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Abstract

This work presents a formal treatment of correctness and completeness for a set of
seven uninterpreted Register Transfer Level (RTL) transformations. The completeness
property ensures that a transformational derivation system based on this set is able to
explore the entire design space, for a well-defined class of designs. The formalization
for behavior specifications, RTL implementations and RTL transformations, as well
as the mechanized proofs for correctness and completeness are conducted within the
higher-order logic of the Prototype Verification System (PVS).

1 Introduction

In spite of the increased confidence one has in automatic synthesis when compared with
manual design, the use of High Level Synthesis (HLS) tools does not considerably ease
the burden of hardware verification. HLS tools employ a set of complex optimization
algorithms which are usually implemented as large pieces of code, hence more error
prone. Possible software errors in these implementations may lead to incorrect func-
tionality of the synthesized designs.

When contemplating formal verification ofsynthesizeddesigns, one can resort to
a general verification approach, like model checking or theorem proving. As an alter-
native, many research efforts are focused on ensuring the correctness of the synthesis
process itself, thus trying to eliminate the need of a difficult post-facto verification. A
survey and classification of approaches to correct synthesis can be found in [1]. One of
these approaches istransformational derivation; it refers to a class of synthesis tech-
niques wherein an RTL design is derived by applying a sequence of behavior-preserving
transformations to an initial design representation. A variety of transformational deriva-
tion systems have been proposed; DDD [2], T-Ruby [3], Veritas [4], TRADES [5] and
HASH [6] to name a few.

The work presented here establishes the formal foundation on which a transforma-
tional derivation system using a core set ofuninterpreted RTL transformationscan be
based. Starting from a minimal model for RTL designs we formally specified in in the
Prototype Verification System (PVS)[7–9] a set of 7 RTL transformations. We mechan-
ically proved that each transformation of our set is correct (it preserves the computa-
tional behavior of the design). Thecompleteness propertyfor a set of transformations
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is defined as the capability to derive any possible implementation of a given behavior
specification using a finite sequence of transformations contained in this set. In prov-
ing completeness we use a constructive approach. The practical uses of our work are
two-fold:

1. A transformational derivation system based on the core set of RTL transformations
presented here will yield (if correctly implemented) correct design implementa-
tions. The completeness property of this set ensures a virtually exhaustive search
of the design space, for a certain class of designs.

2. Having identified a complete finite set of transformations, then it can be asserted
that any correct application of a synthesis algorithm should be assimilable with a
sequence of transformations of the complete set. One can check the correctness of
an existing synthesis tool by attempting to identify such sequences.

Vemuri [10, 11] reported a completeness argument for a similar set of transforma-
tions. However, his argument was informal, written in English without using any formal
logic or notation. Paper and pencil proofs usually use ad-hoc notions and need to be ex-
amined by others to validate them. In contrast, we present a proof which is fully mech-
anized in the higher-order logic of PVS and can be run by a simple command in the
proof environment. PVS is a higher-order logic specification and proving environment
which has an expressive language and a high degree of automation[7].

In Section 2 we present the formal model for RTL designs and behavior descrip-
tions. Section 3 summarizes the set of transformations and the specification and proof
methodology. A proof of completeness for this set is outlined in Section 4.

A collection of PVS specifications included in the Appendix illustrates the specifi-
cation methodology. For the complete specifications and proofs we refer the reader to
http://www.ececs.uc.edu/∼eteica/pvs.

2 Formal Models for RTL Designs and Behavior Descriptions

We present in this section abstract formal models for RTL designs corresponding to be-
havior specifications which consist of basic blocks of straight-line code with operations
and operators assumed to be binary.

An RTL design consists of a data-path and a controller which defines the sequence
of register transfers to be executed in the data-path. The data path of an RTL design
consists of a set of operators, a set of registers and interconnections between them.
Operators are hardware units that perform arithmetic operations and other data trans-
formations. Registers are used only for storing values (no shift or increment operations
are considered). In what follows we will use the termcomponentswhen refering to op-
erators and registers collectively. We denote byE the set of all components in the data
path,OP the set of all operators inE, andREG- the set of all registers inE. With these
notations, we call adata path structurea tuple of the form:(E, OP, REG).

