {(Relnj , LHSj , RHSj) | 1 ≤ j ≤ m}
• there arem SAD relations〈E1, . . . , Em〉 such that for1 ≤ j ≤ m

Ej = (Relnj , SG(LHSj , LEX), SG(RHSj , LEX)),

and such that

– Pi(Ei) is true for all1 ≤ i ≤ m

– F (E1, . . . , Em) = 〈w1, . . . , wk〉
– sf(w1, . . . , wk) = σ.

7 JAPE schemata

7.1 Predicates used

Here is a list of the Prolog predicates used in the Lexical Preconditions ofJAPE-3 schemata,
together with informal definitions. (“TString ” indicates a “text string” in the sense of
Section 4 earlier.)

noun(Lexeme): The syntactic category ofLexeme is noun . Similar definitions hold
for verb , adj andnoun phrase (where the latter means “noun-noun compound”).

homophone(TStringA, TStringB): These two surface strings sound the same.

written form(LexemeList, TString): The lexemes inLexemeList are re-
alised at the surface byTString .

synonym(Lexeme1, Lexeme2): These two lexemes mean the same.

component lexemes(PhraseLexeme, LexemeA, LexemeB): The written form
of PhraseLexeme is the same as the concatenation of the written forms ofLexemeA and
LexemeB.

rhyme(TString1, TString2): These text strings end in phonetically similar/identical
material.

alternate meaning(Lexeme1, Lexeme2): These two lexemes are different senses
for the same text string.

spoonerize([TStringA, TStringD],[TStringB, TStringC]): The ini-
tial parts of text stringsTStringA andTStringC are phonetically similar, as are those
of TStringB andTStringD .

phon form(TString, PhonForm): TString has a phonetic formPhonForm .

match(TString1, PhonForm1, PhonForm2, TString2): PhonForm1 is the
pronunciation ofTString1 , PhonForm2 is an initial substring ofPhonForm1 such
thatTString2 is the corresponding initial substring ofTString1 .

subspell(TString1, TString2, TString3): TString1 is the concatena-
tion of TString2 andTString3 .

subphons(PhonForm1, PhonForm2, PhonForm3): Phonetic formPhonform1
is the concatenation ofPhonForm2 andPhonForm3 .

11

8 In conclusion

We have tried to ensure that the workings ofJAPE are stated explicitly, so that other work-
ers can assess or replicate them.

Any queries should be directed toGraeme.Ritchie@ed.ac.uk .

Acknowledgements

The conversion ofJAPE-2 to JAPE-3 and the first drafting of the abstract specification
were carried out while the author was a Visiting Researcher in the Alfa Informatica group
at the University of Amsterdam. The final version of this specification was prepared while
the author was supported by a research fellowship from the Leverhulme Trust.

12

Appendix: Schema definitions

Here we present cleaned up and restructured versions of the schemata listed in Appendix
J of Binsted (1996), copied directly from theJAPE-3 program. The names in Binsted’s
thesis have been kept, for ease of cross-referencing. Annotations at the right hand side,
preceded by a semi-colon, are not part of the schema, but are a sketch of how the variables
in the schema would be bound in order to generate the illustrative example given directly
below the schema.

Prolog notation is used throughout: upper-case identifiers represent variables to be in-
stantiated, and\+ represents negation (“not”).

TheLexical Preconditions are grouped within parentheses, with propositions
separated by commas denoting conjunction. The notation used in theOutput spec-
ification field is as follows. The field contains a list (delimited by square brackets),
where each element in the list is a term representing an (uninstantiated) SAD equation (see
Section 6.1.5 above). This term (of which the functor issad_reln) contains takes three
arguments: the first is the name of a SAD-relation (usuallysame) and the other two ar-
guments are terms (with functorsad_from) each of which will, once its variables are
instantiated, act as input to the SAD-generator. That is, the functorsad_from is used just
to wrap up the tag and data for the SAD-generator to work on.

In the implementation, there was a third field to a schema, after the Lexical Precon-
ditions and Output Specification, namely the Keywords. These were a list of the variable
names from the Lexical Preconditions that would become instantiated and whose values
would appear (in their written forms) in the surface text. This information was used for
various testing and evaluation purposes, but did not affect the generation of the jokes, and
so is omitted here.

