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Abstract

I propose a formalisation of knowledge sharing scenarios that aims

at capturing the crucial role played by an existing duality between

ontological theories one wants to merge and particular situations that

need to be linked. I use diagrams in the Chu category and colimits

over these diagrams to account for the reliability and optimality of

knowledge sharing systems. Furthermore, I show how we may ob-

tain a deeper understanding of a system that shares knowledge be-

tween a probabilistic logic program and Bayesian belief networks by

re-analysing the scenario in terms of the present approach.

Keywords: Knowledge sharing, ontologies, channel theory, Chu spaces,

probabilistic logic programming, Bayesian belief networks.

1 Introduction

The task of building knowledge-intensive systems has changed with the ar-
rival and generalised use of the Internet. It has shifted from the task of pro-
ducing stand-alone knowledge-based systems, designed by a reduced team
of closely cooperating knowledge engineers, to the task of integrating highly
distributed systems that reason with knowledge compiled by separate knowl-
edge engineers within different sources of knowledge. Nowadays knowledge
components, such as ontologies, problem solvers, or knowledge bases, are
publicly available on the World-Wide Web, and consequently, researchers
have addressed over the last years the problems that arise with the attempt
of successfully sharing and reusing knowledge in such distributed environ-
ments.
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Reliable sharing of formally represented knowledge is, in general, a very
difficult task. Different knowledge components may have been specified in
different logical languages using completely distinct terminology, although
having been designed to be used in the same application domain; and most
likely they may have been implemented following different computational
paradigms. Ontologies have been advocated as a solution for knowledge
sharing, and a lot of effort has been put in devising methodologies for the
design, development, and deployment of ontologies [16, 11, 12, 24, 5]. Very
briefly, an ontology is an explicit specification of a conceptualisation, and
usually consists of a hierarchy of concepts, relations between these concepts,
and a set of axioms that constrain the possible interpretations of concepts
and relations.

Although ontologies have been proposed as a silver bullet for knowledge
sharing, it has been shown that, for some knowledge-sharing scenarios, the
integration of ontologies by aligning, merging, or unifying concepts and re-
lations as specified by their respective theories turns out to be insufficient
[7]. A closer analysis of these scenarios reveals that successful and reliable
knowledge sharing between two systems goes closely together with an agreed
understanding of an existing duality between the merge of local ontologies
into a global one, and the identification of potential situations in which the
sharing of knowledge is going to take place.

Two issues arise from the above analysis. First of all, that the approach
to knowledge sharing presented here is heavily influenced by Barwise and
Seligman’s perspective of information flow and by the logic of distributed
systems they propose [3]. They advocate in the second of their ‘Principles of
Information Flow’:

Information flow crucially involves both, types and their
particulars. [3]

Types constitute the ‘vocabulary’ used to describe a local component, and
the particulars, also called tokens, are the instances of these components, or
the situations in which they are going to be used.

The second issue is that duality is a recurrent theme in logic and math-
ematics, and this has been thoroughly studied within category theory by
means of Chu spaces [1, 13, 2, 19]. Actually, Chu spaces also form the foun-
dations of a mathematical theory of formal concept formation [9], as well as
of the above mentioned theory of information flow [3].

In his ‘Categorical Manifesto’, Goguen gave seven guidelines, which he
called dogmas1, for using category theory in computing science [10]. Fields

1Goguen called them dogmas as a reminder that they should not be taken too dogmat-
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like formal software engineering have gained a deep insight into specific tools
and techniques thanks to use of category-theoretical concepts [21, 4]. It is
therefore sensible to assume that category theory can also help us to provide
a deeper insight into the complex tasks that concern knowledge engineers.
In particular, Goguen’s sixth dogma is absolutely relevant to the challenge of
knowledge sharing:

Given a species of structure, say widgets, then the result of in-
terconnecting a system of widgets to form a super-widget corre-
sponds to taking the colimit of the diagram of widgets in which
morphisms show how they are interconnected. [10]

In this paper I shall introduce a formalisation of knowledge-sharing sce-
narios where the category of ‘widgets’ is going to be the category of Chu
spaces and Chu transforms. As already mentioned, this is influenced by
Barwise and Seligman’s perspective of information flow. I am not introduc-
ing new scenarios here; my claim is that the formalisation proposed in this
paper favours the rigorous modelling and analysis of reliable and optimal
knowledge-sharing scenarios. I discuss the role played by duality in such
scenarios in Section 2, and introduce the formal framework in Section 3. In
that section, as well as in Section 4, I illustrate some of the advantages of the
suggested formalisation by re-analysing a knowledge-sharing scenario first
studied by Corrêa da Silva et al. in [6]. I conclude in Section 5 discussing
related work and future perspectives.

2 The Role of Duality

2.1 Aligning Ontologies

In order to explain what I mean under duality and in order to illustrate its
role in knowledge sharing, let us start with an example taken from [22], which
shows the issues one has to take into account when attempting to align the
English concepts river and stream with the French concepts fleuve and rivière.
According to Sowa,

In English, size is the feature that distinguishes river from stream;
in French, a fleuve is a river that flows into the sea, and a rivière

is either a river or a stream that runs into another river. [22]

This explains how the concepts need to be merged. Notice that the above
quote requires an agreed understanding on how to distinguish between big

ically.