A register transferrt of a data path structure(E, OP, REG)defines the interconnec-
tions between a subset of components fromE, according to those computations sched-
uled to be performed in the data path at the control step defined byrt.
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Definition 1. A register transfer rt associated with a data path structure(E, OP,
REG)is a tuple of the form:

(EXPR, REGout, fop : OP → (E × E), freg : REGout → E)

whereEXPR ⊆ E, andREGout ⊆ REG. We callREGout the set of output registers
of rt. fop andfreg define the interconnections between components of the data path at
the control step corresponding tort as follows:fop is a function mapping an operator to
a pair of components (its sources), andfreg is a function that maps an output register to
a component (its input).

Although we started with a very simple model, throughout the specification exer-
cise we carefully enforce well-formedness conditions in order to keep the specification
consistent with the physical reality it was intended to model. For example, we will not
allow a register transfer which contains combinational cycles or floating inputs for op-
erators and registers. To formally define such requirements we will first introduce the
definition of theancestorsset for a componenteas the set of all components which are
connected toe through a direct path.

Definition 2. TheancestorssetAof a componenteof a data path structure(E,OP,REG),
with respect to a mapping functionfop : OP→ (E× E) is recursively defined as:

A(e) =
{ ∅ e : register

A(fop(e)‘1) ∪ A(fop(e)‘2) ∪ {fop(e)‘1, fop(e)‘2} e : operator

wherefop(e)‘1 andfop(e)‘2 represent the first, respectively second projection of the
fop function applied to the operatore.

Well-formed register transfers. A register transferrt is said to bewell-formedif:
1) each operator in the setEXPRof rt has itsancestorsincluded inEXPR(there are
no floating inputs for operators); 2) there are no combinational cycles within anrt; 3)
each output register inREGout has its source inEXPR; 4) concurrent operations are
performed on different hardware resources. Using a more formal notation:

Definition 3. A well-formed register transfer of a data-path structure(E, OP, REG)
is a register transfer(EXPR, REGout, fop, freg) for which the following properties
stand:
1) ∀(e ∈ EXPR) : ancestors(e) ⊆ EXPR;
2) ∀(e ∈ EXPR) : not(e ∈ ancestors(e);
3) image(freg) ⊆ EXPR;
4) ∀(e1, e2 ∈ (EXPR ∩OP )) : (e1 = e2) ⇒ (fop(e1)‘1 = fop(e2)‘1 ∧ fop(e1)‘2 =
fop(e2)‘2).

In the absence of conditional and loop constructs, the only control information that
needs to be supplied in order to completely define the functionality of the design is the
ordered sequence of interconnection configurations. The order is defined with respect
to the timing sequencing of operations to be performed in the data path. We define a
control graphassociated with a data path structure(E,OP,REG)as alist of well-formed
register transfers:control graph(E, OP, REG) = 〈 rt1 〉, 〈 rt2 〉 ... 〈 rtn 〉, wherert1,
rt2 ....rtn are register transfers associated with the data path structure(E, OP, REG).
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Definitions for Behavior Descriptions. Although restricted in comparison with
the variety of behavior descriptions currently implemented by the synthesis tools, the
straight-line code model is sufficient for describing many complex DSP applications.
Also, many of the optimization algorithms used by the existing HLS tools operate only
within the boundaries of loops and conditional constructs, that is, on the straight-line
code portions of a behavior specification.

Informally, a straight-line code behavior description assigns to each output variable
the result of a computation performed on a set of input variables. We call this computa-
tion abehavior expression, and define it recursively as:
<beh> ::= <variable> | (<beh> <operation> <beh>)
whereoperation is any binary arithmetic or logic function.

A trivial RTL implementation of a given behavior description can be obtained by
assigning to each operation an operator instance which performs that operation. Con-
versely, each design implementation can be associated a behavior description obtained
by traversing the operator trees in successive register transfers, and converting them into
behavior expressions. The extracted behavior expression associated to a component of
an implementation is defined bellow.