SchemaVN is rather odd.JAPE-2 generated jokes of this type, although in a slightly
unprincipled fashion. In the conversion toJAPE-3, generation of this class of joke required
the inclusion of this schema, three SAD-generator rules, one template and one sentence
form. These jokes are different from others handled byJAPE, in that a particular word
(sea, sale) must appear inbothquestion and answer, and no synonym can be substituted.
Hence the schema must stipulate rather more than usual about the surface form, and the
work of the text generator is then highly constrained by the very specific brief it is given.

Lotus

Lexical preconditions:
(noun_phrase(NPLex), % NPLex = serial killer

component_lexemes(NPLex, LexA, LexB), % LexA = serial, LexB = killer
written_form([LexA], WordA), % WordA = ‘serial’
homophone(WordA, HomWord), % HomWord = ‘cereal’
written_form([HomLex], HomWord) % HomLex = cereal

)
Output specification:

[sad_reln(same,
sad_from(share_properties, [HomLex, NPLex]), % in Q
sad_from(make_phrase, [HomLex, LexB])) % in A

]

What kind of murderer has fibre? A cereal killer.

13

Bazaar

Lexical constraints:
(noun(LexB), % LexB = bazaar

written_form([LexB], WordB), % WordB = ‘bazaar’
homophone(WordA, WordB), % WordA = ‘bizarre’,
written_form([LexA], WordA) % LexA = bizarre%

)
Output specifications:

[sad_reln(same, sad_from(share_properties,[LexA,LexB]), % in Q
sad_from(make_phrase, [LexA, LexB])) % in A

]

What do you call a strange market? A bizarre bazaar.

Negcomp

Lexical preconditions:
(

spoonerize([WordA, WordD],[WordB, WordC]),
% [[‘cute’,‘mitten’][‘mute’,‘kitten]]

written_form([LexA], [WordA]),
written_form([LexB], [WordB]),
written_form([LexC], [WordC]),
written_form([LexD], [WordD]),
adj(LexA), % LexA = cute
adj(LexB), % LexB = mute
noun(LexC), % LexC = kitten
noun(LexD) % LexD = mitten

)
Output specification:

[sad_reln(same,
sad_from(share_properties, [LexA, LexD]), % in Q
sad_from(make_class_spec, [LexA, LexD])) , % in A

sad_reln(same,
sad_from(share_properties, [LexB, LexC]), % in Q
sad_from(make_class_spec, [LexB, LexC])) % in A

]

What’s the difference between a pretty glove and a silent cat? One’s a cute mitten, the
other’s a mute kitten.

Phonsub

Lexical preconditions:
(phon_form(Word, PhonForm),

% Word = ‘locomotive’, PhonForm= /locomotive/
subphons(PhonForm, SubPhonForm, Remainder),

% SubPhonForm=/lo/,Remainder=/comotive/
phon_form(SubWord, SubPhonForm), % SubWord = ‘low’
Word \== SubWord, % ‘locomotive’ =/= ‘low’
match(Word, PhonForm, Remainder, RemSpell),

% ‘locomotive’, /locomotive/, /comotive/,‘comotive’
subspell(NewWord, SubWord, RemSpell), % NewWord = ‘lowcomotive’
written_form([SubLex], [SubWord]), % SubLex = low
written_form([Lex], [Word]), % Lex = locomotive
\+ synonym(Lex, SubLex), % locomotive & low not synonyms
noun(Lex), % locomotive a noun
Word \== NewWord) % ‘locomotive’ =/= ‘lowcomotive’

14

Output specification:
[sad_reln(same,

sad_from(share_properties, [SubLex, Lex]), % in Q
[NewWord]) % in A

]

What do you call a depressed train? A low-comotive.

Hopchew

Lexical preconditions:
(spoonerizes([WordA, WordD],[WordB,WordC]),

written_form([LexA], [WordA]),
written_form([LexB], [WordB]),
written_form([LexC], [WordC]),
written_form([LexD], [WordD]),
verb(LexA),
verb(LexB),
verb(LexC),
verb(LexD))

Output specification:
[sad_reln(same,

sad_from(shared_subject,[LexA, LexD]), % in Q
sad_from(conjoin_acts, [LexA, LexD])), % in A

sad_reln(same,
sad_from(shared_subject,[LexB, LexC]), % in Q
sad_from(conjoin_acts, [LexB, LexC])) % in A

]

What’s the difference between a hungry kangaroo and a lumberjack?
One hops and chews, the other chops and hews.