3



PSfrag replacements

river stream fleuve rivière

big-into-riverbig-into-sea small-into-riversmall-into-sea

Mississippi

Mississippi

Ohio

Ohio

Captina

Captina Rhône
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Figure 1: Agreed understanding

and small rivers, and between rivers that run into a sea or into other rivers,
yielding four types of instances of ‘water-flowing entities’: big-into-sea, big-

into-river, small-into-sea, and small-into-river.
Figure 1 shows how both, English and French speakers, base their con-

cepts upon this agreed understanding, although English and French speakers
don’t distinguish between some types of instances. For example, English
speakers call both, big-into-sea and big-into-river, a river, while French speak-
ers don’t distinguish between big-into-river and small-into-river, and call both
types a rivière.

But aligning the ontologies requires the classification of particular in-
stances of river, stream, fleuve, and rivière according with the agreed under-
standing, since it is this agreed way of classification which will determine how
the concepts river, stream, fleuve, and rivière are going to be related to each
other. The ultimate goal is to determine the connections that link particular
instances of type river or stream with particular instances of type fleuve or
rivière, in a way that they respect the agreed understanding. This is done by
connecting only those instances that conform to the same type according to
the agreed understanding, as illustrated in Figure 2.

The resulting classification of connections 〈Mississippi,Rhône〉, 〈Ohio, Saône〉,
and 〈Captina,Roubion〉 into the four concepts river, stream, fleuve, and rivière,
determines a theory of how these concepts are related (e.g., that a fleuve is
also a river, or that a stream is also a rivière, but not vice versa). Figure 2
shows what in channel theory is known as a an information channel [3]. It
captures, by means of two pairs of contravariant functions, an existing dual-
ity between concepts and instances: Each pair consists of a map of concepts
on the so called type level and map of instances on the so called token level,
and pointing in the opposite direction. From a channel-theoretic perspec-
tive, Figure 2 actually illustrates us that sharing knowledge involves a flow
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Figure 2: Aligning ontologies

of information that crucially depends on how the instances of different agents
are connected together. The following table shows the classification relation,
i.e., the connections as classified according to the concept types involved in
the example:

river stream fleuve rivière

〈Mississippi,Rhône〉 1 0 1 0
〈Ohio, Saône〉 1 0 0 1

〈Captina,Roubion〉 0 1 0 1

The merged set of concepts {river, stream, fleuve, rivière} actually has an
additional structure that we can deduce from the way the connections of
instances are classified with respect to these concepts. Through techniques
from formal concepts analysis [9], for instance, we can make such structure
explicit in the form of a concept lattice, as shown in Figure 3. The concept
hierarchy represented in this lattice depends on the choice of instances and
its classification with respect to the agreed understanding. The fact that no
instances were classified as of type small-into-sea was crucial in this example.
Notice, also, that the resulting lattice has a node labelled with the concept
river ∧ rivière, which is a formal concept that did not exist in the original
vocabularies. It corresponds to the instances of ‘water-flowing entities’ that,
although big, flow into other rivers, like Ohio and Saône.

2.2 Sharing Inferential Knowledge

The principle of aligning ontologies outlined in Section 2.1, which takes the
duality arising between sets of concepts to be merged and instances to be
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linked into account, is a case of a general pattern that reveals to be crucial
for the reliable sharing of knowledge. Corrêa da Silva et al. have studied sev-
eral knowledge-sharing scenarios where a common ontological theory turned
out to be insufficient for the reliable sharing of knowledge [7]. They showed
several problems arising from this insufficiency and proposed alternative so-
lutions to them.

For instance, when attempting to share knowledge between two knowledge
bases with inference engines based on different substructural logics [20], like
relevant logic (rl) and linear logic (ll), a common ontological theory for the
declarative knowledge is insufficient: A system based on linear logic querying
a system based on relevant logic needs to know if the foreign system has used
the following inference rule, called contraction, when answering the query,
because the former will not accept a proof involving this rule:

Γ[(X;Y );Y ] ` A

Γ[X;Y ] ` A

In the above rule, A stands for a formula, X and Y are structures (compo-
sitions of formulas with the operator ‘;’), and Γ[−] denotes the context in
which these structures occur.

The scenario shown in Figure 4 is similar to the example of Section 2.1.
Here, instead of aligning concepts in order to know when a instance of river

corresponds to an instance of fleuve or rivière, we are interested in aligning
sequents of relevant logic and linear logic in order to know for which a proof
P of a sequent Π `rl B in relevant logic amounts to a proof R of the same
sequent Π `ll B in linear logic.

The fact that both knowledge-based systems agree with respect to the
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Figure 4: Sharing inferential knowledge

logical language in which they express their knowledge and formulate their
queries, is given by the fact that the type level of the pair of contravariant
functions shown in Figure 4 are identities. But, any attempt to successfully
share knowledge between both knowledge-based systems has to identify those
tokens of proofs that both systems can actually share, which in this particular
example means contraction-free proofs.

Corrêa da Silva et al. [7] propose to use structurally-free logic (sfl) [8] as
a mechanism for distinguishing between contraction-free proofs from proofs
with contraction, and hence for inferring the necessary link at the token level.
Although they did not express it in channel-theoretic terms, what they actu-
ally did amounts to use structurally-free logic to define a classification that
captures the agreed understanding that ultimately determines an information
channel between relevant logic and linear logic.

