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Abstract. In this paper we will remark a common bad habit of tac-
tic implementors in proof-assistants based on the Curry-Howard isomor-
phism; we name it overkilling. The wide-spreading of overkilling is due to
a lack of interest in the term encoding of proofs, that leads to huge, un-
readable terms. This contributes to furthermore lowering interest in the
terms encoding the proofs and eventually to the concrete impossibility
to create effective tools to inspect and process them.
After a general presentation of overkilling and its implications, we de-
scribe a concrete experience of fixing overkilling in the implementation
of a reflexive tactic in system Coq, analyzing the gain with respect to
term-size, proof-checking time and term readability.

1 Introduction

Since the development of the first proof-assistants based on the Curry-Howard
isomorphism, it became clear that directly writing lambda-terms (henceforth
called simply terms) was a difficult, repetitive, time-expensive and error prone
activity; hence the introduction of meta-languages to describe procedures that
are able to automatically generate the low-level terms. Nowadays, almost all
the proof-assistants using terms description of proofs have many levels of ab-
stractions, i.e. meta-languages, to create the terms, with the only remarkable
exception of the ALF family [1] in which terms are still directly written without
any over-standing level of abstraction.

In particular, there are usually at least two levels, that of tactics and that
of the language in which the whole system and hence the tactics are written;
once the tactics are implemented, to do a proof the user enters to the system
a sequence of tactics, called a script; the script is then executed to create the
term encoding of the proof, which is type-checked by the kernel of the proof-
assistant. Writing a script interactively is much simpler than writing the term
by hands; once written, though, it becomes impossible to understand a script
without replaying it interactively. For this reason, we can hardly speak of the
language of tactics as a high level language, even if it is “compiled” to the
language of terms.

To avoid confusion, in the rest of this paper we will avoid the use of the term
“proof”, using only “script” and “term”; moreover, we will avoid also the terms
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“proof-checking” and “type-checking”, replacing them with “retyping” to mean
the type-checking of an already generated term; finally, we will use the term
“compiling” to mean the execution of a script. Usually, compilation ends with
the type-checking of the generated term; hence the choice of “retyping” for the
type-checking of an already generated term.

A long term consequence of the introduction of tactics has been the progres-
sive lowering of interest in terms. In particular, users of modern proof-assistants
as Coq [2] may even ignore the existence of commands to show the terms gener-
ated by their scripts. These terms are usually very huge and quite unreadable,
so they don’t add any easily accessible information to the scripts. Hence imple-
mentors have loosed interest in terms too, as far as their size and compilation
time are small enough to make the system response-time acceptable. When this
is not the case, it is sometimes possible to trade space with time using reflexive
tactics, in which the potentiality of complex type-systems to speak about them-
selves are exploited: reflexive tactics usually leads to a polynomial asympotical
reduction in the size of the terms, at the cost of an increased reduction time
during retyping and compilation. Often, though, reflexive tactics could not be
used; moreover, reflexive tactics suffer of the same implementative problems of
other tactics and so could be implemented in such a way to create huger than
needed terms, even if asymptotically smaller than the best ones created without
reflection.

The low level of interest in terms of the implementors of tactics often leads
to naive implementations (“If it works, it is OK”) and this to low-quality terms,
which:

1. are huger than needed because particular cases are not taken into account
during tactic development

2. require more time than needed for retyping due to their size
3. are particularly unreadable because they don’t correspond to the “natural”

way of writing the proof by hand

To cope with the second problem, retyping is usually avoided allowing systems to
reload saved terms without retyping them and using a checksum to ensure that
the saved file has not been modified. This is perfectly reasonable accordingly to
the traditional application-centric architecture of proof-assistants in which you
have only one tool integrating all the functionalities and so you are free to use
a proprietary format for data representation.

