Translating HOL to Specifications
for the Model Checker SMV

Dan Zhou! and Paul E. Black?

! Department of Computer Science and Engineering, Florida Atlantic University
dan@cse.fau.edu
2 National Institute of Standards and Technology
paul.black@nist.gov

Abstract. HOL and SMV have two radically different formal specifica-
tion languages. Each is good at describing different aspects of systems
and have very different analysis tools. We want to integrate them to
make full use of their respective capabilities. One step towards this in-
tegration is automatically translating specifications written in HOL into
SMV. We argue for the need of such an integration and translation for
specification-based testing. We look at the differences between HOL and
SMV and specify mechanical translation methods which are appropriate
for modeling and testing secure operating systems.

1 Introduction

The unambiguity and rigorousness of formal methods promise the possibility
of engineering high-assurance systems—but can we incorporate formal methods
into engineering practice in such a way that it benefits instead of hinders system
development?

1.1 The Need for Methods Integration

One standard method of assuring the quality of systems is through testing.
Specification-based testing generates tests from descriptions of desired system
functions and behavior. As a reference for testing the correctness of systems,
specifications themselves are subject to analysis and validation.

Formal specification methods, based on mathematical symbols and logic,
provide a description of system requirements that is both unambiguous and
precise [6]. They add assurance to system development by clearly stating the
system requirements (the desired functions and behavior) and design. Facilitated
by logic rules, system behavior can be calculated and predicted from formal
specifications of computer systems. We can achieve a higher level of assurance
by integrating formal specification methods with test-case generation.

There have been studies investigating formal specification-based testing. For
example, Ammann, Black, and Majurski studied model checking for test genera-
tions [1] and Stocks and Carrington studied testing based on Z specifications [5].

Translating HOL to SMV 401

However, no one formal method alone is sufficient to address the needs of large
systems [3,4]. Each formal method is best at modeling and analyzing some as-
pects of a system. Test cases generated from different formal methods look at
different aspects of a system. Therefore, integrating two testing methods provides
higher system coverage than each method alone. To our knowledge, integrating
testing based on different formal methods has not been widely studied.

1.2 Integrated Automated Test Generation Methodology

A system specification can be divided into dynamic (or behavioral) and static
(or functional) aspects, a standard division in object-oriented technology. Some
parts of the system are purely functional or combinatorial, that is, the output is
entirely determined by the input. Other parts of the system have feedback; the
result depends on what has come before. This feedback necessarily implies some
concept of time: the series of inputs preceded the output. It often is convenient
and reasonable to model this with a series of discrete time steps. Following the
informal notion, we call the part of the system best understood with feedback
or state dynamic, and the part of the system which can be well understood
functionally static.

For example, in an operating system, a file can change from being readable
to not readable, and back. The conditions under which it changes may be very
complex. We could model the conditions as a set of static rules, best analyzed
with a theorem prover to explore the behaviors of a function with vast input. We
could model the dynamic state of the file as a state machine with a few simple
rules formally proved to be a sound abstraction of complex rules.

Our integrated test-case generation methodology is based on the division of
system models into functional and behavioral descriptions. We use two formal
methods for describing systems and generating tests: the model checker SMV
analyzes the dynamic behavior of systems using the state machine approach, and
the theorem prover HOL analyzes the static behavior of systems by defining data
types and functions operating on those types. We translate from HOL to SMV
to take advantage of the methods and tools that are available for automated test
generation in SMV.

Our framework for test-generation is shown in Figure 1. We begin by model-
ing a system in HOL because HOL’s specification language is based on functions
and types, which is similar to high-level programming language. The processing
consists of five steps: (1) Divide the model into dynamic and static parts, (2)
Convert the behavioral description part of the system model to SMV through
an HOL-to-SMV translator, (3) Generate test cases for the static model (HOL
specification) and (4) for the dynamic model (SMV specification), (5) integrate
test cases resulting from these two sets. We are in the process of constructing
components for this framework.

402 D. Zhou, P. E. Black

HOL Spec

HOL Spec
for dynamic model hol2smv
translator (2

SMV Spec

Test Generation
from SMV (4)

test cases

HOL Spec
for static model
of system

Test Generation
from HOL (3)

test cases

test case
integration (5)

integrated
test cases

Fig. 1. Specification-Based Test Generation Process

1.3 Organization of the Paper

In this paper we present a key component in the framework, a specification of
HOL to SMV translation. We use PITBULL ! [2], a secure operating system from
Argus Systems Group, Inc. as a running example throughout the paper.

