
T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

School of Informatics, University of Edinburgh

Centre for Intelligent Systems and their Applications

Proof Planning for Feature Interactions: a preliminary report

by

Claudio Castellini, Alan Smaill

Informatics Research Report EDI-INF-RR-0153

School of Informatics October 2002
http://www.informatics.ed.ac.uk/

Proof Planning for Feature Interactions: a preliminary
report

Claudio Castellini, Alan Smaill

Informatics Research Report EDI-INF-RR-0153

SCHOOLof INFORMATICS
Centre for Intelligent Systems and their Applications

October 2002

appears in Proceedings of LPAR 2002, Tbilisi, Georgia

Abstract :
We report on an initial success obtained in investigating the Feature Interaction problem (FI) via proof planning.

FIs arise as an unwanted/unexpected behaviour in large telephone networks and have recently attracted interest not
only from the Computer Science community but also from the industrial world. So far, FIs have been solved mainly
via approximation plus finite-state methods (model checking being the most popular); in our work we attack the
problem via proof planning in First-Order Linear Temporal Logic (FOLTL), therefore making use of no finite-state
approximation or restricting assumption about quantification. We have integrated the proof planner lambda-CLAM
with an object-level FOLTL theorem prover called FTL, and have so far re-discovered a feature interaction in a basic
(but far from trivial) example.

Keywords : proof planning, feature interactions, formal methods, temporal logics

Copyright c
 2002 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.

Proof Planning for Feature Interactions:

a preliminary report

Claudio Castellini and Alan Smaill

Division of Informatics
University of Edinburgh

80 South Bridge, Edinburgh EH1 1HN, UK

Abstract. We report on an initial success obtained in investigating the
Feature Interaction problem (FI) via proof planning. FIs arise as an un-
wanted/unexpected behaviour in large telephone networks and have re-
cently attracted interest not only from the Computer Science community
but also from the industrial world. So far, FIs have been solved mainly
via approximation plus finite-state methods (model checking being the
most popular); in our work we attack the problem via proof planning in
First-Order Linear Temporal Logic (FOLTL), therefore making use of
no finite-state approximation or restricting assumption about quantifi-
cation. We have integrated the proof planner λCLAM with an object-level
FOLTL theorem prover called FTL, and have so far re-discovered a fea-
ture interaction in a basic (but far from trivial) example.

1 Introduction

In computer science and particularly in formal methods, propositional temporal
logics, mainly in their linear-time version LTL, play a central role. They are
used in specification, verification and synthesis of transition systems, programs,
circuits, protocols and so on. Years of literature and practice have now shed light
on the field, its complexity and applications. But the situation becomes more
obscure and unexplored when we switch to first-order temporal logics. Because of
their high complexity and the lack of tools, they are still quite a virgin territory
to computer scientists; first-order linear temporal logic (FOLTL), for instance, is
not recursively enumerable, and only recently (see, e.g., [13, 16]) some recursively
enumerable and/or decidable fragments of it have been isolated and studied.
Nevertheless, its expressive power makes it ideal to formalise the behaviour and
requirements of infinite-state or parametrised discrete systems.

Encouraged by these results, we are trying to apply automated deduction via
proof planning to FOLTL, and have so far obtained some interesting results,
which are the subject to this paper. In particular, we have found a class of prob-
lems, the so-called Feature Interactions, which fits perfectly in this framework.

1.1 Case study: Feature Interactions

According to its most general definition, a feature is a service marketed to the
customer of a company, usually in addition to a basic service. In the past decade

at least, this problem, as experimented in large telephone networks, has received
great attention (see, e.g., [12]), both from the academical and the industrial
world. In this particular setting, the basic service is represented by the plain
telephone switch network connecting users to one another; features are addi-
tional services such as call-waiting and call-forwarding. Features are specified
and implemented without any knowledge of what other features may be concur-
rently required by other users in the network. This facilitates modular design
but also introduces potential undesired / unwanted behaviours when more than
one feature is activated.

A well-known example is the interaction arising between Anonymous Call
Rejection (ACR) and Call Forwarding Busy Line (CFBL). Informally, ACR pre-
scribes that anonymous calls (i.e., calls from a user hiding her number) should
be rejected, while CFBL prescribes that all calls to the subscriber should be
forwarded to a third party if the subscriber is busy. Assume user x subscribes
to both features: what happens if anonymous user y calls x while he is en-
gaged? Should y’s call be rejected according to ACR or forwarded to z according
to CFBL? The situation is usually repaired by establishing a priority relation
among features, and in this case, ACR would have priority over CFBL. But this
is not the focus of this paper.