In the last months, though, an ever increasing number of people and projects
(see, for example, HELM [4], MathWeb [5] and Formavie [3]) have been inter-
ested to switch from the application-centric model to the newer content-centric
one, in which information is stored in standard formats (that is, XML based) to
allow different applications to work on the same set of data. As a consequence,
term size really becomes an important issue, due to the redundancy of standard
formats, and retyping is needed because the applications can not trust each other,
hence needing retyping and making retyping time critical. Moreover, as showed
by Yann Coscoy in its PhD. thesis [9] or by the Alfa interface to the Agda system
[10], it is perfectly reasonable and also feasible to try to produce descriptions in
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natural languages of formal proofs encoded as terms. This approach, combined
with the further possibility of applying the usual two-dimensional mathematic
notation to the formulas that appears in the terms, is being followed by projects
HELM [7], PCOQ [6] and MathWeb [5] with promising results. It must be un-
derstood, though, that the quality (in terms of naturality and readability) of
this kind of proofs rendering heavily depends on the quality of terms, making
also the third characteristic of low-quality terms a critical issue.

A totally different scenario in which term size and retyping time are critical is
the one introduced by Necula and Lee [11] under the name Proof Carrying Code
(PCC). PCC is a technique that can be used for safe execution of untrusted code.
In a typical instance of PCC, a code receiver establishes a set of safety rules that
guarantee safe behavior of programs, and the code producer creates a formal
safety proof that proves, for the untrusted code, adherence to the safety rules.
Then, the proof is transmitted to the receiver together with the code and it is
retyped before code execution. While very compact representation of the terms,
highly based on type-inference and unification, could be used to reduce the size
and retyping time [12], designing proof-assistants to produce terms characterized
by an high level of quality is still necessary.

In the next section we introduce a particular class of metrics for tactics
evaluation. In section 3 we consider the notion of tactics equivalence and we
describe one of the bad habits of tactics implementors, which is overkilling; we
also provide and analyze a simple example of overkilling tactic. In the last section
we describe a concrete experience of fixing overkilling in the implementation of a
reflexive tactic in system Coq and we analyze the gain with respect to term-size,
retyping time and term readability.

2 From Metrics for Terms Evaluation to Metrics for
Tactics Evaluation

The aim of this section is to show how metrics for term evaluation could induce
metrics for tactic evaluation. Roughly speaking, this allows us to valuate tactics
in terms of the quality of the terms produced. Even if we think that these kinds
of metrics are interesting and worth studying, it must be understood that many
other valuable forms of metrics could be defined on tactics, depending on what we
are interested in. For example, we could be interested on compilation time, that
is the sum of the time required to generate the term and the retyping time for
it. Clearly, only the second component could be measured with a term metric
and a good implementation of a tactic with respect to the metric considered
could effectively decide to sacrifice term quality (and hence retyping time) to
minimize the time spent to generate the term. The situation is very close to the
one already encountered in compilers implementation, where there is always a
compromise, usually user configurable, between minimizing compiling time and
maximizing code quality.
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The section is organized as follows: first we recall the definition of tactic
and we introduce metrics on terms; then we give the definition of some metrics
induced by term metrics on tactics.

Definition 1 (Of tactic). We define a tactic as a function that, given a goal G
(that is, a local context plus a type to inhabit) that satisfies a list of assumptions
(preconditions) P , returns a couple (L, t) where L = L1, . . . , Ln is a (possible
empty) list of proof-obligations (i.e. goals) and t is a function that, given a list
l = l1, . . . , ln of terms such that li inhabits1 Li for each i in 1, . . . , n, returns a
term t(l) inhabiting G.

Definition 2 (Of term metric). For any goal G, a term metric µG is any
function in N{t/t inhabits G}. Two important class of term metrics are functional
metrics and monotone metrics:

1. Functional metrics: a metric µG is functional if for each term context
(=term with an hole) C[] and for all terms t1,t2 if µG(t1) = µG(t2) then
µG(C[t1]) = µG(C[t2]). An equivalent definition is that a metric µG is func-
tional if for each term context C[] the function λt.µG(C[µ−1

G (t)]) is well de-
fined.

2. Monotone metrics: a metric µG is monotone if for each term context C[]
and for all terms t1,t2 if µG(t1) ≤ µG(t2) then µG(C[t1]) ≤ µG(C[t2]). An
equivalent definition is that a metric µG is functional if for each term context
C[] the function λt.µG(C[µ−1

G (t)]) is well defined and monotone.