We first describe a simplified model of a secure operating system and a HOL
specification of the model in Section 2. In Section 3 we give an overview of HOL-
to-SMV translation. We describe in detail the translation of HOL data types and
functions in Section 4 and Section 5, respectively.We conclude in Section 6.

2 Secure Operating System Model

Our trusted operating system provides two mechanisms for controlling shared
access to information. Discretionary access control (DAC), based on user iden-
tity, is the standard UNIX access control mechanism. Mandatory access control
(MAC) is where control to information is governed by the nature of the infor-
mation.

An operating system consists of objects and subjects. Objects such as regular
files and processes are the resources to be controlled. Subjects are active entities
that seek access, such as read or write, to objects.

2.1 DAC Attributes

UNIX-based systems provide DAC through assigning ownership to subjects and
objects, and permission bits to objects based on the identities of their owners.

! PITBULL is a registered trademark of Argus Systems Group, Inc., 1809 Woodfield
Drive, Savoy, Illinois, 61874 USA. References to it do not imply any endorsement.

Translating HOL to SMV 403

Users are clustered into groups for easy management. Permission bits on objects
indicate the access rights, which are read, write, and execute, for the owner of
the object (user), the group that the user belongs to (group), and the rest of the
world (other). The HOL record type PBS

PBS = <|r: bool; w: bool; x: booll|>
models the permission bits. The HOL record type DAC
DAC = <| up: PBS; gp: PBS; op: PBS|>

represents the user permissions, group permissions, and any other (world) per-
missions. In HOL definition, the symbol <| |>represents a record and

@

;7 is a field delimiter.

2.2 MAC Attributes

To enforce MAC, subjects and objects are classified according to clearance and
sensitivity level. For instance, a subject with a low clearance level cannot read an
object with a higher sensitivity level. Subjects and objects are also categorized
into compartments to model the need-to-know concept. A subject is not autho-
rized to access an object unless it has a need to know the object. Classification
and clearance labels are hierarchical, while compartments are not.

MAC Labels Our operating system provides four types of MAC labels: sensitivity
label (SL), clearance label (CL), information label (IL), and integrity label (TL).
SLs and CLs consist of classification and compartment. The HOL record type
SCLabel represents both SLs and CLs:

SCLabel = <|class: Class; comp: Comp set [>

where types Class and Comp represent classifications and compartments. The
construct set is a type constructor.

The HOL record types ILabel and TLabel represent IL and TL in a similar
way.

We define a type Label to encompass all types of MAC labels:

Label = scLabel of SCLabel | iLabel of ILabel | tLabel of TLabel

The alternative type constructor, shown with a vertical bar (—), indicates that
the type is one of the enumeration.

Classifications System administrators can set the values of classifications and
compartments. As an example, we define Class as an enumeration type with
three values—-classTS, classS, classU:

Class = <classTS | classS | classU

404 D. Zhou, P. E. Black

Classification classTS is higher in hierarchy than classS, which in turn is higher
than classU. In HOL we define two relations on type Class: classGT (“greater
than”) and classGTE (“greater than or equal to”). Predicate classGT c1 ¢2 is
true if and only if ¢2 is higher in hierarchy than c1:

(classGT classTS classS = T) /\
(classGT classS <classU = T) /\
(classGT classTS classU = T) /\
(classGT _ _ = F)
where classGT _ _ = F states that the default value is F. Predicate classGTE

cl ¢2 is true if and only if ¢! is not higher in hierarchy than c2:

classGTE c1 c2 = classGT c1 c2 \/ (c1 = c2)

Compartments We define Comp as an enumeration type with four values: NIST,
ITL, FAU, and CSE for compartments:

Comp = NIST | ITL | FAU | CSE

Relation among MAC Labels MAC decisions are made based on the relationship
among MAC labels. A label I7 dominates label [2 if the classification of I1 is at
least as high as that of [2, and if the compartment set of I is a superset of that
of [2. In the case that one of the labels is a TL, only the classifications of labels
are compared. HOL function RLLDOM describes this relation:

(RLLDOM (tLabel tl11) 13 =

classGTE tll.class (classOL 13)) /\
(RLLDOM 14 (tLabel t12) =

classGTE (classOL 14) tl2.class) /\
(RLLDOM 15 16 =

(classGTE (classOL 15) (classOL 16)) /\

(compOL 16) SUBSET (compOL 15))

where compOL and classOL are functions that retrieve the compartment and the
classification from a label, respectively. Function RSLSL defines the dominance
relation between two SLs:

RSLSLDOM sl1 sl2 = RLLDOM (scLabel sl1) (scLabel s12)

3 Overview of HOL to SMV Translation

We write specifications of a system in HOL and then translate the dynamic
behavior part of the specification to SMV. Specifying dynamic behavior directly
in SMV can be tedious because the level of SMV description is rather low. HOL,
on the other hand, provides a higher level of language constructs for describing
systems. HOL descriptions are closer to the level of reasoning that engineers are
familiar with, though much more rigorous. In this section we give an overview
of SMV and then sketch the HOL-to-SMV translator.

Translating HOL to SMV 405

3.1 Overview of SMV

SMV is a symbolic model checker for the temporal logic Computational Tree
Logic (CTL), and that the systems to be verified are finite state transition sys-
tems described in SMV’s own input language. An input consists of two parts.
One part is a state machine defined in terms of variables, initial values for the
variables, and a description of the conditions under which variables may change
value and what values they may take. The other part is a set of temporal logic
clauses, in CTL, expressing invariant conditions and temporal logic constraints
on possible execution paths. Conceptually, SMV visits all reachable states and
verifies that the invariants and constraints are always satisfied.

A basic unit of definition in SMV is a module. A module is a named chip unit
that has input pins and output pins, which are parameters or external variables
to the unit. A module also maintains internal memory through internal variables.
Variables can change values either instantly or in synchronization with a clock,
through a next-state statement.

SMYV modules can define both data types and functions. For example, module
ADD sets ¢ to the sum of its inputs:

MODULE ADD (a, b, c)
DEFINE
c :=a+ b;

Module PBS defines a data structure for UNIX file permission bits:

MODULE PBS
VAR
r: boolean;
w: boolean;
X: boolean;

3.2 Overview of Translation

There are limitations in what we can translate because of the limited expressive
power of SMV compared to HOL.

HOL and SMV provide rather different language constructs and support.
HOL provides much more support than SMV, hence a translator needs to im-
plement the support that is available in HOL but not in SMV. Two such supports
are equivalence checking of objects and object copying functions.

In SMV, parameters are passed to modules by reference. Modules can only
be instantiated as separate entities. They cannot appear in other types of expres-
sions. Only variables with simple, predefined values are allowed in expressions
other than simple instantiation. This characteristic of SMV makes it necessary to
use internal variables for module instantiation. It is a major limitation to specify
complex systems in SMV. In essence we need to disentangle the whole system
and rewrite it in terms of many simple, predefined types. Another implication

406 D. Zhou, P. E. Black

of only simple values in expressions is that SMV does not support recursive def-
initions of data types or functions. A more serious result is that SMV does not
scale up well.

SMV is not a strongly-typed language in that an instantiation of a module
would accept actual parameters of different types in place of a formal parameter
as long as an actual parameter has all the pins referred to in the definition of the
module. On the contrary, HOL is a strongly typed language. In translating HOL
to SMV, we take advantage of SMV’s lack of strong type checking to represent
polymorphic functions.

At this point, we translate only a subset of HOL specifications to SMV. This
subset is described in the next two sections.

As a practical implementation of the translation of HOL specifications to
SMV, we add translation capability to HOL parser to take advantage of the
parsing done by HOL. The enhanced HOL parser translates HOL phrases to
SMYV after it parses the phrase. Currently this translation is automatically done
when an appropriate HOL phrase is parsed. We envision that later the translation
can be turned on and off using a flag.

4 Translation of Data Types

Each HOL type is translated into an SMV module. We define some standard
functions in SMV for each type translated from HOL. The functions that we
define include equivalence checking of types and type constructions in SMV.
This is necessary because SMV does not support modules in expressions other
than simple instantiation. In this section, we first look at type definition in HOL,
then describe how to translate HOL types to SMV.