Definition 4. Theextracted behaviorof a componente in an RTL implementation
represented as a control graph listcg is defined using two mutually recursive functions:

eb1(e, cg) =
{

eb2(e, cdr(cg)) e : reg
(eb1(car(cg)‘fop(e)‘1), opf(e), eb1(car(cg)‘fop(e)‘2)) e : op

eb2(r, cg) =




r cg = null
eb1(car(cg)‘freg(r), cg) r ∈ car(cg)‘REGout

eb2(r, cdr(cg)) r /∈ car(cg)‘REGout

whereopf(e)denotes the operation performed by an operatore, r is a register,car and
cdr are the LISP notations for functions used to create and manipulate lists. When refer-
ing to the computational behavior of an RTL implementation, we actually refer to the
application of theeb2function to the output registers of this implementation.

In the PVS specification for the model described so far we associate with each RTL and
behavior description component a type whose values best identify with the structures
they represent:

– registers, operatorsandoperationsare uninterpreted nonempty types;
– functionality of an operator is defined by a function type from anoperator to an

operation;
– writes/assignments to output registers are function types;
– register transfersandbehavior descriptionsare record types;
– well-formed register transfersare of a predicate subtype ofregister transfers;
– control graphsare lists ofwell-formed register transfers.

The interconnections between operators, as well as between operators and input
registers (corresponding tofop in Definition 1) are implicitly defined using a binary-
tree structure specified as a parameterized PVS recursive abstract DATATYPE [12] (see
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Appendix 1). A similar approach is proposed in [13] to model tree-shaped combina-
tional structures using recursive binary trees defined in HOL. PVS supports only total
functions such that any recursive definition is required to terminate. As a corollary, no
operator can be its own ancestor; in our model this translates to operator expressions
with no combinational cycles, which suites well the second well-formedness condition
in Definition 3.

A behavior expression has an associated parse tree that can also be modeled as a
binary tree datatype in PVS. Unlike the operator expressions, the behavior expressions
do not interpret the physical instance of an operator, but are concerned only with the
functions performed by these operators. The use of PVS’s DATATYPE mechanism for
defining the operator trees and behavior expressions facilitated both specifications and
proofs. Upon type-checking a datatype definition, PVS automatically generates basic
declarations and axioms that formalize an abstract datatype, including extensionality
axioms, induction schemes and recursion combinators.

In order to establish the correctness of a transformation as a behavior preserving
correctness property, we need to check if two different RTL designs implement the same
behavior description. For this we defined anextracted behaviorfunction according to
Definition 5 (see Appendix 3) which extracts the computational behavior of an output
register in a control graph. This function will be used in the next section to express the
correctness theorems.

3 The set of RTL Transformations

It what follows we will succinctly describe each transformation in our set. For each
transformation we specify itsinputs, functionandpreconditionsthat ensure the behavior-
preserving correctness. TheCorrectness Theoremis expressed as:

T Preconditions(rtl impl, set of comp) ⇒
c behavior(T (rtl impl, set of comp)) = c behavior(rtl impl)

whereT Preconditionsis a predicate function associated with a generic transformation
T. It returns true if certain properties of a set of components (setof comp) of the de-
sign rtl impl are satisfied. The functionc behaviorextracts the behavior of the output
registers (corresponding to the output variables in the behavior description).

For the conciseness and readability of the transformations’ descriptions we intro-
duce several notations :

1. e ∈ rt if the componente appears in theEXPRfield of the register transferrt.
2. operator?(e) is a predicate which defines the set of alloperatorinstances.
3. opfn(e) returns the function of operatore.
4. in regs(rt) denotes the set of input registers of a register transferrt.
5. operators(rt) define the set of all operators that appear in a register transferrt.

The transformations discussed here areuninterpretedin the sense that we do not con-
sider the semantics of operations within an interpretation domain, but only the structural
aspects of the design representation to which the transformations are applied. For ex-
ample, logic optimization transformations consider the functions implemented by gates
(AND,OR,etc), hence they areinterpreted. ALU folding is concerned only with the
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Fig. 1.The OC Transformation

components’ interconnections and check that the folded ALUs have the same function-
ality (without interpreting this functionality), so they areuninterpreted.
In what follows we give an intuitive description for each transformation in our set.