Although FOLTL has already been used for FI, usually the problem is then
approximated assuming a finite number of users and solved via finitary tech-
niques such as model checking, as in [10] and [4], or satisfiability (see [3] for a
quite exhaustive perspective); but in this case a positive answer (i.e., “there is
no interaction and never will be”) is not definitive: if, e.g., the approximation
assumes 3 users, an interaction could arise when more of them join in.

On the other side, if we express the problem in FOLTL, we need to make
no finitary approximation whatsoever; moreover, the presentation is compact
and intuitive. But, due to the high complexity of this logic, it is highly unlikely
that any general FOLTL theorem prover could be of use in a feasible amount
of time/space. In order to overcome this problem, we use proof planning ([2]) as
a high-level guidance for such a theorem prover.

It must be remarked that, in this paper, we will introduce only a relevant
subset of FOLTL — namely, then one we are interested in for Feature Inter-
actions. The most striking difference with usual treatments of this logic is the
absence of the © (“next time”) operator. Notice, though, that the approach
works, in principle, for full FOLTL, and, as well, that we are likely to need the
© operator when we enlarge the class of problems we tackle.

Outline of the paper: in Section 2 the concept of FOLTL is quickly revised
and an appropriate sequent calculus is outlined; in Section 3 proof planning is
introduced, and a sketch of our system is given; in Section 4 the experiment and
the results are described, while Section 5 presents some conclusions and future
work.

2

2 Formal background

2.1 First-Order Linear Temporal Logic

The language of FOLTL we consider includes nonempty sets of variable, function
and predicate symbols V ,F and P ; it also has the classical operators ¬,⊃, ∀,
the unary modal operators 2 (“always”) and 2

τ (“bounded always”), and the
binary modal operator U (“until”). Other operators are defined from these basic
ones as usual (e.g., ∃ is ¬∀¬ and so on). Terms are defined in a standard way.

We employ Labelled Deduction (see, e.g., [11]) and have therefore a separate
language for labels (denoting time instants) and constraints (predicates over
labels). The language of labels and constraints consists of 0, = and ≺ (� is
defined as the disjunction of = and ≺) and variable symbols from a non empty
set Vt. The notation ϕ @ τ informally means: at time τ , formula ϕ holds.

The semantics we use is also largely standard, see, e.g., [1]. A structure is a
tuple

M = 〈N, <,=,D, I〉

where

– N, < and = denote the set of natural numbers and the usual less-than and
equality relation;

– D is a nonempty set (the domain of quantification);

– I maps each function symbol f ∈ F to a D-valued function I(f) and each
natural number i and predicate symbol p ∈ P to a predicate I(i, p) over D.

Due to this definition, the logic we consider has constant domains and rigid
designators (see, e.g., [19]).

An assignment α is a function mapping variable symbols in V to values in
D. The assignment α[d/x] assigns d ∈ D to x, leaving all the other symbols as
in α. The denotation of a term s in the structure M w.r.t. α, written sM,α, is
recursively defined as follows:

– if s is v ∈ V , then sM,α = α(v);

– if s is f(s1, . . . , sn), then sM,α = I(f)(sM,α
1 , . . . , sM,α

n).

To give a semantics to labels and constraints, we also introduce an interpre-
tation Il mapping ≺ and = to the usual relations < and = over the naturals,
0 to the natural number 0 and an assignment αl : Vt 7→ N. The denotation of
labels is analogous to that of logical terms. The letters τi, τn, τm, . . . will be used
for labels denoting the numbers i, n,m, . . .