4.1 Type Definitions in HOL

The basic specification elements in HOL are type and function definitions. HOL
provides a wide range of ways to construct new types.

Simple Enumerate A type can be defined by listing distinct values of the type.
For example, the compartments of a sensitivity label is defined as:

Comp = NIST | ITL | FAU | CSE

These values are referred to as null type constructors for type Comp because
they build an instance of enumerate type Comp from null.

Simple Type You can also define a type from other types with non-null type
constructors. HOL provides some predefined type constructors: set, record, list,
etc. These constructors construct a new type from existing types in predefined
ways.

For example, Comp set constructs a type whose values are sets of objects of
type Comp. Expression

Translating HOL to SMV 407

PBS = <|r: boolean; w: boolean; x: boolean|>

constructs a record type PBS, with fields r, w, and z having boolean values.
You can also construct types using user specified type constructors as follows:

ty_new = C1 of tyl => ty2

where ty_new is a new type being defined, ty! and ty2 are existing types, and
C'1 is a user specified type constructor, which constructs an object of new type
ty_new from one object of type tyl and one object of ty2. We call ty! and ty2
the component types of ty_new.

Mized Type We can mix simple enumerate types and simple types to construct
new types. For example, in the HOL type definitions for MAC labels

SCLabel
Label

<| class : Class; comp : Comp set |>;
scLabel of SCLabel | iLabel of ILabel | tLabel of TLabel

Types SCLabel, ILabel and TLabel are built through simple type construction.
Type Label is built through mixed type construction.

Complex Type In HOL we can also take a subset of an existing type and make
that into a new type. This is one of the most complex forms of type definition.
Another complex way to define a type is through recursive type definition.

4.2 Type Translation

In this study, we translate only a subset of the type definitions to SMV: simple
enumeration and some of the simple and mixed type constructions. We ignore the
translation of complex type constructions. We also ignore any definition related
to a variable’s type.

Simple Enumerate Type An HOL enumerate type with n null constructors is
translated to a module with one internal variable which can have any of the n
values. Each null constructor is a possible value. For example, the HOL type
Comp listed on the previous page is translated to SMV module Comp:

MODULE Comp
VAR
Comp: {NIST, ITL, FAU, CSE};

Record Type An HOL record type is translated to an SMV module with internal
variables. A field fname of type ty becomes an internal variable fname of type
ty. For example, the HOL type DAC

DAC = <| up: PBS; gp: PBS; op: PBS|>

is translated to the SMV module DAC

408 D. Zhou, P. E. Black

MODULE DAC

VAR
up:PBS;
gp:PBS;
op:PBS;

where PBS is a module for type PBS.

Set Type Some set types are also translated to SMV modules. The HOL type
ty set is translated to an SMV module with n internal variables, where n is
the number of distinct values of type ty. These internal variables are boolean
variables named after the values of ty. A variable with the value true indicates
the presence of the element in a set, and the value false indicates the absence
of the element.

Module Comp_set is an example of a set of enumerate type Comp:

MODULE Comp_set

VAR
NIST:boolean;
ITL:boolean;
FAU:boolean;
CSE:boolean;

Translation of more complex set types are not described because of space
limit.

Mized Type In translating types with mixed type construction, we treat non-null
type constructors separately from null type constructs. We group all the null
type constructors together and represent them by one internal variable const,
which can have any value in the group. For non-null type constructor Cn, which
constructs the new type from a single existing type ty, we represent it as an
internal variable Cn of type ty. We then define an internal variable vartype as a
selector, indicating which variable holds the data for the module. If there are n
non-null type constructors, the selector can have n + 1 different values.

For example, HOL type Label on page 403 is translated to the SMV module
Label:

MODULE Label
VAR
scLabel: SCLabel;
iLabel: ILabel;
tLabel: TLabel;
vartype: {scLabel_ty, ilabel_ty, tLabel_ty};

4.3 Type Construction Functions in SMV

We define modules for object construction and equivalence checking during trans-
lation because SMV does not provide them. We look at two types of object

Translating HOL to SMV 409

constructors. A copy constructor constructs an object that is identical to an ex-
isting object. An assembly constructor constructs a new object from component
objects. We only discuss the copy constructor here.