TheOperator Copy (OC) transformation eliminates sharing of operators as illustrated
in Figure 1. In this figure, the result ofOP1 is used by bothOP2 andR4. OC inserts
a new operatorOP1’ which performs the same function asOP1. Both OP1andOP1’
have the same inputs but have only one target component each.
Inputs of OC: 1) a register transferrt of a control graphcg to which OC is locally
applied, 2) a linkl defined as a tuple of components which are connected withinrt such
that the first projection is the source instance and the second projection is the driven
instance, 3) a new operatornew op.
Function of OC: insertsnew op in rt as a copy of the second projection ofl (l‘2 ),
deletesl and creates a new connection.
OC Precondition(rt, l, new op)∆

=∃(e ∈ rt) : (operator?(e)
∧

(l‘2 = e)
∧

(opfn(new op) = opfn(l‘2))
∧

(not(new op ∈ rt)))

Operator Instance Substitution (OIS)allows the reuse of an operator instance which
is available during a certain register transfer. In Figure 2 operatorsOP1 andOP2 are
used to perform addition in two different register transfers. OIS substitutes the appear-
ance ofOP2by OP1.
Inputs of OIS: 1) a register transferrt of a control graphcg to which OIS is locally
applied, 2) an operatorsubst to be substituted, 3) An operatoropr that will substitute
operatorsubst.
Function of OIS: Replace the appearance ofsubst in rt byopr.
OIS Precondition(rt, subst, opr)∆

=
(opfn(subst) = opfn(opr))

∧
(opr ∈ rt ⇒ (fop(opr)′1 = fop(subst)′1 ∧ fop(opr)′2 = fop(subst)′2))

Register Transfer Split (RTS) transforms a register transfer into a sequence of two
transfers by saving intermediate results into a set of new temporary registers.
Inputs of RTS: 1) a register transferrt of a control graphcg to which RTS is locally
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applied, 2) a setsplit set of operators and input registers to be scheduled in the first
register transfer, 3) a settemp setof temporary registers.
Function of RTS: RTS splits the initial transfer into two successive register transfers:
the first register transfer contains the operators and input registers insplit setand saves
intermediate values in temporary registers fromtemp set; the rest of the components
appear in the second register transfer with updated interconnections, such that interme-
diate values saved in the temporary registers are correspondingly input to components.
RTS Precondition(rt, split set)∆

=∀(e ∈ split set) : operator?(e) ⇒ (fop(e)′1 ∈ split set∧fop(e)′2 ∈ split set)
In Figure 3, the RTS transformation is applied to the register transferrt, split setcon-
sists of operatorOP1 and input registersR1 and R2, and thetemp set is formed of
temporary registersT1andT2.

Register Transfer Merge (RTM) is the inverse of RTS: it merges to successive register
transfers when the values computed in one transfer are passed to the next one through a
set of intermediate registers (see Figure 3).
Inputs of RTM : 1. Two successive register transfersrt1 andrt2 of a control graphcg
to which RTM is locally applied.
Function of RTM :it substitutes the sequence〉rt1,rt2 〈 by one register transfer obtained
by eliminating the intermediate registers and replacing them with simple connections
in an orderly manner.
RTM Precondition(rt1, rt2)∆

=
(in regs(rt2) ⊆ rt1‘REGout)

∧
(operators(rt1) ∩ operators(rt2) = ∅)

Register Transfer Decompose (RTD)can be viewed as sequencing two tasks which
are initially executed in parallel. In Figure 4, OP2 is deferred to the next control step.
Inputs of RTD : 1) a register transferrt of a control graph to which RTS is locally
applied, 2) an output registerR of rt .
Function of RTD: decomposert in two successive register transfers such that in the
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second register transfer only the value to be read byR is computed and all other oper-
ations are performed in the first register transfer.
RTD Precondition(rt)∆

= in regs(rt) ∩ rt‘REGout = ∅.
Figure 4 shows one register transfer (rt ) and its decomposition inrt1 and rt2 corre-
sponding to an RTD transformation where registerR is R5.
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Register Transfer Decompose (RTC)is the inverse of RTD, it results in combing two
successive register transfers which can be executed in parallel (in Figure 4, the opera-
tions performed inrt1 andrt2 can be executed in the same control step).
Inputs of RTC : 1) two successive register transfersrt1 and rt2 of a control graph to
which RTC is locally applied.
Function of RTC : combinesrt1 and rt2 if their respective computations can per-
formed in parallel.
RTC Precondition(rt1, rt2)∆

=
(rt1‘REGout ∩ rt2‘REGout = ∅)∧

(rt1‘REGout ∩ in regs(rt2) = ∅)∧
(operators(rt1) ∩ operators(rt2) = ∅).