Brushrake

Lexical preconditions:
(

spoonerizes([WordA, WordD],[WordB,WordC]),
% WordA = ‘brush’, WordD = ‘rake’, WordB = ‘rush’, WordC = ‘brake’

written_form([LexA], [WordA]),
written_form([LexB], [WordB]),
written_form([LexC], [WordC]),
written_form([LexD], [WordD]),
verb(LexA),
verb(LexB),
verb(LexC),
verb(LexD)

),
Output specification:

[sad_reln(same,
sad_from(shared_object,[LexA, LexD]), % in Q
sad_from(conjoin_inacts, [LexA, LexD])), % in A

sad_reln(same,
sad_from(shared_object,[LexB, LexC]), % in Q
sad_from(conjoin_inacts, [LexB, LexC])) % in A

],

What’s the difference between leaves and a car? One you brush and rake, the other you
rush and brake.

15

Poscomp

Lexical preconditions:
(adj(LexA), % sweet1 is an Adj

adj(LexB), % sweet2 is an Adj
alternate_meaning(LexA, LexB), % LexA= sweet1, LexB = sweet2
noun(LexC), % chick1 is a Noun
noun(LexD), % chick2 is a Noun
alternate_meaning(LexC, LexD), % LexC= chick1, LexD = chick2
written_form([LexA], [WordA]), % WordA = ‘sweet’
written_form([LexD], [WordD]), % WordD = ‘chick’
WordA \== WordD % to prevent, e.g. ‘absinth absinth’
)

Output specification:
[sad_reln(same,

sad_from(share_properties, [LexA, LexC]), % in Q
sad_from(make_phrase, [LexA, LexC])), % in A

sad_reln(same,
sad_from(share_properties, [LexB, LexD]), % in Q
sad_from(make_phrase, [LexA, LexC])) % in A

]

How’s a nice girl like a sugary bird? They’re both sweet chicks.

Rhyming lotus

Lexical preconditions:
(noun_phrase(NPLex), % NPLex = pub crawl

component_lexemes(NPLex, LexA, LexB), % LexA = pub, LexB = crawl
written_form([LexA], [WordA]), % WordA = ‘pub’
rhyme([WordA], [RhymWord]), % RhymWord = ‘tub’
written_form([RhymLex],[RhymWord]) % RhymLex = tub

)

Output specification:
[sad_reln(same,

sad_from(share_properties, [RhymLex, NPLex]), % in Q
sad_from(make_phrase, [RhymLex, LexB]))] % in A

What do you call a bath tour? a tub crawl.

Elan1

Lexical Preconditions:
(noun_phrase(NPLex), % NPLex = grizzly bear

component_lexemes(NPLex, LexA, LexB), % LexA = grizzly, LexB = bear
written_form([LexB], [WordB]), % WordB = ‘bear’
homophone([WordB], [HomWord]), % HomWord = ‘bare’
written_form([HomLex], [HomWord]), % HomLex = bare
noun(HomLex)

)

Output specification:
[sad_reln(same,

sad_from(share_properties, [HomLex, LexB]), % in Q
sad_from(make_phrase, [LexA, HomLex])) % Answer

]

What do you call a naked bruin? A grizzly bare.

16

Elan2

Lexical Preconditions:
(noun_phrase(NPLex), % NPLex = grizzly bear
component_lexemes(NPLex, LexA, LexB), % LexA = grizzly, LexB = bear
written_form([LexB], [WordB]), % WordB = ‘bear’
homophone([WordB], [HomWord]), % HomWord = ‘bare’
written_form([HomLex], [HomWord]), % HomLex = bare
noun(HomLex)
)

Output specification:
[sad_reln(same,

sad_from(share_properties, [NPLex, HomLex]), % in Q
sad_from(make_phrase, [LexA, HomLex])) % in A

]

What do you call a nude that has claws? A grizzly bare.

Coatshed

Lexical preconditions:
(

verb(LexA), % shed1 is a Verb
noun(LexB), % shed2 is a Noun
alternate_meaning(LexA, LexB), % LexA = shed1, LexB = shed2
verb(LexC), % coat1 is a Verb
noun(LexD), % coat2 is a Noun
alternate_meaning(LexC, LexD), % LexC = coat1, LexD = coat2
\+ alternate_meaning(LexB, LexD) % don’t want "coat a coat"

)

Output specification:
[sad_reln(same,

sad_from(possible_subject,[LexA, LexD]), % in Q
sad_from(subject_object, [LexA, LexD])), % in A

sad_reln(same,
sad_from(possible_subject,[LexC, LexB]), % in Q
sad_from(subject_object, [LexC, LexB])) % in A

]

What’s the difference between a hairy dog and a painter? One sheds his coat and one
coats his shed.