The notion of a formula ϕ being true in a structure M under the assignment
α, written M, α |= ϕ, is defined recursively as follows:

3

M, α |= τn = τm iff n = m

M, α |= τn ≺ τm iff n < m

M, α |= τn � τm iff M, α |= τn = τm or M, α |= τn ≺ τm

M, α |= p(s1, . . . , sk) @ τi iff (sM,α
1 , . . . , s

M,α
k) ∈ I(i, p)

M, α |= ¬ϕ @ τi iff not M, α |= ϕ @ τi
M, α |= ϕ⊃ ψ @ τi iff not M, α |= ϕ @ τi or M, α |= ψ @ τi
M, α |= ∀x.ϕ @ τi iff for all d ∈ D,M, α[d/x] |= ϕ @ τi
M, α |= 2ϕ @ τi iff for all n ∈ N ,

not M, α |= τi � τn or M, α |= ϕ @ τn
M, α |= 2

τnϕ @ τi iff for all m ∈ N ,
not (M, α |= τi � τm and M, α |= τm ≺ τn) or
M, α |= ϕ @ τm

M, α |= ϕUψ @ τi iff there is n ∈ N such that
M, α |= τi � τn and M, α |= ψ @ τn and
M, α |= 2

τnϕ @ τi

If a formula ϕ is true in M under all possible assignments α, we say that the
structure M is a model for ϕ, and that ϕ is true in the structure (model) M,
written M |= ϕ. If a formula ϕ is true in all possible models, we say it is valid
and write |= ϕ.

2.2 A labelled sequent calculus for FOLTL

The formal framework in which we do proof search is represented by a labelled
sequent calculus modelled upon those presented in [6]. In that paper we have
devised a methodology for building sound and complete sequent calculi for quan-
tified modal logics whose frame properties can be axiomatised by a finite set of
first-order sentences including equality.

This seems a good starting point, so we follow that approach and build a
labelled sequent calculus for FOLTL that we call CFOLTL, by adding rules for
reflexivity, transitivity and strong connectedness to the basic calculus CQK in
[6]. Moreover, we add to CFOLTL the rules shown in Figure 1.

The key point in CFOLTL is the way the U operator is taken care of. Consider
rules lU and l2∗: basically, rule lU expands the “existential” part of U , that is,
it introduces a fresh time variable τa ∈ Vt and a constraint stating that ψ will
hold at a time τa in the future; moreover, it introduces the requirement that,
“in the meantime”, ϕ must hold (2τaϕ @ τ).

Rule l2∗ then, takes care of this latter requirement (the “universal” part
of U), and expands it into three assertions: (i) its argument ϕ holds at a time
τd, and (ii, iii) this time must lie between the current time τ and the time τa
associated with the 2

τa operator. An analogous explanation can be made for
rules rU and r2∗.

This complication is required by a completeness argument, which we explain
informally: there are formulae, representing problems in our case study, which
cannot be proved if we do not allow multiple instances of the universal part of
U . Therefore, it is necessary to handle the two parts separately. This is also why

4

Logical rules

Γ, τ � τa, ψ @ τa,2
τaϕ @ τ −→ ∆

Γ,ϕUψ @ τ −→ ∆
lU

Γ −→ τ � τb, ∆ Γ −→ ψ @ τb, ∆ Γ −→ 2
τbϕ @ τ,∆

Γ −→ ϕUψ @ τ,∆
rU

Γ, ϕ @ τc −→ ∆ Γ −→ τ � τc, ∆ Γ −→ τc ≺ τn, ∆

Γ,2τnϕ @ τ −→ ∆
l2∗

Γ, τ � τd, τd ≺ τn −→ ϕ @ τd, ∆

Γ −→ 2
τnϕ @ τ,∆

r2∗

Table 1. sequent rules for U and 2
τ . τa, τd ∈ Vt cannot appear free in the

conclusion of lU and r2∗.

we have introduced the 2
τ operator in our logic, which is not very common in

FOLTL.

3 Proof planning and λCLAM

Proof planning was initially proposed by Bundy ([2]) and has then been devel-
oped mainly in Edinburgh, Birmingham and Saarbrücken; the underlying idea is
to build an abstract representation of a proof (a proof plan) rather than a proof.
Analogously to a proof tree, where each node is labelled by a pair (inference
rule, sequent), a proof plan is a tree whose nodes are labelled by pairs (method,
sequent). A method is a macro-step of reasoning resembling the activity of a
human reasoner, i.e., a well chosen induction scheme or a considerate case-split
rule. The advantages are mainly that (i) the search space at the abstract level
is typically orders of magnitude smaller than that at the object level, and (ii)
very little backtracking is likely to happen in proof planning.