Register Instance Substitution (RIS)is illustrated in Figure 5. The appearance ofR3
as an input register in the register transferrt1 is substituted byR1. To preserve the
behavior of the design, the substituting registerR1 is also added as an output register in
that register transfer whereR3was last written (rt2). The connections are updated such
thatR1will read the same value asR3.
Inputs of RIS: 1) a register transferrt of a control graph to which RIS is locally
applied, 2) an input registerSubstof rt , 3) a registerWth that will substituteSubst.
Function performed by RIS: The appearance ofSubst as an input register inrt is
substituted by theWth register;Wth is also added as an output register whereSubst
was last written. The value written inWth in this transfer is the same as the value
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written isSubst.
RIS Precondition(cg, rt, Subst, Wth)∆

=∀(rt ∈ cg) : not alive?(Subst, rt) ∨ not alive?(Wth, rt).
Let < be an order on register transfers of a control graphcg such that for any two
register transfersrt1 andrt2 of cg, rt1 < rt2 if and only if rt1 occurs afterrt2 in cg,
and rt1 ≤ rt2 if and only if rt1 occurs afterrt2 or is equal tort2 . Then we define
registerR not to be alive in the register transferrt as follows:
not alive?(R, rt)∆

=∀(rt1 ≤ rt) : (R ∈ in regs(rt1)) ⇒
(∃rt2 : rt2 ≤ rt ∧ rt1 < rt2 ∧R ∈ rt2‘REGout)

∧
∀(rt1) : rt < rt1 ∧ (R ∈ rt1‘REGout) ⇒

(∃(rt2 < rt1) : rt < rt2 ∧R ∈ in regs(rt2))
In the above definition, a registerR is said to benot alive? in a register transferrt

if: a) every timeR is read after the control step corresponding tort, than the read value
was also written afterrt, b) every value written toR beforert is also read beforert. In
other words,R is not alive duringrt if it does not need to preserve its value during the
control step corresponding tort.

In specifying the transformations we used a definitional approach, such that only
a couple of axioms were introduced in the specification. We followed a specification
methodology which resulted in a uniform definition of transformations; the uniform
definition allowed a similar treatment of the well-formedness and correctness proofs
for all transformations. As an example, the Appendix 4 shows a complete specification
for OIS: a recursive function updates the operators’ interconnections according to the
transformation applied; next, each field of the affected register transfer is updated to
accommodate the transformation, and finally - bring the locally defined transformation
in the context of the entire control graph.

A generictransformationwas defined as a function which assigns control graphs to
control graphs (i.e., only the well-formedness property is considered). Acorrect trans-
formationwas defined as a predicate subtype oftransformationinduced by the behavior
preserving condition (see Appendix 5). A set of transformations for which we will prove
completeness was defined as a predicate subtype ofcorrect transformationsthat can be
expressed using one of the seven transformations described above. Along the speci-
fication exercise we have not explicitly stated the well-formedness or the correctness
invariants, nor have we included sublemmas which assert that a certain transformation
belongs to the complete set. Instead, the invariants were implicitly enforced by the pred-
icate subtype definitions, and were automatically expressed by the PVS’s type-checker
as proof obligations. This allowed a much shorter and readable specification for the
witness sequences of transformations used to constructively prove completeness, as it
will be described in the next section.

