
Verifying that Invariants are Context-Inductive

Vlad Rusu e-mail: rusu@irisa.fr fax: (+33) 2 99 84 25 32

IRISA/INRIA Rennes, France

Abstract. We study the deductive verification of infinite-state systems
modeled by extended automata. Typically, this process requires proving
many invariants, and automatically discharging these proof obligations
would save the user a significant amount of effort. To accomplish this we
present techniques for automatically verifying that invariants are induc-
tive in a given context, and identify a class of systems and a logic for
expressing invariants and contexts for which the problem is decidable.

1 Introduction

Deductive techniques [15] provide powerful and general ways to verify properties
of infinite-state systems, but their use in mechanical verification tools [9, 17, 4,
16] requires a serious amount of effort from the human verifier. Most of this
effort is dedicated to finding and proving invariants, that is, properties that are
true in all the reachable states of the system. Invariants are useful for proving
both safety and liveness properties (see, e.g., [14]). One way to prove that a
property is an invariant is by showing that it is inductive, i.e., true in the initial
states of the system and preserved by all transitions. However, most invariants
are not inductive by themselves, but only in a given context, defined by auxiliary
invariants. Two main techniques exists for obtaining auxiliary invariants:

– invariant generation [2, 3, 11] consists in performing static analysis of the
specification to automatically obtain relations between control and data,

– invariant strengthening [7, 12] is an interactive process that consists in re-
peatedly adding information to the invariant under proof until it becomes
inductive. The information is extracted from previous unsuccessful proofs.

In this paper we study the deductive verification of a class of infinite-state sys-
tems called pf-automata, which consist of guarded commands over a finite-state
structure, operating on infinite-state variables such as integers and uninterpreted
functions. The class is useful for modeling, e.g., programs that operate on arrays,
or communication protocols with unbounded channels that carry unbounded
values. Specifically, we define a method for verifying that invariants are context-
inductive (abbreviated as vici) that solves the following problem: given pred-
icates A, I in a certain logic, and a pf-automaton P, is it the case that I is
inductive over P in the context A of auxiliary invariants known of P.

We show that the problem is decidable when A and I are expressed in a
fragment of the theory of Presburger arithmetic with uninterpreted functions [10]

338 V. Rusu

and P is a pf-automaton. Moreover, the auxiliary predicates A are generated
automatically using invariant generation techniques.

The vici method improves the automation of deductive verification in the
following ways. First, it may be that the invariant under proof can be inferred
directly from the automatically generated invariants, or is inductive in the con-
text defined by those invariants. In both cases, the proof is automatic and the
effort of interactively proving the invariant, e.g., using invariant strengthening,
is saved. Otherwise, even if invariant strengthening needs to be applied, the
ability of automatically proving inductiveness may save effort, by detecting that
the invariant under proof is inductive within fewer invariant-strengthening iter-
ations. Finally, if the user has a good intuition of a potentially useful inductive
or context-inductive auxiliary invariant, having an automatic procedure allows
to quickly check this intuition and to fix errors in a few trial-and-error steps. We
demonstrate the gains that the method provides in the context of a deductive
verification using the pvs theorem prover [17] of a sliding-window protocol.

The rest of the paper is organized as follows. In Section 2 we present the the-
ory of Presburger arithmetic with uninterpreted function symbols, and define a
decidable fragment of this theory. In Section 3 we define the class of pf-automata,
which are extended automata with guards and assignments in the fragment, and
present the problem of verifying that invariants are context-inductive (vici). In
Section 4 we define invariant-generation techniques for pf-automata, and show
that the vici problem is decidable for the formalisms introduced in the previous
sections. In Section 5 we present the verification of a sliding window protocol in
pvs and how the vici method is employed to automatically verify inductive and
context-inductive invariants, which made up for 50% of all invariants proved. In
Section 6 we present related work, conclusions, and future work.

2 Presburger Arithmetic with Uninterpreted Functions

In this section we briefly describe the theory of Presburger arithmetic with un-
interpreted function symbols, and define a decidable fragment of this theory.