Once a proof plan for a formula has been found, it is translated into the
object-level specification of a proof and then validated by an object-level theorem
prover acting as a proof checker. That is, each node of the proof plan is expanded
into a sequence (or possibly a tree) of inference rules, specified in an operational
way by tactics. The result is a tactic tree which is then executed by the prover
until the proof of the original formula is obtained. This way, a task which would
have been impossible for the object-level prover alone becomes feasible. A proof
plan acts as a guidance for proof search at the object level.

The proof planner we use, λCLAM, was first envisioned in [18], in which the
idea of higher-order terms for proof search is introduced. λCLAM employs the
higher-order logic programming language λProlog (see [15]) and takes advantage
of a number of features of this language, in primis its modularity. A typical
method declaration in λCLAM looks like this:

5

atomic <theory-name> <method-name>

<input-goal>

<preconditions>

<postconditions>

<output-goal>

<associated tactic>.

The method can be applied to the input goal if the preconditions hold (repre-
senting constraints on the shape of the main formula of the sequent or denoting
the state of the planner in which the method is applicable); after application
of the method, the output goal is generated and the postconditions must hold.
The associated tactic replaces the method in the object-level specification of the
proof.

3.1 FTL: a tactic-based theorem prover for FOLTL

FTL is written in λProlog as well and employs tactics, in the style of [7]. At the
simplest level a tactic is a wrapper for a rule of inference, also carrying some
information such as which formula the rule is applied to, which term has been
guessed for an existential force quantifier, etc. It basically enforces a sound step
of inference.

In general however, a tactic just links two sequents and can therefore repre-
sent conditional, iterative and exhaustive application of tactics, or even a tactic
tree, which is the full specification of a proof tree.

FTL exploits a number of well-known characteristics of λProlog which are well
suited for classical, intuitionistic and temporal logics (see, e.g., [9]). The main
one is, once again, its modularity: in FTL, a separate λProlog module called
time takes care of reasoning on time. Figure 1 sketches the system: each box
represents a module, inclusion of boxes indicates textual inclusion of modules
(accumulation), while an arrow denotes dynamic addition of a module’s clauses
to another module (importing). In this case, module time is imported into the
main tactics module, basic tacs.

basic_tacs

FTL

compound_tacs compound_tacs

time

Fig. 1. a scheme of FTL.

FTL also employs well-known techniques borrowed from the automated rea-
soning community, such as the use of metavariables to handle non-generative

6

rules (universal quantification in the hypotheses or existential quantification in
the conclusions). Together with the standard λProlog unification algorithm, this
technique enforces a “lazy” instantiation of existential force quantifiers. This
technique, which achieves great efficiency by delaying the choice of terms to the
very end of the proof, is thoroughly explained, e.g., in [17]. See [5] for a more
detailed system description of FTL.

4 Experiments

In the following, we will omit labels attached to a formula whenever the label is
0. The way we tackle FIs closely follows the methodology outlined in [10]:

– the global behaviour of the telephone system is expressed as a set of invariant
(i.e., wrapped by a 2 operator) universally quantified first-order sentences;

– a feature, denoted by the subscript i, is specified via a formula like this:

2∀x ei(x)⊃ [pi(x) U (ri(x) ∨ di(x))] (1)

informally meaning “after the feature is enabled, a persisting condition holds
until the feature is resolved or discharged”.

– a feature interaction (that is, an undesired behaviour) is found between two
features 1 and 2 if the previous formulae together imply 2∀x¬G(x), where
G(x) is:

e1(x)∧ e2(x)∧ [(p1(x)∧ p2(x)) U (¬p1(x)∧¬p2(x)∧¬d1(x)∧¬d2(x))] (2)

informally meaning “enable the features at the same time, let them persist,
then force them to resolve”. The idea is that G(x) represents the required
behaviour, and 2∀x¬G(x) is the denial of it. If the above implication is valid,
then the required behaviour will never be possible, for any combination of
users.

In order to test the feasibility of proof planning for FIs, we have analysed the
hand-made proof of the ACR/CFBL example (see Subsection 1.1) as presented
in [8], and tried to mimic it in a proof plan. Here is how we formalised the
problem:

(i) ACR is defined by instantiating the schema 1 as follows:

e1(x, y) = has acr(x) ∧ ¬display(y) ∧ call req(y, x)
p1(x, y) = call req(y, x)
r1(x, y) = acr announce(x, y)
d1(y) = onhook(y)

informally meaning: if user x has activated ACR and user y is anonymous, y will
be trying to call x until either x sends a rejection message or y hangs up.