4 Proving Completeness for a Set of Transformations

A set of correct (behavior-preserving) RTL transformations is said to becompleteif for
any two RTL designs which implement the same behavioral description, one design can
be derived from the other by applying a finite sequence of transformations contained in
this set. In what follows we will call transformations belonging to our setoperational
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transformations (OT), and RTL designs implementing the same behavior -equivalent
designs.
Definition 5. Let sbe a set of RTL transformations.s is completeiff:

∀(rtl1, rtl2 : designs, r : output register) :
(c behavior(r, rtl1) = c behavior(r, rtl2) ⇒

∃(seq : (s)) : apply(seq)(rtl1) = rtl2)
where:c behavioris a function that extracts the computational behavior of an output
registerr in a designimplementation,seqis a sequence of transformations ins, and
apply is a function which recursively applies transformations in the order defined by
seq.

Figure 6 illustrates the approach we used in proving completeness. We formulated
the following three subgoals which together imply completeness:

1. For every RTL designrtl1 there exists a sequence of OTs which transforms it into
an equivalent design consisting of a single register transfer (all operations are per-
formed in the same control step)rtls.

2. For any two equivalent implementations consisting of only one register transfer
there exists a sequence of OTs which derives one design from the other.

3. For any RTL designrtl2 there exists an equivalent design consisting of only one
register transfer from whichrtl2 can be derived through a sequence of OTs.

The first two subgoals were constructively proved by instantiating the sequent formulas
with algorithmically created witness sequences of OTs. A proof for the Completeness
Theorem was derived from the above subgoals using appropriate instantiation.

1
1

2

n

1

2

1

2

1

m

3

1

Intermediate designs

1

inverse transformation

transformation

Subgoal 1 Subgoal3

equivalent designs

rtl1 rtl2

Subgoal 2

rtls

Fig. 6.Approach for the Completeness Proof

A Constructive Proof for the First Subgoal. The first subgoal states that any control
graph associated with an RTL design can be transformed into a control graph of length
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1 after repeatedly applying a sequence of OTs:
∀(rtl : cgraph) : (∃(s : otseq) : length(apply(s)(rtl)) = 1

The only OTs which result in decreasing the control graph length are RTM and RTC.
But the simple merging or composing is not always possible since a set of preconditions
has to be satisfied. However, it is possible to define sequences of OTs which create a
scenario where preconditions for merging or composing are satisfied.
Definition 6. We definepreconditioning for a transformationt the application of a
sequence of OTs which results in an equivalent control graph having the same length
with the initial one, but where the preconditions fort are satisfied.
In order to create the witness for instantiating the sequent of the first subgoal, we defined
such sequences of preconditionings followed by the preconditioned transformations that
result in repeatedly combining the first two register transfers of a control graph, until the
length of the list becomes equal to 1. The algorithm which defines this witness sequence
consists of the following steps (see also Figure 7):

1. A Preconditioning for RTD step is applied to the second transfer in the control
graph in order to create valid preconditions for decomposition. This step proves that
a sequence of RIS transformations applied to input registers of the second transfer,
followed by RTC transformations, results in disjoint input and output register sets
for this transfer (which is the precondition for RTD), while preserving the length of
the graph. (see Figure 7.b).

2. Reduce the cardinality of the output registers set of the second transferby
deferring the computation for one output to the subsequent transfer. This is done
using a sequence of: (a) decomposition (RTD) for one output (Ri in Figure 7.c), (b)
preconditioning for merging or composing the newly created transfer with the first
register transfer, (c) merge or compose the new transfer(2a), with the first transfer
(see Figure 7.d)

3. Reduce the length of the control graphby recursively applying the previous step
until all outputs of the second transfer are combined (through RTM or RTC) with
the first transfer. After executing this step, the second transfer becomesemptyso it
can be deleted from the control graph (see Figure 7.e).

4. Reduce the length of the control graph to 2by recursively applying the third step.
5. Reduce the length of the graph from 2 to 1. This is treated as a separate step

because it needs a sequence of transformations different from the one executed in
step 3, but using the same OTs.