Simple Enumerate A copy constructor makes a copy of an object of simple
enumerate type by copying the value of the only internal variable from the
existing object. Module Class_constr is a copy constructor for type Class:

MODULE Class_constr (x, z)
DEFINE
z.Class := x.Class;

Record Type A copy constructor for record type simply makes copies of all the
internal variables. Copy constructor module DAC for type DAC is an example:

MODULE DAC_constr (x, z)

VAR
y1l: PBS_constr (x.up, z.up);
y2: PBS_constr (x.gp, z.gp);
y3: PBS_constr (x.op, z.op);

where PBS_constr is a copy constructor for PBS.

Set Type Copy constructors of sets are similar to what we discussed so far:
simply copy all the internal variables from an old object to a new object (which
are of type boolean).

Mized Type A copy constructor for a mixed type simply copies the values of all
the interval variables from an existing object. Module Label_constr is a copy
constructor for the mixed type Label:

MODULE Label_constr (x, z)
VAR
y1l: SCLabel_constr (x.scLabel, z.scLabel);
y2: ILabel_constr (x.ilabel, =z.iLabel);
y3: TLabel_constr (x.tLabel, =z.tLabel);
DEFINE
z.vartype := x.vartype;

4.4 Equivalence Testing Functions in SMV

SMYV has no built-in support for equivalence testing of user-defined objects. We
create modules to check the equality of objects for every user-defined type by
iteratively testing its component types objects.

410 D. Zhou, P. E. Black

Simple Enumerate, Record and Set Types To test the equivalence of two vari-
ables of types simple enumerate, record, or set, we write a module to test the
equivalence of all the fields. If the fields of a record type are of user-defined types,
we employ the equivalence testing modules defined for these user-defined types.
Module DAC_eq is an equivalence test for record type DAC:

MODULE DAC_eq (x1, x2, 2z)
VAR
yl: PBS_eq (x1l.up, x2.up, zl);
y2: PBS_eq (x1.gp, x2.gp, z2);
y3: PBS_eq (x1.op, x2.0p, 2z3);
DEFINE
z :=z1 /\ z2 /\ z3;

Mized Type When checking the equivalence of two objects of a type constructed

through mixed type construction, we find out which internal variable holds the

value for the objects and compare the two corresponding internal variables.
For example, module Label_eq defined equivalence checking for type Label:

MODULE Label_eq (x1, x2, z)
VAR
y1: SCLabel_eq(x1l.scLabel, x2.scLabel, z1);
y2: ILabel_eq (x1.iLabel, x2.ilabel, z2);
y3: TLabel_eq (x1.tLabel, x2.tLabel, z3);
DEFINE
z := xl.vartype=x2.vartype &
case
x1.vartype=sclLabel_ty : z1;
xl.vartype=ilabel_ty : z2;
x1.vartype=tLabel_ty : z3;
esac;

where SCLabel_eq, ILabel_eq, and TLabel_eq are equivalence checking functions
for types SCLabel, ILabel, and TLabel respectively. They are defined similarly to
module DAC_eq on page 410.

4.5 Set Operations

We define modules for four set operations in addition to what we defined earlier
for set types: equivalence check, subset operation, union of two sets, and set
element checking. Set is treated specially because our HOL model of PITBULL
uses it extensively.

Set x1 is a subset of set x2 if every element of x1 is also an element of x2.
As an example in SMV, we define module Comp_set_SUBSET:

MODULE Comp_set_SUBSET (x1, x2, z)
DEFINE

Translating HOL to SMV 411

z := (x1.NIST -> x2.NIST) &
(x1.ITL -> x2.ITL) &
(x1.FAU -> x2.FAU) &
(x1.CSE —-> x2.CSE);

A union of the two sets x1 and z2 is such that all the members in 1 and
x2 are also members of the union set. Module Comp_set_UNION defines the union
of two sets of Comp:

MODULE Comp_set_UNION (x1, x2, z)

DEFINE
z.NIST := x1.NIST | x2.NIST;
z.ITL := x1.ITL | x2.ITL;
z.FAU := x1.FAU | x2.FAU;
z.CSE := x1.CSE | x2.CSE;

To check if a named element is in a set, we only need to know if the value
of the named field is true:

MODULE in_Comp_set (x1, x2, z)
DEFINE
Z := case
x1.Comp=NIST : x2.NIST;
x1.Comp=ITL : x2.ITL;
x1.Comp=FAU : x2.FAU;
x1.Comp=CSE : x2.CSE;
esac;

5 Translation of Functions

One key factor that influences the HOL-to-SMV translation is that HOL provides
some help for user-defined types while SMV does not. For example, if ¢ and
c2 are two variables of type Class, in HOL we can write ¢! = ¢2, while in SMV
we need to write our own module for checking the the equivalence of these two
variables. The translator needs to provide equivalence checking for user-defined
types.