Jumper

Lexical Preconditions:
(noun_phrase(NPLex), % NPLex = grizzly bear
component_lexemes(NPLex, LexA, LexB) , % LexA = grizzly, LexB = bear
written_form([LexB], [WordB]), % WordB = ‘bear’
homophone([WordB], [HomWord]), % HomWord = ‘bare’
written_form([HomLex], [HomWord]), % HomLex = bare
noun(HomLex)
)

Output specification:
[sad_reln(same,

sad_from(share_properties, [LexA, HomLex]), % in Q
sad_from(make_phrase, [LexA, HomLex]))] % in A

What do you call a grumpy nude? A grizzly bare.

17

Woolly

Lexical preconditions:
(noun_phrase(NPLex), % NPLex = serial killer

component_lexemes(NPLex, LexA, LexB), % LexA = serial, LexB = killer
written_form([LexA], WordA), % WordA = ‘serial’
homophone(WordA, HomWord), % HomWord = ‘cereal’
written_form([HomLex], HomWord) % HomLex = cereal

)

Output specification:
[sad_reln(same,

sad_from(share_properties, [HomLex, LexB]), % in Q
sad_from(make_phrase, [HomLex, LexB]))] % in A

What do you get when you cross a murderer with a breakfast food? A cereal killer.

Double pun

Lexical preconditions:
(noun_phrase(NPLex),

component_lexemes(NPLex, LexA, LexB),
written_form([LexA], [WordA]),
written_form([LexB], [WordB]),
homophone([WordA], [HomWordA]),
homophone([WordB], [HomWordB]),
written_form([HomLexA], [HomWordA]),
written_form([HomLexB], [HomWordB]),
noun(HomLexB)

)

Output specification:
[sad_reln(same,

sad_from(share_properties, [HomLexA, HomLexB]), % in Q
sad_from(make_phrase, [HomLexA, HomLexB]))] % in A

What do you call a gory nude? A grisly bare.

VN

Lexical preconditions:
(noun(LexA), verb(LexB),

written_form([LexA], WordA), % WordA = ‘sea’
written_form([LexB], WordB), % WordB = ‘sail’
homophone(WordA, WordC), % ‘sea’, ‘see’
homophone(WordB, WordD), % ‘sail’, ‘sale’
written_form([LexC], WordC), % WordC = ‘see’
written_form([LexD], WordD), % WordD = ‘sale’
verb(LexC), noun(LexD)

)

Output specification:
[sad_reln(property,

sad_from(this_lexeme, [LexA]),
sad_from(possible_action,[LexB, LexA])),

sad_reln(property,
sad_from(this_lexeme, [LexD]),
sad_from(not_possible_action,[LexC, LexD]))]

What’s the difference between a sea and a sale? You can sail a sea, but you can’t see a sale.

18

References

Kim Binsted.Machine humour: An implemented model of puns. PhD thesis, University of
Edinburgh, Edinburgh, Scotland, 1996.

Kim Binsted, Helen Pain, and Graeme Ritchie. Children’s evaluation of computer-
generated punning riddles.Pragmatics and Cognition, 5(2):309–358, 1997.

Kim Binsted and Graeme Ritchie. An implemented model of punning riddles. InProceed-
ings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), Seattle,
USA, 1994.

Kim Binsted and Graeme Ritchie. Computational rules for generating punning riddles.
HUMOR, 10(1):25–76, 1997.

Alan Bundy. What kind of field is AI? In Partridge and Wilks (1990), pages 215–222.

John Campbell. Three novelties of AI: theories, programs and rational reconstructions. In
Partridge and Wilks (1990), pages 237–246.

William F. Clocksin and Christopher S. Mellish.Programming in Prolog. Springer Verlag,
Berlin, 1981.

Paul Griffiths. Lexical support for joke generation. Master’s thesis, Division of Informatics,
University of Edinburgh, Edinburgh, Scotland, 2000.

Derek Partridge and Yorick Wilks, editors.The foundations of artificial intelligence. Cam-
bridge University Press, Cambridge, 1990.

F. Pereira and D. H. D. Warren. Definite clause grammars for language analysis – a sur-
vey of the formalism and a comparison with augmented transition networks.Artificial
Intelligence, 13:231–278, 1980.

G. D. Ritchie and F. K. Hanna. AM : A case study in AI methodology.Artificial Intelli-
gence, 23:249–268, 1984.

19