2.1 The Full Theory

Let V be a set of integer variables, and F be a set of function symbols. For each
function f ∈ F , we only know its arity (a natural number n), and the fact that it
is a function from Zn to Z. A term with function symbols is either a variable, or a
function application to a term, or an affine combination of those. An inequality is
a comparison (<,>,≤,≥,=) between terms. A quantifier-free formula is a finite
Boolean combination of inequalities. A formula of Presburger arithmetic with
uninterpreted function symbols (or pf, for short) is a finite Boolean combination
of inequalities, in which some variables can be quantified. Quantification over
function symbols is not allowed. Thus, if x, y, z, u are variables and f, g are
functions of arity one, x + 2y + f(g(z)) is a term, x ≤ y ∧ x + 2y + f(g(z)) > 0
is a quantifier-free formula, and ∀x.x ≤ y + f(g(z))∧ ∃u.x + 2y + f(z) > g(u) is
a pf formula. Satisfiability in pf is Σ1

1 -complete (validity is Π1
1 -complete [10]).

Verifying that Invariants are Context-Inductive 339

2.2 Decidable Fragments

However, satisfiability is decidable in the quantifier-free fragment of pf [22]. In
this section we build on this result to define a larger decidable fragment.

Decidability of the quantifier-free fragments. The result [22] is based on
a simple observation. In a quantifier-free formula with uninterpreted function
symbols, the only relevant property about functions is that they map equals to
equals, and, by instantiating this property to finitely many terms, it is possible
to obtain an equivalent Presburger arithmetic formula. Let ϕ be a formula of
the quantifier-free fragment of pf. For simplicity, we suppose that in ϕ there is
only one unary function symbol f , which is only applied to two terms, t1 and t2.
Then, ϕ is satisfiable if and only if the following Presburger formula is satisfiable:

ϕ̃ : ϕ[f(t1)/f1, f(t2)/f2] ∧ (t1 = t2 ⊃ f1 = f2) (1)

That is, in ϕ̃, the function applications f(ti) from ϕ are replaced by new integer
variables fi, and the general property that function f maps equals to equals is
instantiated to “equality of the terms ti implies equality of the variables fi”.
Indeed, a model for ϕ trivially induces a model for ϕ̃ by choosing f1 = f(t1) and
f2 = f(t2). Conversely, if there exists a model for ϕ̃, then a model for ϕ can be
obtained by choosing the value for f such that f(t1) = f1, f(t2) = f2, and by
letting f(i) be an arbitrary value at any other position than t1, t2.

Decidability of the existential fragment. Consider now the existential frag-
ment of pf (i.e., only existential quantifiers are allowed, and under the scope of
an even number of negations). Modulo a renaming of variables, it is possible to
move all quantifiers to the outermost level. Then, a formula ∃x.ϕ has a model if
and only if ϕ also has one. Indeed, if there exists values of the functions and free
variables that satisfy ϕ, then the same values satisfy ∃x.ϕ, and if there exists a
model for ∃x.ϕ, then this model, augmented with the “witness” value of x for
the existential quantifier, is a model for ϕ. Thus, the fragment is decidable.

Decidability of the semi-universal fragment. The universal fragment of
pf consists of formulas in which only universal quantifiers are allowed, under
an even number of negations. This fragment is highly undecidable1. Neverthe-
less, universal formulas are useful: for example, specifying a property of all the
elements of a parametric-sized vector requires a universal quantifier. In the re-
mainder of this section we define a class of pf formulas with universal quantifiers
for which satisfiability is decidable. This result will be used in the subsequent
sections, where we define extended automata with guards and assignments in
the class.

1 This can be shown, e.g., by encoding the recurrence problem for 2-counter automata.

340 V. Rusu

Definition 1. A shielded pf formula is a pf formula of the form ψ : ∀i.ψ′
where ψ′ is a quantifier-free formula with the property that function symbols f
may only appear within terms of the form f(i). 2

That is, the formula ∀i.(f(i) > j ⊃ j > g(i)) is shielded, but ∀i.(f(i + 1) = 0)
and ∀i.(g(i) ≥ f(y)) are not.

Also, let the function depth of a formula ψ be the deepest nesting of function
symbols in ψ. That is, both formulas above have function depth 1.