A proof of a sequent Γ ` A is mapped to the sequence of combina-
tors2, which keeps track of the application of structural inference rules (e.g.,
left-associativity, commutativity, contraction). For instance, the proof Q of
sequent

A→ (A→ B) ` A→ B

shown in Figure 5 is mapped to the (one-element) sequence 〈W〉, because
a structural rule has been used only once (see [7] for further details). The
fact that the combinator W happens to be in this sequence indicates that the
proof uses contraction, and, consequently, the token level of the contravariant

2A combinator is a λ-term with no free occurrences of variables
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A→ (A→ B) ` A→ (A→ B) A ` A
(→ E)

A→ (A→ B);A ` A→ B A ` A
(→ E)

(A→ (A→ B);A);A ` B
(W)

A→ (A→ B);A ` B
(→ I)

A→ (A→ B) ` A→ B

Figure 5: Proof Q of A→ (A→ B) ` A→ B

pair of functions should map the proof Q to the token with-contraction (see
Figure 4).

3 Patterns of Knowledge Sharing

The solution sketched above actually illustrates Corrêa da Silva et al.’s aware-
ness of the implicit type/token duality that one needs to take into account
for a reliable sharing of knowledge. I therefore make this duality explicit
and propose a mathematical model that attempts to capture this recurrent
pattern in different knowledge-sharing scenarios. For this reason I need to
move to a more general model of information flow than the one covered by
Barwise and Seligman [3]. Classification relations in channel theory are crisp
relations, with two-valued characteristic functions: Either a token a is clas-
sified as of type α or not (see Section 2.1). But knowledge-sharing scenarios
as the one analysed in [6], and re-analysed here in Section 3.2, require the
characteristic function of a classification relation to be many-valued. I there-
fore take refuge in the more general concept of Chu space [19] (although I
shall continue using some of the information-flow terminology), and build an
abstract notion of knowledge-sharing scenario upon this concept.

Definition 1 A Chu space A over a set S is a triple (X, r, A) consisting of a
set X of tokens, a set A of types, and a function r : X×A→ S, constituting
the matrix.

In the Chu space literature, tokens are usually called points, while types
are called states —Chu spaces have been mainly used for defining models
of concurrency [13]. Other terms that have been used are: situations, ob-
jects, instances, for points; and predicates, attributes, concepts, for states.
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In this paper I choose to use Barwise and Seligman’s information-flow termi-
nology of tokens and types. Actually, their framework deals exclusively with
dyadic Chu spaces, i.e., Chu spaces over two-element sets; they call them
classifications [3].

Definition 2 Let A = (X, r, A) and B = (Y, s, B) be two Chu spaces. A
Chu transform f : A→ B is a pair f = (f ?, f?) of functions f ? : A→ B and
f? : Y → X such that, for all y ∈ Y and a ∈ A, r(f?(y), a) = s(y, f ?(a)):

a

r(f?(y),a)
�
�
�

� f?

//

=

f ?(a)

s(y,f?(a))
�
�
�

f?(y) y�
f?

oo

In the Chu space literature, Chu transforms are usually defined forwards
on tokens and backwards on types. Again, I follow Barwise and Seligman’s
information-flow perspective and define them forwards on types and back-
wards on tokens.

A knowledge-sharing scenario, as we have seen in the previous examples,
can be as simple as a pair of Chu transforms with common domain, but in
general it consists of a complex system of agreed understandings. Hence it
involves multiple Chu spaces, modelling the knowledge embedded in several
agents, which are interconnected by different Chu transforms, modelling the
way in which the knowledge is shared:

Definition 3 A knowledge-sharing scenario S = (S, T ) consists of a finite
family of Chu spaces S = {Ai}i∈I , together with a finite family of Chu
transforms T = {fj}j∈J with domain and codomain in S.

A knowledge-sharing scenario is therefore a categorical diagram in the
Chu category, and, in this respect, Barwise and Seligman’s distributed sys-

tems [3] are knowledge-sharing scenarios with dyadic Chu spaces.

3.1 Sharing Probabilistic Knowledge

In order to show the potential advantages of having knowledge-sharing sce-
narios formally specified as a family of Chu spaces and Chu transforms, let
us re-analyse the scenario studied by Corrêa da Silva et al. in [6] within the
context of the above formalisation. The scenario consists of a system that
extends a probabilistic logic program with queries to Bayesian belief net-
works. The system attempts to solve queries with the logic program, and
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poses failed queries to a belief network. Let us, therefore, recall some theo-
retical preliminaries of probabilistic logic programming and Bayesian belief
networks.

3.1.1 Probabilistic logic programming

A probabilistic logic program Π is a logic program that may be used to com-
pute degrees of belief as probabilities of events associated to queries with
respect to a probability space (Ω,A, P ), where

1. Ω is a set of possible worlds: a set of truth-value assignments to the
formulas of the logical language associated to program Π;

2. A is an algebra: a subset of 2Ω, such that Ω ∈ A, for all X, Y ∈ A,
X ∪ Y ∈ A, and for all X, Y ∈ A, Y \X ∈ A;

3. P : A → [0, 1] is a probability measure: a real-valued function, such that
P (Ω) = 1 and for all disjoint sets X, Y ∈ A, P (X∪Y ) = P (X)+P (Y ).