Typical examples of term metrics are the size of a term, the time required
to retype it or even an estimate of its “naturality” (or simplicity) to be defined
somehow; the first two are also examples of monotone metrics and the third one
could probably be defined as to be. So, in the rest of this paper, we will restrict
to monotone metrics, even if the following definitions also work with weaker
properties for general metrics. Here, however, we are not interested in defining
such metrics, but in showing how they naturally induce metrics for tactics.

Once a term metric is chosen, we get the notion of a best term (not unique!)
inhabiting a goal:

Definition 3 (Of best terms inhabiting a goal). the term t inhabiting a
goal G is said to be a best term inhabiting G w.r.t. the metric µG when µG(t) =
min{µG(t′)/t′ inhabits G}.

Using the previous notion, we can confront the behavior of two tactics on
the same goal:

Definition 4. Let τ1 and τ2 be two tactics both applyable to a goal G such that
τ1(G) = (L1, t1) and τ2(G) = (L2, t2). We say that τ1 is better or equal than τ2

for the goal G with respect to µG if, for all l1 and l2 lists of best terms inhabiting
respectively L1 and L2, µG(t1(l1)) ≤ µG(t2(l2)) holds.
1 We say, with a small abuse of language, that a term t inhabits a goal G = (Γ, T )

when t is of type T in the context Γ .
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Note that confronting in this way “equivalent” tactics (whose definition is pre-
cised in the next section) gives us information on which implementation is better;
doing the same thing on tactics that are not equivalent, instead, gives us infor-
mation about what tactic to apply to obtain the best proof.

A (functional) metric to confront two tactics only on a particular goal has
the nice property to be a total order, but is quite useless. Hence, we will now
define a bunch of different tactic metrics induced by term metrics that can be
used to confront the behavior of tactics when applied to a generic goal. Some
of them will be deterministic partial orders; others will be total orders, but will
provide only a probabilistic estimate of the behavior. Both kinds of metrics are
useful in practice when rating tactics implementation.

Definition 5 (Of locally deterministic better or equal tactic). τ1 is a
locally deterministic (or locally uniform) better or equal tactic than τ2 w.r.t. µ
(and in that case we write τ1 ≤µ τ2 or simply τ1 ≤ τ2), when for all goals G
satisfying the preconditions of both tactics we have that τ1 is better or equal than
τ2 w.r.t. the metric µG.

Definition 6 (Of locally deterministic better tactic). τ1 is a locally deter-
ministic (or locally uniform) better tactic than τ2 w.r.t. µ (and in that case we
write τ1 <µ τ2 or simply τ1 < τ2), when τ1 ≤µ τ2 and exists a goal G satisfying
the preconditions of both tactics such that τ1 is better (but not equal!) than τ2

w.r.t. the metric µG.

Definition 7 (Of locally probabilistic better or equal tactic of a factor
K). τ1 is said to be a tactic locally probabilistic better or equal of a factor 0.5 ≤
K ≤ 1 than τ2 w.r.t. µ and a particular expected goals distribution when the
probability of having τ1 better or equal than τ2 w.r.t. the metric µG is greater or
equal to K when G is chosen randomly according to the distribution.

The set of terms being discrete, you can note that a deterministically better or
equal tactic is a tactic probabilistically better or equal of a factor 1.

To end this section, we can remark the strong dependence of the ≤ relation
on the choice of metric µ, so that it is easy to find two metrics µ1, µ2 such that
τ1 <µ1 τ2 and τ2 <µ2 τ1. Luckily, tough, the main interesting metrics, term
size, retyping time and naturality, are in practice highly correlated, though the
correlation of the third one with the previous two could be a bit surprising. So,
in the following section, we will not state what is the chosen term metric; you
may think as any of them or even at some kind of weighted mean.

3 Equivalent Tactics and Overkilling

We are now interested in using the metrics defined in the previous section to con-
front tactics implementation. Before doing so, though, we have to identify what
we consider to be different implementations of the same tactic. Our approach
consists in identifying every implementation with the tactic it implements and
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then defining appropriate notions of equivalence for tactics: two equivalent tac-
tics will then be considered as equivalent implementations and will be confronted
using metrics.