Definition 2. A pf formula ϑ is semi-universal if it is a conjunction ϑ : ϕ∧
ψ1 ∧ . . . ∧ ψk of function depth 1, where ϕ is quantifier-free, every ψj (j =
1, . . . , k) is shielded, and the following semantic property holds: for every model
Mϕ of ϕ there exists a model Mψ of ψ : ψ1 ∧ . . .∧ψk such that Mϕ, Mψ agree
on the values of the free variables that occur in both ϕ,ψ. 2

Example 1. Consider the following formula

ϑ : f(x + 1) ≤ f(y) + 1︸ ︷︷ ︸
ϕ

∧∀i.(f(i) = y + 1)︸ ︷︷ ︸
ψ

It is a semi-universal formula, as it satisfies the syntactic conditions of Defini-
tion 2, i.e. has function depth 1, ϕ is quantifier-free, and ψ is shielded. For the
semantic condition, note that for every model Mϕ (e.g., Equation 2) there exists
also a model Mψ (e.g., Equation 3) such that Mϕ, Mψ agree on the value of y,
i.e., the free variable that occurs in both ϕ and ψ.

Mϕ : {x = 0, y = 2, f(1) = 3, f(2) = 3, and for k /∈ {1, 2} : f(k) = 0} (2)
Mψ : {y = 2, for all k : f(k) = 3} (3)

2

Definition 2 may be hard to use in practice because of the semantic property
that is involved. However, it turns out to be the exact definition we need in the
following sections. A sufficient (and easier to check) condition for a formula to
be semi-universal is presented at the end of this section.

Lemma 1. Satisfiability in the class of semi-universal formulas is decidable.

A complete proof of this lemma can be found in [19]. Here, we just give the main
idea and illustrate it through an example. To decide a semi-universal formula
ϑ : ϕ∧ψ where ψ : ∀i1ψ1∧. . . ∀ik.∧ψk, the idea is to instantiate every quantifier in
ψ to every term to which a function symbol is applied in ϕ. For example, when ψ
is of the form ∀i.ψ1 we obtain the following formula (4), which is equivalent to ϑ

ϑ′ : ϕ ∧
∧

i∈{t1,... ,tm}
ψ1(i, f1(i), . . . , fn(i))

︸ ︷︷ ︸
ϕ′

∧∀i /∈ {t1, . . . , tm}.ψ1(i, f1(i), . . . , fn(i))︸ ︷︷ ︸
ψ′

(4)

Verifying that Invariants are Context-Inductive 341

Then, the whole formula ϑ′ is satisfiable if and only if ϕ′ is satisfiable: if ϕ′ has
a model Mϕ′ , then there exists also a model Mψ′ for ψ′ that agrees with Mϕ′

on the values of the variables common to both formulas ϕ′, ψ′, and using this
fact it is possible to construct a model for θ′ from Mϕ′ , Mψ′ as follows. The
values of the free variables that appear in one of the formulas ϕ′, ψ′ but not
in the other are chosen from that formula’s model, and the values of the free
variables that appear in both formulas are chosen from either model. The values
of the functions are defined as follows: at all positions i equal to the value of
some term tk (k = 1, . . . ,m) in Mϕ′ , we evaluate fj(i) (j = 1, . . . , n) according
to Mϕ′ , and at all remaining positions, we evaluate fj(i) according to Mψ′ . It
is not hard to show that this valuation constitutes a model for (4), thus, for ϑ.
Example 2. Consider the semi-universal formula ϑ from Example 1. The for-
mula ϑ is equivalently rewritten as:

ϑ
′
: f(x + 1) ≤ f(y) + 1 ∧ f(x + 1) = y + 1 ∧ f(y) = y + 1︸ ︷︷ ︸

ϕ′

∧∀i /∈ {x + 1, y}.(f(i) = y + 1)︸ ︷︷ ︸
ψ′

(5)

LetMϕ′ : {x = 0, y = 2, f(1) = 3, f(2) = 3, and for all k /∈ {1, 2} : f(k) = 0}
be a model for ϕ′. Here, Mϕ′ is also a model for ϕ. A corresponding model
for ψ, which agrees with Mϕ′ on the values of the common free variables, is
Mψ : {y = 2, for all k : f(k) = 3} We extend Mψ into a model for Mψ′ of ψ′

by choosing x = 0 as in Mϕ′ , and build a valuation Mϑ′ as follows:
The values of free variables x and y are chosen from Mϕ′ : x = 0, y = 2. The

values of f(i) such that i = x + 1 or i = y, that is, for i ∈ {1, 2}, are also chosen
from Mϕ′ : f(1) = 3, f(2) = 3. The values of f(i) such that i 6∈ {1, 2} are chosen
from Mψ′ , that is, for all i /∈ {1, 2} : f(i) = 3. Thus, the valuation Mϑ′ , which
is also a model for ϑ, is Mϑ′ : {x = 0, y = 2, for all k : f(k) = 3}. 2

We now give a simple condition for a formula to be semi-universal.