Since the probability measure P is not defined over 2Ω, but only over a subset
A, the operational semantics of probabilistic logic programming computes an
interval in which the degree of belief of a query φ lies. Let Eφ denote the
event associated to the formula φ, i.e., Eφ = {w ∈ Ω | φ is true in w}. The
interval is determined by the inner and outer probability measures of Eφ,
defined as

P∗(Eφ) = sup{P (X) | X ⊆ Eφ, X ∈ A}

P ∗(Eφ) = inf{P (X) | Eφ ⊆ X,X ∈ A} .

A helpful notion is that of basis of an algebra. It is a partition {Xi}i of Ω,
such that Xi ∈ A and there exists no X ∈ A such that X ⊆ Xi. With a
basis, the definitions of inner and outer probability measure are as follows:

P∗(Eφ) = P (
⋃
{X | X ⊆ Eφ, X is in the basis of A}

P ∗(Eφ) = P (
⋃
{X | X ∩ Eφ 6= ∅, X is in the basis of A} .

In the reamining of the paper I will use φ, χ, ψ to denote both, formu-
las as well as events associated to formulas. Hence, I will write P∗(φ) for
P∗(Eφ) (and P ∗(φ) for P ∗(Eφ)). For further details on probabilistic logic
programming, see [17].

Let Π be the probabilistic logic program of Figure 6. It is assumed that
the truth-values of clauses are the same across all possible worlds, hence the

10



p(X)← q(X) ∧ r(X) : [1.0, 1.0]
q(X)← ¬s(X) : [1.0, 1.0]
r(X)← t(x) : [1.0, 1.0]
s(a) : [0.3, 0.8]
s(b) : [0.0, 0.0]
t(a) : [0.6, 1.0]

Figure 6: A probabilistic logic program

intervals [1.0, 1.0] that annotate clauses. An interval [p1, p2] annotating a
fact φ means that P∗(φ) = p1 and P ∗(φ) = p2. According to program Π, the
degree of belief of query p(a) lies in interval [0.0, 0.7], and is computed using
the following rules:

For clauses of the form φ← χ:

P∗(φ) = P∗(χ)
P ∗(φ) = P ∗(χ)

For clauses of the form φ← ¬χ:

P∗(φ) = 1− P ∗(χ)
P ∗(φ) = 1− P∗(χ)

For clauses of the form φ← χ ∧ ψ:

P∗(φ) = max(0, P∗(χ) + P∗(ψ)− 1)
P ∗(φ) = min(P ∗(χ), P ∗(ψ))

3.1.2 Bayesian belief networks

Let V = {V1, . . . , Vn}, n ≥ 1, be a set of variables. A configuration cV is a
conjunction of truth-value assignments to the variables in V . Let CV denote
the set of all configurations cV . A Bayesian belief network B = (G,P),
consists of

1. an acyclic graph G = (V,A) with nodes V = {V1, . . . , Vn}, n ≥ 1 and
arrows A, and

2. a set P = {PVi
| Vi ∈ V } of real-valued functions PVi

: CVi
×Cprec(Vi) →

[0, 1], where prec(Vi) denotes the set of variables that immediately pre-
cede Vi in the graph.

11
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Figure 7: A Bayesian belief network

The set P of real-valued functions uniquely determines a joint probability
function PV : V → [0, 1], that can be extended to conditional probabilities
using Bayes’s rule, yielding a function P : C×C → [0, 1], where C is the set of
all configurations, i.e., C = {cW | W ⊆ V }. For further details on Bayesian
belief networks, see [25].

3.1.3 Linking programs with networks

Notice that with program Π of Figure 6 we cannot compute an interval for
the degree of belief of p(b), because there is no probability interval associated
to the fact t(b). For these failing queries, Corrêa da Silva et al. have studied
how to use Bayesian belief networks to calculate the probability of facts
missing in the program. Such scenario is sensible when the networks compile
knowledge that the logic program is lacking. For instance, in the case above,
we may have the network of Figure 7 available to compute an interval for
t(b), and choose to place the degree of belief of t(b) between the probabilities
P(A ∧ B|C) and P(A|C) of two nested events, which places its degree of
belief in interval [0.12535, 0.17647]. For further details, see [6]. Now, let us
model this engineering decision as an abstract knowledge sharing scenario,
and see what we can draw from it.

3.2 A Scenario for Probabilistic Knowledge Sharing

The flow of knowledge is modelled by the following Chu transforms, capturing
the duality existing between the merging of those syntaxes used to predicate
about the shared situations and its correspondences, and the linking of those
shared situations through which the knowledge flows reliably. I am going
to model the flow of inner probabilities only, as for outer probabilities the
scenario is similar.

12



3.2.1 Modelling the agents

First of all let us model the knowledge systems involved in our scenario as Chu
spaces. We model the knowledge compiled by a probabilistic logic program
Π with Chu space P = (S, r, BΠ) as follows:

• the set of tokens S is a set of probability spaces,

• the set of types BΠ is the Herbrand base of program Π, and

• the matrix is defined by the inner probability of events associated to for-
mulas with respect to probability spaces, i.e., r((Ω,A, P ), φ) = P∗(φ),
for (Ω,A, P ) ∈ S and φ ∈ BΠ.