(ii) CFBL is defined by instantiating the same schema as follows:

7

e2(x, y, z) = has cfbl(x) ∧ ¬idle(x)∧
¬∃t.forwarding(t, x, z) ∧ call req(y, x)

p2(x, y) = call req(y, x)
r2(x, y, z) = forwarding(y, x, z)

d2(y) = onhook(y)

informally meaning: if user x has activated CFBL, is not idle and there are no
calls to him being currently forwarded, y will be trying to call x until either the
call is forwarded to z or y hangs up.

(iii) System axioms enforce simple properties of the predicates involved in the
definition of the features, e.g.,

2∀xy ¬(onhook(x) ∧ call req(x, y))

informally meaning: it is impossible to hang up and be trying to call someone
at the same time.

(iv) Finally, the requirement is obtained by instantiating scheme 2 with the
above definitions of pi, ei, di and ri, i = 1, 2 (from now on, we omit the explicit
reference to the variables x for conciseness).

In the end we are trying to prove validity of the formula:

2∀x [e1⊃ p1 U (r1 ∨ d1)] ∧

2∀x [e2⊃ p2 U (r2 ∨ d2)] ∧

2∀x[SA] ⊃

2∀x¬G (3)

where SA denotes system axioms. Note that 3 involves a quite free mix of unary,
binary and ternary predicates, temporal operators and first-order quantifiers,
in such a way that it does not fall into any known well-behaved fragment of
FOLTL, as far as we know.

According to the hand-made proof, let us suppose G holds and try to derive
a contradiction. By the definitions of 2 and U ,

1. if G holds, there is a time t0 ≥ 0 at which both e1 and e2 hold; also, there is
a time tG ≥ t0 such that p1 and p2 hold until ¬p1 ∧ ¬p2 ∧ ¬d1 ∧ ¬d2 holds
at tG;

2. since both ACR and CFBL hold, they must be enabled at t0; also, there
are times tACR, tCFBL ≥ t0 such that p1 and p2 hold until the features are
either resolved or discharged respectively at tACR and tCFBL.

The key to the proof is the relative positions of tG, tACR and tCFBL; Figure
2 is an example case in which tACR < tG and tCFBL > tG.

There are three subcases to be considered for tG and tACR (i.e., tG < tACR,
tG > tACR and tG = tACR) and three for tG and tCFBL, but it turns out that
the situation is simpler:

8

t
0

t
CFBL

t
ACR

G

ACR

CFBL

p1

p1^p2

p2

e1

e2

~d1^~d2e1^e2

t
G

~p1^~p2

r1 v d1

r2 v d2

0

Fig. 2. a graphical representation of the interaction between ACR and CFBL. In this
case, tACR < tG and tCFBL > tG.

– consider G and ACR: if tG < tACR then both ¬p1 and p1 must hold at
tG, which leads to a contradiction. Analogously, consider G and CFBL: if
tG < tCFBL then both ¬p2 and p2 must hold at tG;

– consider G and ACR again: if tACR < tG then both p1 and r1 ∨ d1 must
hold at tACR, which leads to a contradiction if the system axioms are taken
into account. Analogously for G and CFBL, in which case a contradiction is
derived from p2 and r2 ∨ d2 at tCFBL w.r.t. the system axioms;

– lastly, consider the remaining case in which tG = tACR = tCFBL: by propo-
sitional reasoning, r1 and r2 must hold together with the system axioms,
which once again leads to a contradiction.

As already noted in [8], system axioms are not involved in the first two cases,
ruled out by simple propositional considerations. The remaning three cases are
solved by first-order reasoning because no temporal operators are involved in the
system axioms. In order to mimic this neat, intuitive and rigorous (although not
formal) way of reasoning, we set up a λCLAM method called fi case split which
simply splits the goal of proving formula 3 into three first-order subgoals (see
Figure 3).

λCLAM finds the proof plan in about one minute on an Ultra 10 Sun machine
without any backtracking, as we expect. The proof plan is then translated into
a (big) tactic which is fed to FTL, which applies it to the formula and generates
the actual proof of the formula itself.