Definition 3. The universal closure of a formula ψ is obtained by universally
quantifying every free variable in ψ. A formula is universally satisfiable if its
universal closure is satisfiable. 2

Definition 4. A simple semi-universal formula is a conjunction ϕ ∧ ∀i1.ψ1 ∧
. . . ∧ ∀ik.ψk satisfying the syntactic conditions of Definition 2 and the semantic
condition that ψ : ∀i1.ψ1 ∧ . . . ∧ ∀ik.ψk is universally satisfiable.

In a simple semi-universal formula, there exist values of the functions that, to-
gether with any values of the variables, constitute a model for the quantified
part ψ. In particular, the values of the variables can be chosen from a model M
of the unquantified part ϕ, thus, the semantic constraints from Definition 2 are
met. Checking Definition 4 is easier than checking Definition 2. It can be done,
e.g., using theorem proving by providing witness values for the functions.

Example 3. Consider the formula ϑ : f(x + 1) ≤ f(y) + 1︸ ︷︷ ︸
ϕ

∧∀i.(f(i) = i + 1)︸ ︷︷ ︸
ψ

It is a simple semi-universal formula as it satisfies the conditions of Definition 4,
i.e. has functions depth 1, ϕ is quantifier-free, and ψ is shielded; for the semantic
condition, note that ψ coincides with its universal closure and is satisfiable. 2

342 V. Rusu

3 PF-Automata

In this section we define the syntax and semantics of a class of extended automata
with guards and assignments in the semi-universal fragment of pf.

Definition 5. A variable assignment to variable x is an expression of the form
x′ = t, where t is a term of pf. 2

Definition 6. A function assignment to function f is a shielded pf formula of
function of depth 1, which has the form ∀i.(e1(i)⊃ f ′(i) = e2(i)), where e1 is a
quantifier-free formula, e2 is a term, and f ′ does not occur in e1, e2. 2

Definition 7. A pf-automaton is a tuple 〈Q, q0, V, F,Θ, T 〉:
– Q = {1, 2, . . . , |Q|} is a finite set of locations,
– q0 ∈ Q is the initial location,
– V is a finite set of integer variables,
– F is a finite set of unary function symbols,
– Θ is a simple semi-universal pf formula, called the initial condition,
– T is a finite set of transitions. Each transition is a tuple 〈q, γ, ν, φ, q′〉 where

• q ∈ Q is the origin of the transition,
• γ is a quantifier-free pf formula of function depth at most 1, called the

guard of the transition,
• ν is a finite set of variable assignments (cf. Definition 5). For each

variable v ∈ V , there is at most one assignment to v in ν,
• φ is a finite set of function assignments (cf. Definition 6). For each

function f ∈ F , there is at most one assignment to f in φ,
• q′ ∈ Q is a location called the destination of the transition. 2

Note that the initial condition Θ is required to be a simple semi-universal for-
mula. As membership in this class is not decidable, other techniques (e.g., the-
orem proving, cf. end of Section 2.2) may be needed to establish that a given
structure is a pf-automaton. We expect that pf-automata that model real pro-
grams have rather simple initial conditions, whose satisfiability is not hard to
assess.

pf-automata are useful for modeling programs with unbounded data struc-
tures such as files, buffers, and arrays of parametric size. In Definition 7, we
have assumed that the only basic type is integer, but, of course, other ground
types (Booleans, enumerations, records, subranges) can be encoded using inte-
gers. The restriction that there is at most one assignment for each variable and
function application is useful for avoiding semantic complications (i.e., situations
where a function gets two different values simultaneously). It can be dealt with
in practice by introducing new transitions to sequentialize the assignments.