Defining two tactics as equivalent when they can solve exactly the same set
of goals generating the same set of proof-obligations seems quite natural, but is
highly unsatisfactory if not completely wrong. The reason is that, for equivalent
tactics, we would like to have the property of substitutivity, that is substituting
a tactic for an equivalent one in a script should give back an error-free script2.
In logical frameworks with dependent types, without proof-irrelevance and with
universes as CIC [13] though, it is possible for a term to inspect the term of
a previous proof, behaving in a different way, for example, if the constructive
proof of a conjunction is made proving the left or right side. So, two tactics,
equivalent w.r.t. the previous definition, that prove A∨A having at their disposal
an hypothesis A proving the first one the left and the second one the right part
of the conjunction, could not be substituted one for the other if a subsequent
term inspects the form of the generated proof.

Put in another way, it seems quite reasonable to derive equivalence for tactics
from the definition of an underlying equivalence for terms. The simplest form of
such an equivalence relation is convertibility (up to proof-irrelevance) of closed
terms and this is the relation we will use in this section and the following one.
In particular, we will restrict ourselves to CIC and hence to βδι-convertibility3.
Convertibility, though, is a too restrictive notion that does not take in account,
for example, commuting conversions. Looking for more suitable notions of equiv-
alence is our main open issue for future work.

Definition 8 (Of terms closed in a local environment). A term t is closed
in a local environment Γ when Γ is defined on any free variable of t.

Definition 9 (Of equivalent tactics). We define two tactics τ1 and τ2 to be
equivalent (and we write τ1 ≈ τ2) when for each goal G = (Γ, T ) and for each list
of terms closed in Γ and inhabiting the proof-obligations generated respectively by
τ1 and τ2, we have that the result terms produced by τ1 and τ2 are βδι-convertible.

Once we have the definition of equivalent tactics, we can use metrics, either
deterministic or probabilistic, to confront them. In particular, in the rest of this
section and in the following one we will focus on the notion of deterministically
overkilling tactic, defined as follows:

2 A weaker notion of substitutivity is that substituting the term generated by a tactic
for the term generated by an equivalent one in a generic well-typed term should
always give back a well-typed term.

3 The Coq proof-assistant introduces the notion of opaque and transparent terms,
differing only for the possibility of being inspected. Because the user could change
the opacity status at any time, the notion of convertibility we must conservatively
choose for the terms of Coq is βδι-convertibility after having set all the definitions
as transparent.
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Definition 10 (Of overkilling tactics). A tactic τ1 is (deterministically)
overkilling w.r.t. a metric µ when there exists another tactic τ2 such that τ1 ≈ τ2

and τ2 <µ τ1.

Fixing an overkilling tactic τ1 means replacing it with the tactic τ2 which
is the witness of τ1 being overkilling. Note that the fixed tactic could still be
overkilling.

The name overkilling has been chosen because most of the time overkilling
tactics are tactics that do not consider special cases, following the general al-
gorithm. While in computer science it is often a good design pattern to prefer
general solutions to ad-hoc ones, this is not a silver bullet: an example comes
another time from compiler technology, where ad-hoc cases, i.e. optimizations,
are greatly valuable if not necessary. In our context, ad-hoc cases could be con-
sidered either as optimizations, or as applications of Occam’s razor to proofs to
keep the simplest one.

3.1 A Simple Example of Overkilling Tactic

A first example of overkilling tactic in system Coq is Replace, that works in this
way: when the current goal is G = (Γ, T ), the tactic “Replace E1 with E2.” always
produces a new principal proof-obligation (Γ, T{E2/E1}) and an auxiliary proof-
obligation (Γ,E1 = E2) and uses the elimination scheme of equality on the term
E1 = E2 and the two terms that inhabit the obligations to prove the current
goal.

To show that this tactic is overkilling, we will provide an example in which
the tactic fails to find the best term, we will propose a different implementation
that produces the best term and we will show the equivalence with the actual
one.