Proof Strategy for the Second Subgoal.The second subgoal states that any two equiv-
alent RTL designs consisting of only one register transfer, can be derived one from the
other through a sequence of OTs:
∀(rtl1, rtl2 : c graph) :
(length(rtl1) = length(rtl2) = 1 ∧ c behavior(rtl1) = c behavior(rtl2))

⇒ (∃(s : ot seq) : rtl2 = apply(s)(rtl1))
What distinguishes equivalent designs consisting of one register transfer (the associated
control graph has length 1) is only a possibly different sharing of operators and a dif-
ferent assignment of operators to physical instances.
The approach of [10, 11] in proving completeness makes use of a Normal Form Struc-
ture definition, which is a unique implementation of a given behavior description. The
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Normal Form Structure is in theMaximum Operators Form, that is all operator sharings
are eliminated (see Figure 8.a). There is an important annotation to this definition: the
Normal Form is unique“within naming of the hardware components”. When specify-
ing in a strict formal system, such a normal form is not a unique design, but a class of
designs which implement the same behavior in aparticular form that defines a set of
isomorphic structures. The particular form of implementation used in our proofs is a
Minimum Operators Form:
Definition 7. A register transferrt is said to be in theMinimum Operators Form
(MinOF) if for any two expressionse1 and e2 in rt , if e1 ande2 have the same
functionality and the same right and respectively left sources, thene1 = e2 .
In other words, the sharing of operators inrt is maximized, and the number of oper-
ator instances is minimized (see Figure 8.b). The use of MinOF as the particular form
of implementation is motivated by the fact that is easier to define a bijective mapping
between elements of two equivalent register transfers which are in theMinOF form.
This mapping was used in defining the isomorphism between two implementations.

We conjecture that:Two register transfers having isomorphic structures can be trans-
formed one into the other by a finite sequence of OIS transformations.This conjecture
implies theuniqueness within naming of the hardware components. Indeed, the correct
application of OIS when thesubstitutingoperator instance is not already in use in the
register transfer has the effect of “renaming” thesubstitutedoperator.
A proof for the second Subgoal was then derived from the following three subgoals:

1. Any design consisting of only one register transfer can be brought to theMinOF
form by applying a finite sequence of OIS transformations.

2. Any two equivalent designs which implement the same behavior in theMinOF form
are structurally isomorphic.

3. The OIS transformation admits as inverse a sequence of OTs.
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Proof Strategy for the Third Subgoal. The third subgoal states that for any RTL de-
sign cg there exists an equivalent design consisting of only one register transfer from
whichcgcan be derived through a sequence of OTs:

∀(rtl : c graph) : (∃(rs : c graph, s : ot seq) :
length(rs) = 1 ∧ apply(s)(rs) = rtl) A proof for this subgoal was

derived from the first subgoal (constructively proved as described above), and a sub-
lemma stating thateach OT admits as inverse a sequence of OTs. The mechanization of
this sublemma is part of the remaining work. Informally, each transformation admits as
inverse a sequence of transformations as follows:

– The inverse for OIS is a sequence of OCs (which are defined for only one link at a
time), or another OIS. The inverse of OC is OIS.

– The inverse for RTS is RTM and vice-versa.
– The inverse for RTD is RTC. Since RTD is defined only for one output of a register

transfer, the inverse of RTC is a sequence of RTD and RTC transformations.
– The inverse for RIS is also an RIS, or (when the substituted register is a primary

output) a sequence of RIS and RTM.

5 Conclusions and Future Work

There are several limitations of this work that we will address in the future:

– We considered only implementations for behavior descriptions consisting of straight-
line code blocks. The model and the set of transformations can be enhanced to deal
with conditional constructs such that the completeness property will still hold.

– We do not guarantee that the preconditions used in proving correctness of the core
set of transformations areweakestpreconditions. This would affect the effective-
ness of a verification methodology based on the completeness of our set.

– In the formal models presented here we implicitly considered that all variables are
correctly mapped to operators and registers input and output ports.