Another factor that influences the translation is the difference between HOL’s
and SMV’s models on functions. In HOL we can define a function f that takes
input = and returns an output y in the format y = fror(x). We can compose
functions with expression z = f(g(x)). In SMV we can only define function f
as a module in a format that is essentially fsasv (z,y). To achieve the effect of
a composed function, we use variable y to connect two functions f(x,y) and
9(y, z). We model functions in SMV through modules. To define a function that
calls other functions we declare internal variables as instantiations of modules
that define the called functions and then use simple operators to combine outputs
from these modules.

412 D. Zhou, P. E. Black

5.1 Function Definition in HOL

The simplest form of an HOL function definition is a single clause composed of
arithmetic, logic, and user-defined operations on a set of arguments. You can also
define functions in HOL based on values of arguments. This type of definition
is comprised of the conjunction of multiple clauses, with each clause defining
the behavior of the function for some particular values of input arguments. A
special case of the multi-clause function definition is when one argument is of
a supertype. In this case you can have a definition where each clause defines
the behavior of the function for some subtypes. This type of definition in effect
defines polymorphic functions.

5.2 Translation to SMV

Single-Clause Definitions We translate the simplest form of HOL function def-
inition to a single SMV module. This module comprises: (1) the same number
of input parameters as the HOL function; (2) one output parameter; and (3)
internal variables, each of them as an instance of a module corresponding to
an operation in the HOL function definition; (4) one SMV DEFINE clause to
define the value of the output parameter. Item (3) is necessary because SMV
only supports module invocations in simple instantiations.

Function classGTE is an example of the simplest form of HOL function
definition:

classGTE c1 c2 = classGT c1 c2 \/ (c1 = c2)

In function classGTE, there are two inputs, c¢I and c¢2, and two operations,
classGT and the equivalence checking function of two Class objects. Module
classGTE is the translation of HOL function classGTE. The module has three
external parameters and two internal variables which are instantiations of mod-
ules classGT and Class_eq. The output of the module classGTE is the logic or
(I in SMV) of the outputs of classGT and Class_eq

MODULE classGTE (x1, x2, z)
VAR

y1l: classGT (x1, x2, zl);

y2: Class_eq (x1, x2, z2);
DEFINE

z:=z1 | z2;

Value-Based Multi-Clause Definitions In translating functions with multiple
clauses where the selection of clauses is based on input values, we use case
statements for clause selection and translate each clause as for single-clause def-
initions.

For example, HOL function classGT on page 404 is translated to SMV mod-
ule classGT:

Translating HOL to SMV 413

MODULE classGT (x1, x2, z)
DEFINE
Z:= case

x1.Class=classTS & x2.Class=classS : TRUE;
x1.Class=classS & x2.Class=classU : TRUE;
x1.Class=classTS & x2.Class=classU : TRUE;
1 : FALSE;
esac;

Type-Based Multi-Clause Definitions HOL is a strong typed language; every
function in HOL has a unique type. An SMV module, on the other hand, can
have any types of external variables as long as these variables have pins referred
to in the definition of the module.

For example, to retrieve the compartment information of a label in HOL, we
define a polymorphic function compOL based on different component types or
sub-types of Label:

(compOL (scLabel scl) = scl.comp) /\
(compOL (ilLabel il) = il.comp)

In SMV, module compOL models the same operation as a polymorphic func-
tion on sensitivity labels and on information labels:

MODULE compOL (x, z)
VAR
y1l: Comp_set_constr (x.comp, z);

where parameter x represents the input which can be either SCLabel or ILabel.
Variable z gives the output which is a set of compartments. Module Comp_set_constr
is a copy constructor for type Comp set.