It is interesting to have a closer look at the process of translation of the proof
plan into an FTL tactic. In particular, the first-order reasoning which happens
in λCLAM during the exploration of the three subgoals opened by fi case split
only involves atomic methods, which embed inference rules of CFOLTL and are
translated directly into basic tactics.

The case is quite different with the translation of the fi case split method
itself, corresponding to a quite complicated sub-prooftree, visible in Figure 4. In
particular, rules lU are employed once each for G and ACR, introducing time
points tG and tACR; then, strong connectedness (rule sconn) generates three
subcases in which tG < tACR, tG > tACR and tG = tACR. The first two subcases
are ruled out respectively by immediate contradiction and using the first sub-case

9

G CFBL
t > t

G ACR
t > t

G ACR
t = t = t

CFBL

SA @ tCFBL
ACR1

ACR
r v d @ t

11

p @ t

SA @ tG

r @ t
1

2
r @ t

ACR

CFBL

fi_case_split

false

false false

SA @ tACR

2

r v d @ t
22

p @ t
CFBL

CFBL

Fig. 3. method fi case split applied to the interaction between ACR and CFBL. The
three generated subgoals are closed by first-order reasoning.

of the fi case split method; the third is brought forward, with the assumption
that tG = tACR.

Then, in perfect analogy, rule lU introduces time tCFBL for CFBL and strong
connectedness opens three more subcases, the first two of which are respectively
closed by immediate contradiction, and by the second sub-case of fi case split.
We are left with the assumptions tG = tACR and tG = tCFBL, and this branch
is closed by the third sub-case of fi case split.

The subtree remarkably reflects the structure of the hand-made proof, also
formally justifying it; moreover, the fact that its execution as a tactic proves
the original formula in FTL ensures soundness of the proof plan. But the more
remarkable property is that it clearly shows a sort of “pattern” in the way the
U-formulae are exploited and searched for contradiction: first use the U in G

“against” that in ACR; once one branch only is left, use the U in G once again
“against” that in CFBL; if in the end one branch only remains, try to close it
by FO reasoning.

5 Conclusions

As a preliminary result, the experiment described in the previous Section seems
encouraging. The spirit behind proof planning, a discipline on the border of
AI and Cognitive Science, is that of capturing the common structure in proofs
dealing with a particular problem, by means of proof plans — exactly as it
happens in this example. We believe this class of problems is so hard that not
only no brute-force approach is feasible, but also that effective heuristics will be
hard to find for a long time; at the same time, several of the proofs devised for
these problems actually seem to share the common structure seen at the end

10

l t0

l t0

t < t
G ACR

t = t
G ACR

t = t
G CFBL

G
t > t

CFBL

t < t
G CFBL

ax c

ax c

lU

Tac1

t > t
G ACR

lU

lU

Tac3

Tac2

SCONN (t ,t)

t = t
G ACR

(G)

(ACR)

(CFBL)

SCONN (t ,t)
ACRG

CFBLG

Fig. 4. the tactic tree obtained translating the fi case split method. Tac1, Tac2 and
Tac3 are the tactics corresponding to the three subcases of the method. Branches which
look open in the Figure are closed by rules l2

∗, not shown.

of the previous Section: if this is confirmed by further experimenting, Feature
Interactions are definitely a good benchmark for proof planning.

In fact, the idea is that of mimicking human proofs and then generalising
the common structure found in them to more examples and problems; näıve as
it may appear, the framework presented in this preliminary report will work
for any two features whose shapes resemble the schema 1 and system axioms
not containing temporal operators. Although this represents a small fragment of
FOLTL, it appears that a relevant part of the Feature Interaction community
is adopting a similar formalism; see, e.g., [14, 10, 4].

Of course the class of problems needs to be enlarged and the approach gen-
eralised. In particular, it seems not too far-fetched to tackle interactions among
more than two features, and — more interesting — among a collection of users,
each one having a different set of features enabled.

If proved successful, this approach could shed more light on the field of au-
tomated reasoning in FOLTL, bringing benefits to the whole community. As
well, if feasible on a large scale, it could significantly improve the situation in

11

infinite-state formal methods, thanks also to the possible integration of λCLAM

with external decision procedures and model checkers.

Acknowledgements

This work is being carried out at the University of Edinburgh and is supported
by the EPSRC Grant GR/M46624, “Mechanising First-Order Temporal Log-
ics”. The authors wish to thank all people involved in the project: Alan Bundy,
Anatoli Degtyarev, Paul Jackson, Michael Fisher and Peter Quigley.