– The RTL models and transformations presented here areuninterpreted, that is, we
do not interpret the function performed by an operator in a domain of values. The
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correctness of a transformation is thus defined with respect to a relatively strict
structural similarity between two RTL designs.
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6 Appendix

1. Definitions for Operator Trees and Register Transfers:

expression[R: TYPE, O: TYPE] : DATATYPE
BEGIN
reg(reg: R): reg?
op(op: O, source1:expression, source2:expression): op?
END expression
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rt: THEORY
BEGIN
register: TYPE+
operator: TYPE+
operation: TYPE+
opfn: [operator -> operation]
IMPORTING expression_adt[register, operator]
transfer : TYPE = [# exp_set:finite_set[expression],

outregs:finite_set[(reg?)],
regassign:[(reg?)->expression] #]

END rt

2. Definitions for Well-formed Register Transfers and Control Graphs:

wellformed_set?(e_set:finite_set[expression]):bool=
(forall(e:(e_set)):subset?(ancestors(e), e_set)) AND
(forall (e1,e2: (e_set)) :

(op?(e1) AND op?(e2) AND op(e1)=op(e2)) => e1=e2)

wellformed_out?(rt:transfer) : bool =
subset?(image(rt‘regassign)(rt‘outregs), rt‘exp_set)

wellformed_rt?(rt:transfer): bool =
wellformed_set?(rt‘exp_set) and wellformed_out?(rt)

wellformed_rt:TYPE = {rt:transfer | wellformed_rt?(rt)}
c_graph: TYPE = list[wellformed_rt]

3. Definitions for Extracted Behavior:

extracted_behavior(cg: cons_graph, e:(car(cg)‘exp_set)) :
RECURSIVE beh =

if op?(e) then exp(opfn(op(e)),
extracted_behavior(cg, source1(e)),
extracted_behavior(cg, source2(e)))

else let m_cg: c_graph = match(e,cdr(cg)) in
if null?(m_cg) then leaf(e)

else extracted_behavior(m_cg, car(m_cg)‘regassign(e))
endif

endif
MEASURE size(e) + size(cdr(cg))

4. Definition for the OIS Transformations:

new_exp(e:expression, subst: (op?), opr: operator) :
RECURSIVE expression=

if reg?(e) then e
else if e = subst then op(opr, source1(e), source2(e))

else op(op(e), new_exp(source1(e), subst, opr),
new_exp(source2(e), subst, opr))

endif endif
MEASURE size(e)
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ois(rt: transfer, subst: (op?), opr:operator) : transfer =
(# exp_set:= new_exp_set(rt‘exp_set, subst, opr),

outregs:= rt‘outregs,
regassign:=

LAMBDA (x:(reg?)):new_exp(rt‘regassign(x),subst,opr) #)

OIS(cg:list[transfer],n:below[length(cg)],subst:(op?),
opr:operator) :

list[transfer] = replace(cg,n,ois(nth(cg,n),subst,opr))

precondition_ois?(rt:transfer,subst:(op?),opr:operator):bool=
opfn(opr) = opfn(op(subst)) AND
(operators(rt)(opr) =>

(forall(e:(filter_op(rt‘exp_set))) :
op(e)=opr => (source1(e)=source1(subst) and

source2(e)=source2(subst))) )
OIS_PB: LEMMA

forall(cg:c_graph,n:below[(length(cg))],subst:(op?),opr:operator,
r:(output_registers(cg)) :

precondition_ois?(nth(cg,n),subst,opr) =>
extracted_behavior(r,cg) =

extracted_behavior(r,OIS(cg,n,subst,opr))

5. Definitions for Generic Transformations, Correct Transformations, Operational
Transformations, and the Completeness Theorem:

transform:TYPE = [c_graph->c_graph]
correct_tr:TYPE = {t:transform |

forall(cg:c_graph,r:(output_registers(cg))):
extracted_behavior(reg(r),cg) =

extracted_behavior(reg(r),t(cg))}
oper_tr : TYPE =

{ot:correct_tr | forall(cg: c_graph) :
(ot(cg) = iden_tr(cg) % identity transformation

OR
(exists (n:below[length(cg)],r:(nth(cg,n)‘outregs)) :

ot(cg) = RTD(cg,n,r))
OR

(cons?(cg) => exists (n:below[length(cg)-1]) :
ot(cg) = RTC(cg,n))

OR
(exists (n:below[length(cg)],ss:finite_set[expression]) :

ot(cg) = RTS(cg,n,ss))
............

COMPLETENESS :THEOREM
forall(cg1,cg2 :cons_graph) :

cg_behavior(cg1) = cg_behavior(cg2) =>
exists(s:oper_tr_sequence): apply_sequence(s)(cg1) = cg2