When an HOL function is defined based on the type of input variables, we
translate the HOL function into several SMV modules that are variants of the
same function. Each module represents a distinct clause of the HOL function.
For example, HOL function RLLDOM on page 404 represents the dominance
relation between two DAC labels. This definition breaks the operation into three
cases: (1) the first argument is an integrity label; (2) the second argument is n
integrity label; and (3) all the other cases. Therefore we define three modules
RLLDOM_TLabel_allo, RLLDOM_allo_TLabel, and RLLDOM_allo for the three cases
respectively:

MODULE RLLDOM_TLabel_allo (x1, x2, z)
VAR
y1l: classGTE (xl.class, x2.class, z);

MODULE RLLDOM_allo_TLabel (x1, x2, z)
VAR
y1: classGTE (xl.class, x2.class, z);

414 D. Zhou, P. E. Black

MODULE RLLDOM_allo (x1, x2, z)
VAR
y1: Comp_set_SUBSET (x2.comp, x1.comp, zl1);
y2: classGTE (xl.class, x2.class, z2);
DEFINE
z = z1 & z2;

When a polymorphic function is used, the translator decides which actual
implementation is called. For example, HOL function RSLSLDOM defined on
page 404 is translated to module RSLSLDOM as follows, after we determine that
the two arguments to RLLDOM are both of type SCLabel:

MODULE RSLSLDOM (sl1, sl2, z)
VAR
y1: RLLDOM_allo (sli1, sl2, z);

6 Conclusion

Our research goal is to facilitate the construction of high-assurance secure sys-
tems. The objective of this project is to investigate the integration of test genera-
tion based on two formal methods, theorem prover HOL and model checker SMV.
This integration is desirable because: (1) A system is best modeled from mul-
tiple viewpoints: behavior (dynamic) and functional (static) aspects. (2) HOL
provides theorem-proving ability to verify the correctness of the functionality of
the system. SMV provides model checking ability to assure the correctness of
system behavior.

In this paper we propose an integrated formal-specification based testing
framework using HOL and SMV. One component in this framework is an HOL-
to-SMV translator. We categorize HOL type and function definitions and define
specification for the translator based on our categorization. We also provide
support for user-defined types in translation because of the difference in language
between HOL and SMV. We provide equivalence checking and copy construction
of objects and standard set operations.

The translation is generally successful in modeling a secure operating system.
However, there are limitations in what we can translate. First, we simply cannot
translate a large HOL model into SMV because of the model size increase as it
is translated. Second, because of the limited expressibility of SMV, some HOL
language constructs are best left in HOL. Recursive data and function definitions
in HOL are such examples.

There are also some subsets of HOL that we have not looked into because we
have not run into them in our application. For example, variable and function
types have not been investigated.

So far we have provided a specification of a translator. Our next step is to fully
implement the translator. To complete the framework, we need further study on
how to generate tests from HOL; how to effectively divide HOL specification into
functional and behavioral aspects. We also will experiment with the integration
of tests generated from SMV and HOL.

Translating HOL to SMV 415

References

1. Paul E. Ammann, Paul E. Black, and William Majurski. Using model checking to
generate tests from specifications. Technical Report NISTIR 6166, U.S. National
Institute of Standards and Technology, Gaithersburg, MD, USA, november 1998.

2. Argus Systems Group, Inc. Trusted Facility Manual, Argus Security Solutions for
Solaris 7, Fortify/PitBull, September 1999.

3. Edmund Clarke and Jeannette Wing. Formal methods: State of the art and future
directions. Report of the ACM Workshop on Strategic Directions in Computing
Research, Formal Methods Subgroup, August 1996. Available as CMU Computer
Science Technical Report CMU-CS-96-178.

4. Klaus Schneider and Dirk W. Hoffmann. A hol conversion for translating linear time
temporal logic to w-automata. In Yves Bertot, Gilles Dowek, Andre Hirschowitz,
Christine Paulin, and Laurent Thery, editors, Theorem Proving in Higher Order
Logics — TPHOLs’99, number 1690 in Lecture Notes in Computer Science. Springer-
Verlag, 1999.

5. Phil Stocks and David Carrington. A framework for specification-based testing.
IEEE Transactions on Software Engineering, 22(11):777-793, November 1996.

6. Jeannette M. Wing. A specifier’s introduction to formal methods. IEEE Computer,
23(9):8-24, September 1990.