And we model the knowledge compiled by a Bayesian belief network B =
(G,P), G = (V,A), with Chu space N = (C, s, C) as follows:

• the set of tokens C is the set of all configurations cW with W ⊆ V ,

• the set of types is also the set C of all configurations, and

• the matrix is defined by the conditional probability of configurations,
i.e., s(cU , cW ) = P(cU |cW ), where P is the joint probability function
determined by the functions in P.

Next, let us model, with additional Chu spaces and Chu transforms, how the
knowledge is to be shared.

3.2.2 Querying the logic program

The extended program, as we would like to have it, is to be defined over the
same vocabulary; hence, its set of types will be the same as for Chu space
P, although it will differ on the tokens, i.e., the probability spaces, because
we want to alter the degree of belief of some of the queries (by consulting
a belief network). Let us formalise the extended program with Chu Space
X = (S�, t, BΠ). As we shall see later, probability spaces in S� extend the
spaces in S with subsets of possible worlds according to some evidence in the
belief network that the program consults.

We would like the probability spaces used to interpret the extended pro-
gram not to change the degrees of belief of a chosen fragment A ⊆ BΠ of
the program’s queries as they were before the extension. (In our example
of Section 3.1.3, A was supposed to be the set of queries that succeed in Π,
i.e., facts and its consequences.) A pair of Chu transforms f : A → P and
g : A → X from a intermediate Chu space A is going to capture this re-
quirement. But, as we shall see later in Section 4.1, keeping the same degrees

13



of belief will not be possible per se. Instead, they have to be weighed with
respect to the extended probability spaces, and consequently, the matrix t is
going to be defined by conditional inner probabilities.

Chu space A = (S, r′, A) formalises the chosen fragment of program Π.
The matrix r′, again, is defined by the inner probabilities. On the types, f ?

and g? are the inclusion of A into BΠ. On tokens, though, f? is the identity
of probability spaces —obviously, f = (f ?, f?) is a Chu transform. I shall
postpone until Section 4.1 the precise definition of g?. It projects probability
spaces used to interpret the extended program to spaces used to interpret
the original program:

BΠ

r
�
�
� A

f?

oo

r′�
�
�

g?

// BΠ

t
�
�
�

S
f?

// S S�g?

oo

3.2.3 Consulting the belief network

We want to link queries of a chosen fragment B ⊆ BΠ, disjoint from fragment
A, to events that will determine its inner probability. These events are con-
ditional events represented by pairs of configurations in the belief network.
When posing a query we start from an evidence, represented by configura-
tion cW . As before, a pair of Chu transforms h : B → X and k : B → N

from an intermediate Chu space B = (S ′, s′, B) capture this link together
with the requirement that the probability stays the same. Types of B are
those formulas of the Herbrand base that the knowledge engineer decides
to link to the network. (In our example of Section 3.1.3, they were taken
from the set of queries that the program failed to solve.) The set of tokens
consists of a set of probability spaces S ′, in principle distinct from S of P. It
will be determined by how the knowledge engineer decides evidences in the
belief network should select subsets of possible worlds, as we shall see next;
recall that we want to change the degree of belief of some queries precisely
by consulting a belief network. The matrix s′, again, is defined by the inner
probabilities.

Let B be the Bayesian belief network, with variables V . Let Ω′ be a set
of possible worlds, and let {XcV }cV ∈CV

be a partition of Ω′, so that each set
XcV in the partition is in bijection with a configuration cV of all variables of
B. Let P be the joint probability of B. On types, k? maps a query ψ ∈ B
to a configuration cU , U ⊆ V (according to the decision of the knowledge
engineer). On tokens, k? maps a configuration cW ∈ C of B, with W ⊆ V , to
a probability space (Ω′,A′, P ′), such that
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• A′ is the algebra that has subsets XcV , with cV ∈ CV , as its basis.

• P ′(X)
def

=
∑

XcV
⊆X

P ′(XcV ), where P ′(XcV )
def

= P(cV |cW ).

Obviously, we cannot freely select Ω′ and its partitions. The type-level deci-
sion that fixes k? will constrain our choice of set of possible worlds and the
way we partition it to determine A′ and P ′. Actually, this constraint arises
from wanting k to be a Chu transform, and so respect the degrees of beliefs
with respect to the conditional probabilities compiled in the network. This
is asserted in the following lemma.

Lemma 4 Let X be the set of all those XcV of the partition of Ω′ for which

ψ is true in all possible worlds w ∈ XcV ; let cU = k?(ψ), and let cW be a

configuration in C. The contravariant pair of functions k = (k?, k?) is a Chu

transform if and only if P ′(
⋃
X ) = P(cU |cW ).

proof: Obvious, because of the definition of P ′
∗(ψ) in terms of the basis of

the algebra. �

As before with Chu transform g, I shall postpone the precise definition of
Chu transform h until Section 4.1. On types, h? is the inclusion from B into
BΠ. On tokens, h? projects probability spaces used to interpret the extended
program to spaces that arise from the way k? selects a set of possible worlds
from a given evidence cW :

BΠ

t
�
�
� B

h?

oo

s′ �
�
�

k?

// C

s
�
�
�

S�
h?

// S ′ C
k?

oo

3.2.4 The scenario

The entire knowledge-sharing scenario consists of all Chu transforms we have
been introducing so far linked together, and constitute a diagram in the Chu
category (see Figure 8).