Figure 1 is an example of pf-automaton, which models the sorting algorithm
of a vector g of parametric size m using a bubble-sorting procedure. Initially, the
actual parameters g and m are equal to the formal parameters of the procedure,
f and n. Then, f is sorted and copied back into g at the end of the procedure.

Verifying that Invariants are Context-Inductive 343

j′ = i + 1

4

2 f(i) > f(j)

f ′(j) = aux

f ′(i) = f(j)
aux′ = f(i),

3
f(i) ≤ f(j)

j < n− 1
j′ = j + 1

i′ = i + 1

i = 0 ∧ n = m ∧ n ≥ 2 ∧ ∀k.(0 ≤ k < n ⊃ f(k) = g(k))

∀k.(0 ≤ k < n ⊃ g′(k) = f(k))

1

5

j = n− 1 ∧ i < n− 2

i = n− 2 ∧ j = n− 1

Fig. 1. Example of pf-automaton: Vector Sorting

In Figure 1, expressions such as f ′(i) = f(j) are abbreviations for function
assignments of the form, e.g., ∀k.(k = i ⊃ f ′(k) = f(j)). The meaning of such
an assignment is that the next value of f(i) will be current value of f(j), and
the next value of f(w) for w 6= j will remain equal to its current value. By
convention, variables that do not appear in assignments also remain unchanged.

A simple, yet key invariant for proving the correctness of the sorting pro-
cedure is pc = 4 ⊃ f(i) ≤ f(j), that is, whenever control is at location 4, the
elements f(i) and f(j) have been properly sorted. We show in the next section
how to automatically prove such invariants.

Semantics of pf-automata. A valuation is a mapping that assigns, to each
free variable appearing in the automaton, a value in Z, and to each function
symbol, a function from Z to Z. We denote by V the set of all valuations. A
state is a pair (q, v) consisting of a location q ∈ Q and a valuation v ∈ V.
Note that, for a pf-automaton with at least one function symbol, there is an
uncountably infinite set of states. An initial state is a state of the form (q0, v0)
such that v0 |= Θ, that is, the location is initial and the values of the variables
and functions satisfy the initial condition Θ. The set of states is denoted by S,
and the set of initial states is denoted by S0. Each transition τ ∈ T defines a
transition relation %τ ⊆ S × S, in the following way. Intuitively, s and s′ are in
the relation %τ if the location of s (resp. of s′) is the origin (resp. destination)
of τ , and the variables and functions in s satisfy the guard γ of τ . Moreover,
the variables and functions get new values according to the assignments of τ . A
formal definition of the %τ transition relation can be found in [19].

We denote the global transition relation of the pf-automaton by % =
⋃

τ∈T %τ .
A run is a sequence of states ρ : s0, s1, . . . , sn such that s0 ∈ S0, and for
i = 0, . . . , n− 1, %(si, si+1) holds. A state predicate I is an invariant if it holds
at every state of every run. A predicate I is inductive if it holds at all initial
states and for all states s, s′, I(s) and %(s, s′) imply I(s′). For I and A state

344 V. Rusu

predicates, I is inductive in the context A if I holds initially and for all states
s, s′, I(s) and A(s) and %(s, s′) imply I(s′). Note that an inductive predicate is
an invariant, and ifA is an invariant and I is inductive in the contextA, then I is
also an invariant. The problem of verifying that invariants are context-inductive
is: given a predicate I and an invariant A, is I inductive in the context A.

4 vici: Verifying that Invariants are Context-Inductive

In this section we provide techniques for automatically generating auxiliary in-
variants for pf-automata, and for automatically proving the inductiveness for a
class of predicates in the context of the generated invariants.