The example consists in applying the tactic in the case in which E1 is con-
vertible to E2: the tactic proposes to the user the two proof-obligations and
then builds the term as described above. We claim that the term inhabiting
the principal proof-obligation also inhabits the goal and, used as the generated
term, is surely smaller and quicker to retype than the one that is generated in
the implementation; moreover, it is also as natural as the previous one, in the
sense that the apparently lost information has simply become implicit in the
reduction and could be easily rediscovered using type-inference algorithms as
the one described in Coscoy’s thesis [9]. So, a new implementation could simply
recognize this special case and generate the better term.

We will now show that the terms provided by the two implementations are
βδι-convertible. Each closed terms in βδι-normal form inhabiting the proof that
E1 is equal to E2 is equal to the only constructor of equality applied to a term
convertible to the type of E1 and to another term convertible to E1; hence, once
the principle of elimination of equality is applied to this term, we can first apply
β-reduction and then ι-reduction to obtain the term inhabiting the principal
proof-obligation in which E1 has been replaced by E2. Since E1 and E2 are βδι-
convertible by hypothesis and for the congruence properties of convertibility in



Tactics in Modern Proof-Assistants: the Bad Habit of Overkilling. 359

CIC, we have that the generated term is βδι-convertible to the one inhabiting
the principal proof-obligation.

This example may seem quite stupid because, if the user is already able to
prove the principal proof-obligation and because this new goal is totally equiv-
alent to the original one, the user could simply redo the same steps without
applying the rewriting at all. Most of the time, though, the convertibility of the
two terms could be really complex to understand, greatly depending on the ex-
act definitions given; indeed, the user could often be completely unaware of the
convertibility of the two terms. Moreover, even in the cases in which the user
understands the convertibility, the tactic has the important effect of changing
the form of the current goal in order to simplify the task of completing the proof,
which is the reason for the user to apply it.

The previous example shows only a very small improvement in the produced
term and could make you wonder if the effort of fixing overkilling and more in
general if putting more attention to terms when implementing tactics is really
worth the trouble. In the next section we describe as another example a concrete
experience of fixing a complex reflexive tactic in system Coq that has lead to
really significant improvements in term size, retyping time and naturality.

4 Fixing Overkilling: a Concrete Experience

Coq provides a reflexive tactic called Ring to do associative-commutative rewrit-
ing in ring and semi-ring structures. The usual usage is, given the goal E1 = E2

where E1 and E2 are two expressions defined on the ring-structure, to prove the
goal reducing it to proving E′

1 = E′
2 where E′

i is the normal form of Ei. In fact,
once obtained the goal E′

1 = E′
2, the tactic also tries to apply simple heuristics

to automatically solve the goal.
The actual implementation of the tactic by reflexion is quite complex and is

described in [8]. The main idea is described in Fig. 1: first of all, an inductive data
type to describe abstract polynomial is made available. On this abstract poly-
nomial, using well-founded recursion in Coq, a normalization function named
apolynomial normalize is defined; for technical reasons, the abstract data type
of normalized polynomials is different from the one of un-normalized polynomi-
als. Then, two interpretation functions, named interp ap and interp sacs are
given to map the two forms of abstract polynomials to the concrete one. Finally,
a theorem named apolynomial normalize ok stating the equality of the inter-
pretation of an abstract polynomial and the interpretation of its normal form
is defined in Coq using well-founded induction. The above machinery could be
used in this way: to prove that EI is equal to its normal form EIV , the tactic
computes an abstract polynomial EII that, once interpreted, reduces to EI , and
such that the interpretation of EIII = (apolynomial normalizeEII) could be
shown to be equal to EIV applying apolynomial normalize ok.
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apolynomial_normalize

interp_sacs

interp_ap

E

E E

E

I II

IIIIV

apolynomial_normalize_ok

Fig. 1. Reflexion in Ring

E = E21

βδι−convertibility)refl_equal (because of

(interp_ap E  ) = E
1 2

1 2(interp_sacs E  ) = E
III

apolynomial_normalize_ok

II

Fig. 2. Ring implementation (first half)

In Fig. 2 the first half of the steps taken by the Ring tactic to prove E1 = E2

are shown4. The first step is replacing E1 = E2 with (interp ap EII
1 ) = E2,

justifying the rewriting using the only one constructor of equality due to
the βδι-convertibility of (interp ap EII

1 ) with E1. The second one is replac-
ing (interp ap EII) with (interp sacs EIII), justifying the rewriting using
apolynomial normalize ok.