Being able to define the scenario is not a guarantee for the existence of
a knowledge-sharing system that conforms to the requirements captured in
the Chu transforms of the scenario. Although we have already fully defined
the Chu transforms at the type level, we have not said anything about the
particular probability spaces in S� in which the knowledge is going to be
shared, yet; especially if such probability spaces actually exist. In other
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BΠ

r
�
�
� A

f?

oo

r′ �
�
�

g?

// BΠ

t
�
�
� B

h?

oo

s′�
�
�

k?

// C

s
�
�
�

S
f?

// S S�g?

oo
h?

// S ′ C
k?

oo

P A
f

oo
g

// X B
hoo k // N

Figure 8: The entire knowledge-sharing scenario and its representation as
diagram in the Chu category

words, the existence of tokens in a Chu space that covers the whole scenario
is crucial for the system to share knowledge reliably. This is the subject of
the next section.

4 Reliable and Optimal Knowledge Sharing

One of the advantages of a precise formalisation of what we consider to be a
knowledge-sharing scenario is that such formalisation yields us with a precise
way to check if a system reliably covers a scenario, and also to identify when
a system is optimal with respect to the knowledge it shares:

Definition 5 Let S = (S, T ) be a knowledge scenario with S = {Ai}i∈I .
A knowledge-sharing system for S is a Chu space S, together with Chu
transforms gi : Ai → S such that, for all f : Aj → Ak in T , gk ◦ f = gj.
System S is reliable if its set of tokens is non-empty; it is optimal if it is
reliable and, for any other reliable system S′ with Chu transforms g′i : Ai →
S′, there exists a unique Chu transform h : S→ S′ such that h ◦ gi = g′i.

A knowledge-sharing system for a scenario S is a cocone with base di-
agram S. Because of the duality of Chu spaces and Chu transforms, such
a cocone is a cocone on the type level, but a cone on the token level. The
system is reliable if the cone is not trivial, i.e., it is not the empty set. In
that case it will have situations (tokens) in which the knowledge is actu-
ally shared. Notice that the dual approach to knowledge sharing based on
Chu spaces is crucial, since no link on the token level means that no shared
situation is possible.

The optimality of a reliable system is modelled as a colimit. This is
sensible, because the Chu category has colimits [1]. The colimit condition
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amounts to say, roughly, that the optimal system is minimal with respect to
the theories it merges, but maximal with respect to the situations it covers,
according to the scenario S. Consequently, if the colimit has an empty set
of tokens, no reliable system for the scenario can exist.

It would be desirable, given a knowledge-sharing scenario, to find the
optimal system for it. In this paper I am not going to discuss how such
optimal system is computed. On might suspect that this will not always be
possible to do in practise. Instead, I show that from the notion of reliable
system we can justify sufficient conditions for a consistent flow of knowledge
between the agents of a knowledge-sharing scenario.

4.1 A reliable system for probabilistic knowledge shar-

ing

With respect to the knowledge-sharing scenario first proposed in [6] and re-
analysed here in Section 3.2, Corrêa da Silva et al. mention that we need to
extend the logic program with a completely fresh subset of possible worlds,
and that we need independence assumptions of the algebras and probability
measures involved. They do not, though, go into the details explaining how
such subset of possible world is selected and how the independence assump-
tions arise.

The advantage of having the scenario formalised according to the abstract
notion of knowledge-sharing scenario proposed in Definition 3 is that, with
the notion of cocone of a scenario, as given in Definition 5, we are now in a
position of justifying sufficient conditions for reliable sharing of knowledge.
We have already seen in Section 3.2.3 how knowledge engineering decisions
on the type level, namely for linking formulas with configurations of a belief
network, constrain the token level choice of valid probability spaces.

Recall the scenario formalised in Section 3.2, and let us denote it with S.
Recall, also, that I have denoted with BΠ the Herbrand base of program Π,
and with A and B two disjoint fragments of it. Recall, also, that S, S ′ and
S� were sets of probability spaces, and that C was standing for the set of all
configurations of the belief network.

Let S be the Chu space (O, u, BΠ ∪ C), i.e., with atoms of the Herbrand
base and configurations as types, and with a subset O ⊆ S × C of pairs of
probability spaces (Ω,A, P ) and configurations cW as tokens. In O we only
want to have those pairs such that k? selects fresh subsets of possible worlds
(disjoint from Ω). Let (Ω,A, P ) ∈ S and cW ∈ C, and let (Ω′,A′, P ′) =
k?(cW ). Let us define O as follows. A pair 〈(Ω,A, P ), cW〉 ∈ O if and only if
Ω ∩ Ω′ = ∅.
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〈(Ω,A, P ), cW 〉-

π1

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmm 8

π2

||xxxx
xxx

xx
xxx

xxx
xxx

_

π3

��

�

π4

##GGGGGGGGGGGGGGGGGG �

π5

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

(Ω,A, P ) �
f?

// (Ω,A, P ) (Ω�,A�, P �)�
g?

oo �
h?

// (Ω′,A′, P ′) cW
�

k?

oo

Figure 9: Token level for reliable knowledge sharing

To complete the definition we need to define projections π1–π5 (see Fig-
ure 9). The injections on the type level are all inclusions. Projections π1

and π5 are obvious, and π2 = π1, and π4 = k? ◦ π5. The crucial projection
is π3 that projects pairs of probability spaces and configurations to shared
probability spaces in S�. Let us define π3 as follows.