References

1. Martin Abad́ı and Zohar Manna. Nonclausal deduction in first-order temporal
logic. Journal of the ACM, 37(2):279–317, April 1990.

2. A. Bundy. The use of explicit plans to guide inductive proofs. In R. Lusk and
R. Overbeek, editors, 9th International Conference on Automated Deduction, pages
111–120. Springer-Verlag, 1988. Longer version available from Edinburgh as DAI
Research Paper No. 349.

3. Muffy Calder, Mario Kolberg, Evan H. Magill, and Stephan Reiff-Marganiec. Fea-
ture interaction: A critical review and considered forecast. Computer Networks,
2002.

4. Muffy Calder and Alice Miller. Using SPIN for feature interaction analysis —
A case study. In M.B. Dwyer, editor, Model checking software: 8th International
SPIN Workshop, Toronto, Canada, May 19-20, 2001: proceedings, pages 143–162.
Springer, 2001. Lecture Notes in Computer Science No. 2057.

5. C. Castellini and A. Smaill. Tactic-based theorem proving in first-order modal and
temporal logics. In E. Giunchiglia and F. Massacci, editors, Issues in the Design
and Experimental Evaluation of Systems for Modal and Temporal Logics, TR DII
14/01. University of Siena, June 2001.

6. C. Castellini and A. Smaill. Modular, uniform and normalising sequent calculi for
quantified modal logics. Technical report, Division of Informatics, 2002.

7. A. Felty. Implementing tactics and tacticals in a higher-order logic programming
language. Journal of Automated Reasoning, 11(1):43–81, 1993.

8. Amy Felty. Temporal logic theorem proving and its application to the feature
interaction problem. In E. Giunchiglia and F. Massacci, editors, Issues in the
Design and Experimental Evaluation of Systems for Modal and Temporal Logics,
TR DII 14/01. University of Siena, June 2001.

9. Amy Felty and Laurent Thery. Interactive theorem proving with temporal logic.
Journal of Symbolic Computation, 23(4):367–397, 1997.

10. Amy P. Felty and Kedar S. Namjoshi. Feature specification and automated conflict
detection. In Feature Interactions Workshop. IOS Press, 2000.

11. Dov M. Gabbay. Labelled Deductive Systems, Volume 1. Oxford University Press,
Oxford, 1996.

12. Nancy Griffeth, Ralph Blumenthal, Jean-Charles Gregoire, and Tadashi Ohta. A
feature interaction benchmark for the first feature interaction detection contest.
Computer Networks (Amsterdam, Netherlands: 1999), 32(4):389–418, April 2000.

13. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments of first order
temporal logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

12

14. Bengt Jonsson, Tiziana Margaria, Gustaf Naeser, Jan Nyström, and Bernhard
Steffen. Incremental requirement specification for evolving systems. Nordic Journal
of Computing, 8(1):65–87, Spring 2001.

15. Gopalan Nadathur and Dale Miller. Higher-order logic programming. In D. Gab-
bay, C. Hogger, and A. Robinson, editors, Handbook of Logic in AI and Logic
Programming, Volume 5: Logic Programming. Springer Verlag, Oxford, 1986.

16. Regimantas Pliuškevičius. On an ω-decidable deductive procedure for non-Horn
sequents of a restricted FTL. Lecture Notes in Computer Science, 1861:523–537,
2000.

17. Natarajan Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur,
editor, Proceedings 11th Intl. Conf. on Automated Deduction, CADE’92, Saratoga
Springs, CA, USA, 15–18 June 1992, volume 607, pages 522–536. Springer-Verlag,
Berlin, 1992.

18. Alan Smaill and Ian Green. Higher-order annotated terms for proof search. In
Joakim von Wright, Jim Grundy, and John Harrison, editors, Theorem Proving in
Higher Order Logics: 9th International Conference, TPHOLs’96, volume 1275 of
Lecture Notes in Computer Science, pages 399–414, Turku, Finland, 1996. Springer-
Verlag. Also available as DAI Research Paper 799.

19. Luca Viganò. Labelled Non-Classical Logics. Kluwer Academic Publishers, Dor-
drecht, 2000.

13