Next, the two steps are done again on the left part of the equality, obtaining
(interp sacs EIII

1 ) = (interp sacs EIII
2 ), that is eventually solved trying simpler

tactics as Reflexivity or left to the user.
The tactic is clearly overkilling, at least due to the usage of rewriting for

convertible terms. Let’s consider as a simple example the session in Fig. 3: in
Fig. 4 the λ-term created by the original overkilling implementation of Ring is
shown. Following the previous explanation, it should be easily understandable.
In particular, the four rewritings are clearly visible as applications of eqT ind,
as are the two applications of apolynomial normalize ok and the three usage of
reflexivity, i.e. the two applications of refl eqT to justify the rewritings on the
left and right members of the equality and the one that ends the proof.

4 Here E1 stands for EI .
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Coq < Goal ‘‘0*0==0‘‘.

1 subgoal

=================

‘‘0*0 == 0‘‘

Unnamed thm < Ring.

Subtree proved!

Fig. 3. A Coq session.

Let’s start the analysis of overkilling in this implementation:

Always overkilling rewritings: as already stated, four of the rewriting steps
are always overkilling because the rewritten term is convertible to the original
one due to the tactic implementation. As proved in the previous section, all
these rewritings could be simply removed obtaining an equivalent tactic.

Overkilling rewritings due to members already normalized: it may
happen, as in our example, that one (or even both) of the two members
is already in normal form. In this case the two rewriting steps for that
member could be simply removed obtaining an equivalent tactic as shown
in the previous section.

Rewriting followed by reflexivity: after having removed all the overkilling
rewritings, the general form of the λ-term produced for E1 = E2 is the
application of two rewritings (E′

1 for E1 and E′
2 for E2), followed by a proof

of E′
1 = E′

2. In many cases, E′
1 and E′

2 are simply convertible and so the tactic
finishes the proof with an application of reflexivity to prove the equivalent
goal E′

1 = E′
1. A smaller and also more natural solution is just to rewrite E′

1

for E1 and then proving E′
1 = E2 applying the lemma stating the symmetry

of equality to the proof of E2 = E′
2. The equivalence to the original tactic

is trivial by βι-reduction because the lemma is proved exactly doing the
rewriting and then applying reflexivity:

λA : Type.
λx, y : A.
λH : (x == y).
(eqT ind A x [x : A]a == x (refl eqT A x) y H)

In Fig. 5 is shown the λ-term created by the same tactic after having fixed all
the overkilling problems described above.
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Unnamed_thm < Show Proof.

LOC:

Subgoals

Proof:

(eqT_ind R

(interp_ap R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R)

(APmult AP0 AP0)) [r:R]‘‘r == 0‘‘

(eqT_ind R

(interp_sacs R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R)

Nil_varlist) [r:R]‘‘r == 0‘‘

(eqT_ind R

(interp_ap R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R) AP0)

[r:R]

‘‘(interp_sacs R Rplus Rmult 1 r Ropp (Empty_vm R) Nil_varlist)

== r‘‘

(eqT_ind R

(interp_sacs R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R)

Nil_varlist)

[r:R]

‘‘(interp_sacs R Rplus Rmult 1 r Ropp (Empty_vm R)

Nil_varlist) == r‘‘ (refl_eqT R ‘‘0‘‘)

(interp_ap R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R) AP0)

(apolynomial_normalize_ok R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp

[_,_:R]false (Empty_vm R) RTheory AP0)) ‘‘0‘‘

(refl_eqT R ‘‘0‘‘))

(interp_ap R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp (Empty_vm R)

(APmult AP0 AP0))

(apolynomial_normalize_ok R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp

[_,_:R]false (Empty_vm R) RTheory (APmult AP0 AP0))) ‘‘0*0‘‘

(refl_eqT R ‘‘0*0‘‘))

Fig. 4. The λ-term created by the original overkilling implementation

Unnamed_thm < Show Proof.