Given a pair 〈(Ω,A, P ), cW 〉 and supposing that k?(cW ) = (Ω′,A′, P ′),

π3(〈(Ω,A, P ), cW 〉)
def

= (Ω�,A�, P �)

where

1. Ω� def

= Ω ∪ Ω′,

2. A� is the algebra whose basis is the union of the basis of A and A′, and

3. for all X ∈ A�,

P �(X)
def

= P (X ∩ Ω)P �(Ω) + P ′(X ∩ Ω′)(1− P �(Ω))

such that P �(Ω) 6= 0.

We still need to define the token-level functions of Chu transforms g and
h that we had postponed from Sections 3.2.2 and 3.2.3. But, first of all let
us go back to Chu space X = (S�, t, BΠ). We said in Section 3.2 that the
spaces in S� were extending the original probability spaces with subsets of
possible worlds according to some evidence in the belief network that the
program consults. We also mentioned that the matrix t was to be defined
by conditional inner probabilities. Actually, types in X are formulas BΠ

together with two distinguish subsets A,B ⊆ BΠ that form a parition of BΠ,
and tokens are probability spaces (Ω�,A�, P �) together with two distinguish

subsets Ω,Ω′ ⊆ Ω�; the matrix t is then defined as follows:

t((Ω�,A�, P �), φ) = P �
∗ (φ|Ω) for φ ∈ A

t((Ω�,A�, P �), ψ) = P �
∗ (ψ|Ω′) for ψ ∈ B

18



The definition of g? follows. Function h? is defined analogously. Given a
probability space (Ω�,A�, P �) and a subset of possible worlds Ω ∈ A� such
that P �(Ω) 6= 0,

g?(Ω
�,A�, P �)

def

= (g?(Ω
�), g?(A

�), g?(P
�))

where

1. g?(Ω
�)

def

= Ω,

2. g?(A)
def

= {X ∩ Ω | X ∈ A�}, and

3. for all X ∈ A,

g?(P )(X)
def

=
P �(X)

P �(Ω)
.

Obviously, there may be many ways to choose subset Ω, so g? is not unique,
in general. Nevertheless, the Chu space S and its projections π1–π5 defined
above only are going to form a reliable system for those scenarios for which
g?(Ω

�) is the original set of possible worlds used to interpret the program
in Chu space P, and h?(Ω

�) is the set of possible worlds selected by the
consultation of the belief network.

The following lemma asserts that (g?(Ω
�), g?(A

�), g?(P
�)) is indeed a

probability space, and therefore g? is well defined.

Lemma 6 Let (Ω�,A�, P �) be a probability space; its image g?(Ω
�,A�, P �) =

(g?(Ω
�), g?(A

�), g?(P
�)) is a probability space, too.

proof: g?(A
�) is an algebra: Ω ∈ g?(A

�), because Ω ∈ A�. Let X, Y ∈
g?(A

�), therefore there exist X�, Y � ∈ A� such that X∩Ω = X� and Y ∩Ω =
Y �. But, since A� is an algebra, X�∪Y � ∈ A�, and hence (X ∪Y )∩Ω ∈ A�.
Consequently X ∪ Y ∈ g?(A

�). Analogously X\Y ∈ g?(A
�).

g?(P
�) is well defined: P �(Ω) 6= 0 and g?(A

�) ⊆ A� and hence in the
domain of g?(P

�): Suppose X ∈ g?(A
�), but X 6∈ A�. Then, by definition of

g?(A
�), X ∩ Ω 6∈ g?(A

�) But, since X ∈ g?(A
�), X ⊆ Ω, and consequently

X ∩ Ω = X. Therefore X 6∈ g?(A
�), which is a contradiction.

g?(P
�) is a probability measure: g?(P

�)(Ω) =
P �(Ω)

P �(Ω)
= 1, and for disjoint

sets X, Y ∈ A,

g?(P
�)(X ∪ Y ) =

P �(X ∪ Y )

P �(Ω)
=
P �(X) + P �(Y )

P �(Ω)
=
P �(X)

P �(Ω)
+
P �(Y )

P �(Ω)

= g?(P
�)(X) + g?(P

�)(Y ) .
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�

For g and h to be Chu transforms it was necessary that the matrix t

of Chu space X was defined by conditional probabilities. It is now easy to
check that g is a Chu transform. All we need to see is that, if φ ∈ A, then
P �
∗ (φ|Ω) = P∗(φ). Suppose φ ∈ A, X ⊆ φ and X ∈ A�. By definition of g?,

P (X ∩ Ω) =
P �(X ∩ Ω)

P �(Ω)
= P �(X|Ω)

Therefore, since φ ∈ A and X ∩ Ω ∈ A,

sup{P �(X|Ω) | X ⊆ φ,X ∈ A�} = sup{P (X) | X ⊆ φ,X ∈ A}

and consequently, P �
∗ (φ|Ω) = P∗(φ). We check that h is a Chu transform

analogously.
In Section 3.2.2 I mentioned that keeping the same degrees of belief for

the extended program as for the original program was not possible. If we
wanted the probability spaces used to interpret the extended program not to
change the degrees of belief of a chosen fragment A ⊆ BΠ we would need to
require that

P �
∗ (φ) = P∗(φ)

for φ ∈ A. By the definition of g? we would have that for all φ ∈ A and all
X ∈ A� such that X ⊆ φ,

P �(X) =
P �(X ∩ Ω)

P �(Ω)

and hence X would need to be independent from Ω. The same would apply
to Ω′, for ψ ∈ B. But this does not make any sense, since we originally
wanted to query belief network because, for ψ ∈ B, ψ was not true in any
possible world in Ω. So we cannot assume independence of ψ and its subsets
with respect to Ω and Ω′.