For a transition τ and an arbitrary state predicate Ψ , the predicate postτ (Ψ)
characterizes the states s that can be reached by taking transition τ from a
state s satisfying Ψ :

postτ (Ψ) : ∃s .%τ (s , s) ∧ Ψ(s)

This operator is also defined globally: post(Ψ) : ∃s .%(s , s) ∧ Ψ(s) or, equiva-
lently, post(Ψ) :

∨
τ∈T postτ (Ψ). We will need in the sequel the symbolic form

of postτ (Ψ) for τ = 〈q , γ, ν, φ, q〉 a transition of the pf-automaton. Let x de-
note the variables of the pf-automaton. The presence at a given location l can
be encoded, using a new integer variable pc called the control variable, by the
constraint pc = l. Without restricting the generality, we assume the automaton
has only one function symbol f , thus, the function assignments φ of transition τ
consists of one element, of the form ∀i.(e1(i) ⊃ f ′(i) = e2(i)). Then, postτ (Ψ)
can be written as formula (6) with free variables x, pc, and function f :

∃f ∃x .(pc = q ∧ γ(x , f) ∧ x = ν(x , f) ∧ Ψ(x , f) ∧ (6)
∀i .(e1(i, x , f) ⊃ f(i) = e2(i, x , f) ∧ ∀i.(¬e1(i, x , f) ⊃ f(i) = f (i)))

That is, the next control is at location q, and Ψ , γ must hold at the previous
values of the variables x and function f . Moreover, the variables are modified by
the assignments ν, depending on their previous values and that of the function,
and the function is updated at all positions i where e1 holds of i, x , and f .

Note that Formula (6) is not a pf formula, because it quantifies over function
symbols. However, we will be interested in the satisfiability of such formulas, for
which existential quantification does not matter. This same argument was used
in Section 2.2 for showing the decidability of the existential fragment of pf.

4.1 Invariant Generation for pf-automata

Local invariants. Let a local invariant at location q be any predicate I such
that pc = q ⊃ I is an invariant. The local invariant generation techniques are
based on the following observations. First, pc = q is a local invariant at any
location q. Second, let q be a location, {τ1, . . . , τn} be the set of transitions
with destination q, {q1, . . . , qn} be the set of origins of those transitions, and

Verifying that Invariants are Context-Inductive 345

I1, . . . In be local invariants at locations {q1, . . . , qn}, respectively. Then, it is
not hard to show that the predicate pc = q ∧

∨n
i=1 postτi

(Ii) is a local invariant
at location q.

We now describe the general form of invariants obtained using these tech-
niques. For this, note from the symbolic form (6) of post that postτi

(pc = qi)
can be written as pc = q ∧ ∃f ∃x .Γ ′(x , f , x, f), where Γ ′ is a formula only
on variables x , f , x, f in which the only quantifiers are the ones that come
from the function assignments. By instantiating these quantifiers to the terms
to which f and f are applied in the quantifier-free part of Γ ′, just as in the
proof of Lemma 1, we obtain a formula pc = q ∧ ∃f ∃x .Γ (x , f , x, f), where Γ
is quantifier-free.

Thus, starting from the trivial local invariants pc = qi at locations qi, we ob-
tain at location q a local invariant of the form pc = q∧

∨n
i=1 ∃f ∃x .Γi(x , f , x, f)

such that each Γi is quantifier-free. By iterating this process, taking into account
the fact that, modulo a renaming of variables, the existential quantifiers can al-
ways be brought to the outermost level, we obtain that invariant generation
produces local invariants of the form (7), where Γ is quantifier-free:

pc = q ∧ ∃f , f2 , . . . , fk .∃x , x2 , . . . , xk .Γ (f, f , f2 , . . . , fk , x, x , x2 , . . . , xk)
(7)

For example, consider location 3 of the pf-automaton depicted in Fig 1. Starting
from the trivial local invariant pc = 2 at location 2, we obtain, after some
arithmetic and logical simplifications, the local invariant at location 3:

∃f .(f (i) > f (j) ∧ aux = f (i) ∧ f(i) = f (j) ∧ (j 6= i ⊃ f(j) = f (j)))

Now, using the above invariant and again the trivial local invariant pc = 2 at
location 2, we obtain at location 4 after some simplification the local invariant

∃f , f2 , aux .(f(i)≤f(j) ∨ (f2 (i)>f2 (j) ∧ aux = f2 (i) ∧ f (i) = f2 (j) ∧ (8)
(j 6= i ⊃ f (j) = f2 (j)) ∧ (i 6= j ⊃ f(i) = f (i)) ∧ f(j) = aux ∧ aux = aux))

Global invariants. This second technique consists in projecting the pf-automaton
onto its integer variables and applying linear relation analysis [11] to the result-
ing automaton. The technique is global in that it works not just by examining
a location and the incoming transitions (as local invariant generation does), but
by computing an over-approximation of the set of reachable states. However,
linear relation analysis works only on extended automata with scalar types, and
to apply it we first need to project a pf-automaton on its integer variables.