LOC:

Subgoals

Proof:

(sym_eqT R ‘‘0‘‘ ‘‘0*0‘‘

(apolynomial_normalize_ok R Rplus Rmult ‘‘1‘‘ ‘‘0‘‘ Ropp

[_,_:R]false (Empty_vm R) RTheory (APmult AP0 AP0)))

Fig. 5. The λ-term created by the new implementation
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4.1 A Quantitative Analysis of the Gain Obtained

Let’s now try a quantitative analysis of the gain with respect to term size,
retyping time and naturality, considering the two interesting cases of no member
or only one member already in normal form5.

Term Size.

Terms metric definition: given a term t, the metric |.| associates to it its number
of nodes |t|.

Notation : |T | stands for the number of nodes in the actual parameters given to
interp ap, interp sacs and apolynomial normalize ok to describe the concrete
(semi)ring theory and the list of non-primitive terms occurring in the goal to
solve. In the example in figures 4 and 5, |T | is the number of nodes in [R Rplus
Rmult “1“ “0“ Ropp (Empty vm R)]. |R| stands for the number of nodes in
the term which is the carrier of the ring structure. In the same examples, |R| is
simply 1, i.e. the number of nodes in R.

Original version:
1 + (|EII

1 |+ |T |+ 1) + |E2|+ |E1|+ (I rewriting Left)
1 + |E1|+ (justification)
1 + (|EIII

1 |+ |T |+ 1) + |E2|+ (|EII
1 |+ |T |+ 1)+ (II rewriting Left)

(|EII
1 |+ |T |+ 1)+ (justification)

1 + (|EII
2 |+ |T |+ 1) + (|EIII

1 |+ |T |+ 1) + |E2|+ (I rewriting Right)
1 + |E2|+ (justification)
1 + (|EIII

2 |+ |T |+ 1) + (|EIII
1 |+ |T |+ 1)+ (II rewriting Right)

(|EII
2 |+ |T |+ 1)+

(|EII
2 |+ |T |+ 1)+ (justification)

1 + |E1| = (reflexivity application)
4|E1|+ 2|E2|+ 3|EII

1 |+ 3|EII
2 |+ 3|EIII

1 |+ |EIII
2 |+ Total number

10|T |+ 17

New version, both members not in normal form:
1 + |R|+ |E1|+ |E′

2|+ (Rewriting Right)
1 + |T |+ |EII

2 |+ (justification)
1 + |R|+ |E′

2|+ |E′
1|+ |E2|+ (Symmetry application)

1 + |T |+ |EII
1 | = (justification)

2|E1|+ |E2|+ |EII
1 |+ |EII

2 |+ 2|E′
2|+ 2|T |+ Total number

2|R|+ 4

5 If the two members are already in normal form, the new implementation simply
applies once the only constructor of the equality to one of the two members. The
tactic is also implemented to do the same thing also when the two members are not
yet in normal forms, but are already convertible. We omit this other improvement
in our analysis.
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New version, only the first member not in normal form:
1 + |R|+ |E1|+ |E′

2|+ (Rewriting)
1 + |T |+ |EII

2 | = (justification)
|E1|+ |E′

2|+ |EII
2 |+ |T |+ |R|+ 2 Total number

While the overall space complexity of the terms generated by the new im-
plementation is asymptotically equal to the one of the old implementation, all
the constants involved are much smaller, but for the one of E′

2 (the two normal
forms) that before was 0 and now is equal to 2. Is it possible to have goals for
which the new implementation behaves worst than the old one? Unfortunately,
yes. This happens when the size of the two normal forms E′

1 and E′
2 is greatly

huger than (EII
1 + |T |+ 1) and (EII

2 + |T |+ 1). This happens when the number
of occurrences of non-primitive terms is much higher than the number of non-
primitive terms and the size of them is big. More formally, being m the number
of non-primitive terms, d the average size and n the number of occurrences, the
new implementation creates bigger terms than the previous one if

n log2 m + md < nd

where the difference between the two members is great enough to hide the gain
achieved lowering all the other constants. The logarithmic factor in the previous
formula derives from the implementation of the map of variables to non-primitive
terms as a tree and the representation of occurrences with the path inside the
tree to retrieve the term.