With the scenario S and the system S completely defined (see Figure 10),
we are now in position of stating the following theorem:

Theorem 7 System S is a reliable knowledge-sharing system for scenario S

if, for all tokens 〈(Ω,A, P ), cW〉 in S, g?(Ω ∪ Ω′) = Ω and h?(Ω ∪ Ω′) = Ω′,

where Ω′ is the set of possible worlds of k?(cW ).

proof: I prove that the g◦π3 = π and h◦π3 = k◦π5, so that S is indeed the
vertex of a cocone (of a cone on the token level). To proof the first equality,
I show that g?(Ω

�,A�, P �) = (Ω,A, P ).
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φ

P∗(φ) �
�
�

φ�
f?

oo

P∗(φ) �
�
�

� g?

// φ ψ

P �

∗
(φ|Ω) �

�
�

P �

∗
(ψ|Ω′)�

�
�

ψ�
h?

oo

P ′

∗
(ψ)�

�
�

� k?

// cU

P(cU |cW )
�
�
�

(Ω,A, P ) �
f?

// (Ω,A, P ) (Ω�,A�, P �)�
g?

oo �
h?

// (Ω′,A′, P ′) cW
�

k?

oo

Figure 10: Type and token level of the knowledge-sharing scenario

We are given with g?(Ω
�) = Ω. Suppose Y ∈ A. This implies Y ∈ A�

by definition. But, since Y ⊆ Ω, we have that Y ∩ Ω = Y . Consequently,
Y ∈ {X ∩ Ω | X ∈ A�} = g?(A

�). Now suppose Y ∈ g?(A
�). Hence,

Y = X ∩ Ω with X ∈ A�. There exists X1, . . . , Xn in the basis of A and
Xn+1, . . . , Xm in the basis of A′, such that

X = X1 ∪ · · · ∪Xn ∪Xn+1 ∪ · · · ∪Xm

But, since Y = X ∩ Ω = X1 ∪ · · · ∪Xn, we have that Y ∈ A. Consequently,
g?(A

�) = A. Let X ∈ A. By definition of g? we have that

g?(P
�)(X) =

P (X ∩ Ω)P �(Ω) + P ′(X ∩ Ω′)(1− P �(Ω))

P (Ω ∩ Ω)P �(Ω) + P ′(Ω ∩ Ω′)(1− P �(Ω))

Furthermore, since Ω and Ω′ are disjoint,

g?(P
�)(X) =

P (X ∩ Ω)P �(Ω)

P (Ω)P �(Ω)

and because X ⊆ Ω and P (Ω) = 1, we get

g?(P
�)(X) = P (X)

Consequently, g?(P
�) = P . The second equality is proved in a similar fashion.

�

5 Conclusion

I have proposed categorical diagrams in the Chu category as a formalisation
of knowledge-sharing scenarios. This approach makes the duality between
merged terminology and shared situations explicit. In terms of information
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flow, this crucial duality accounts for the insufficiency of merging ontological
theories alone. Some of these insufficiencies have been studied by Corrêa
et al. in [7], and the work presented here formalises some of their informal
intuitions. A similar approach for modelling the sharing of knowledge that is
also based on Barwise and Seligman’s channel theory is Kent’s Information
Flow Framework [14]. It attempts to provide a formal foundation for the
development of upper level ontologies [15].

Here, I have proposed cocones and colimits over diagrams in the Chu
category as formal definitions of the reliability and optimality of knowledge-
sharing systems, and I have shown the potential uses of this approach by
re-analysing in detail a scenario for the sharing of probabilistic knowledge
first proposed by Corrêa et al. in [6]. This analysis provides a deeper under-
standing and more precise justifications of sufficient conditions for reliable
flow of information between a probabilistic logic program and Bayesian belief
networks.

The following questions arise from our work. First, there is the question
about the scope of our formalism and its validity for the analysis of other
knowledge-sharing scenarios not considered in this paper. We suspect that it
will be applicable to a wide variety of scenarios, because of its abstract nature
by being based on general theories of channel theory, Chu space theory, and
category theory. Next, there is the question of how optimal systems for
knowledge sharing can be computed based on the formalism presented here.
We have not addressed this question, yet, but, of course, it would be desirable
to do so in future.

Finally, there is the question of the deployment of the theoretical work to
practical applications. We are currently working in two directions, here. On
one hand we are exploring the use of channel theory and Chu space theory
for devising algorithms for ontology alignment and merging that extend and
complement previous work based on formal concept analysis [23]. And on
the other hand we are implementing a framework that attempts to provide
some level of (semi-)automatic support during the engineering process of dis-
tributed knowledge-intensive computational systems based on the theoretical
ideas presented in this paper [18]. Such framework should force knowledge
engineers to be aware of the necessity of an agreed understanding on both,
the type and the token level of knowledge sharing scenarios.
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