To fix the problem, for each non-primitive term occurring more than once
inside the normal forms, we can use a let . . . in local definition to bind it to a
fresh identifier; then we replace every occurrence of the term inside the normal
forms with the appropriate identifier6. In this way, the above inequation becomes

n log2 m + md < n + md

that is never satisfied.
Here it is important to stress how the latest problem was easily overlooked

during the implementation and has been discovered only during the previous
analysis, strengthening our belief in the importance of this kind of analysis for
tactic implementations.

In the next two paragraphs we will consider only the new implementation
with the above fixing.

Retyping Time.

Terms metric definition: given a term t, the metric |.| associates to it the time
|t| required to retype it.

Due to lack of space, we will omit a detailed analysis as the one given for
terms size. Nevertheless, we can observe that the retyping time required is surely
6 This has not yet been implemented in Coq.
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smaller because all the type-checking operations required for the new implemen-
tation are already present in the old one, but for the type-checking of the two
normal forms, that have fewer complexity than the type-checking of the two ab-
stract normal forms, and the let . . . in definitions that have the same complexity
of the type-checking of the variable map. Moreover, the quite expensive operation
of computing the two normal forms is already done during proof construction.

In section 4.2 we present some benchmarks to give an idea of the real gain
obtained.

Naturality.

The idea behind the Ring tactic is to be able to prove an equality show-
ing that both members have the same normal form. This simply amounts to
show that each member is equal to the same normal form, that is exactly what
is done in the new implementation. Indeed, every step that belonged to the old
implementation and has been changed or removed to fix overkilling used to lead
to some unnatural step:

1. The fact that the normalization is not done on the concrete representation,
but passing through two abstract ones that are interpreted on the concrete
terms is an implementative detail that was not hidden as much as possible
as it should be.

2. Normalizing a member of the equality that is already in normal form, is
illogical and so unnatural. Hence it should be avoided, but it was not.

3. The natural way to show A = B under the hypothesis B = A is just to use
the symmetric property of equality. Instead, the old implementation rewrote
B with A using the hypothesis and proved the goal by reflexivity.

4. Using local definitions (let . . . in) as abbreviations rises the readability of the
proof by shrinking its size removing subexpressions that are not involved in
the computation.

4.2 Some Benchmarks

To understand the actual gain in term size and retyping time on real-life exam-
ples, we have done some benchmarks on the whole set of theorems in the standard
library of Coq that use the Ring tactic. The results are shown in table 1.

Term size is the size of the disk dump of the terms. Re-typing time is the
user time spent by Coq in proof-checking already parsed terms. The reduction
of the terms size implies also a reduction in Coq parsing time, that is difficult to
compute because Coq files do not hold single terms, but whole theories. Hence,
the parsing time shown is really the user time spent by Coq to parse not only
the terms on which we are interested, but also all the terms in their theories and
the theories on which they depend. So, this last measure greatly under-estimates
the actual gain.

Every benchmark has been repeated 100 times under different load conditions
on a 600Mhz Pentium III bi-processor equipped with 256Mb RAM. The timings
shown are mean values.



366 Claudio Sacerdoti Coen

Term size Re-typing time Parsing time

Old implementation 20.27Mb 4.59s 2.425s

New implementation 12.99Mb 2.94s 2.210s

Percentage reduction 35.74% 35.95% 8.87%

Table 1. Some benchmarks

5 Conclusions and Future Work

Naive ways of implementing tactics lead to low quality terms that are difficult
to inspect and process. To improve the situation, we show how metrics defined
for terms naturally induce metrics for tactics and tactics implementation and we
advocate the usage of such metrics for tactics evaluation and implementation. In
particular, metrics could be used to analyze the quality of an implementation or
could be used at run time by a tactic to choose what is the best way to proceed.

To safely replace a tactic implementation with another one, it is impor-
tant to define when two tactics are equivalent, i.e. generate equivalent terms.
In this work, the equivalence relation chosen for terms has simply been βδι-
convertibility, that in many situations seems too strong. Hence, an important
future work is the study of weaker forms of term equivalence and the equivalence
relations they induce on tactics. In particular, it seems that proof-irrelevance,
η-conversion and commuting conversions must all be considered in the definition
of a suitable equivalence relation.
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