Combining local and global invariants: an example. By applying the global in-
variant generation technique, we obtain at location 4 the invariant i < j. The
latter, in conjunction with (8) implies f(i) ≤ f(j), which is the local invariant at
location 4 that we wanted to prove (cf. Section 3). This is an example of proving
an invariant only by using automatically generated auxiliary invariants. In the
next section, we show how to automate the proofs of such implications, as well
as how to automate the more powerful technique of proving that predicates are
inductive in a given context.

346 V. Rusu

4.2 Solving the vici Problem

The vici problem (cf. end of Section 3) amounts to the following: given a state
predicate I and an invariantA, decide the validity of all formulas pc = q0∧Θ ⊃ I
and postτ (A∧I) ⊃ I, for all transitions τ of the pf-automaton. That is, decide
if I holds initially and if, by knowing A, one can infer that any state reachable
from I by some transition is still in I. If this is the case, then I is clearly an
invariant. Equivalently, solving vici is done by showing that none of the formulas

pc = q0 ∧Θ ∧ ¬I (9)

and, for τ an arbitrary transition of the pf-automaton

postτ (A ∧ I) ∧ ¬I (10)

is satisfiable. We show how to decide satisfiability for such formulas when I is
a semi-universal formula (Definition 2), and A is an invariant obtained by the
techniques described in Section 4.1. The proofs rely on the fact that satisfiability
for semi-universal formulas (Definition 2) is decidable.

Showing that Formula (9) is semi-universal. By the Definition 7 of pf-automata,
the initial condition is simple semi-universal, thus, Θ : Θ0∧∀j1.Θ1∧. . .∧∀jm.Θm,
where Θ0, . . . Θm are quantifier-free, and ∀j1.Θ1 ∧ . . . ∧ ∀jm.Θm is universally
satisfiable. Since I is also a semi-universal formula, I can also be written I :
I0 ∧ ∀i1.I1 ∧ . . . ∧ ∀in.In, where I0, . . . In are quantifier-free.

Then, Formula (9) can be written as pc = q0 ∧Θ0 ∧∀j1.Θ1 ∧ . . .∧∀jm.Θm ∧
¬(I0∧∀i1.I1 ∧ . . .∧∀in.In). By pushing the negation inwards, and propagating
the resulting existential quantifiers to the outermost level, we obtain the equiv-
alent ∃i1 . . . in.(pc = q0 ∧Θ0 ∧∀j1.Θ1 ∧ . . .∧∀jm.Θm ∧ (¬I0 ∨¬I1 ∨ . . .∨¬In)).

For satisfiability, the existential quantifiers do not matter, therefore, we con-
sider the above formula from which the existential quantifiers have been removed,
and prove that it is semi-universal, with the quantifier-free part ϕ : pc =
q0∧Θ0∧(¬I0∨¬I1∨ . . .∨¬In) and quantified part ψ : ∀j1.Θ1∧ . . .∧∀jm.Θm.

For this, we show that if there is a model M for ϕ, then there is also a model
M′ for ψ such that the values of the free variables in M and M′ coincide. But
this is just a consequence of ψ being universally satisfiable: if there exists a model
M of ϕ, we build M′ by taking the values of the free variables from M and the
values of the functions from a model of the universal closure of ψ.

Showing that Formula (10) is semi-universal. Without restricting the generality,
we assume that the pf-automaton has only one function symbol f , and that I
in (10) is of the form I : I0 ∧ ∀i1.I1, that is, the quantified part of I consists
only of one conjunct. Then, using Formulas (6) and (7), Formula (10) becomes

∃f , f2 . . . fk , x , x2 . . . xk .[Γ (f , f2 , . . . , fk , x , x2 , . . . , xk) ∧ pc = q ∧ x =
γ (x , f) ∧ ν(x , f) ∧ I0(x , f) ∧ ∀i1.I1(i1, x , f) ∧
∀ i.(e1(i, x , f) ⊃ f(i) = e2(i, x , f) ∧ (¬e1(i, x , f)
⊃ f(i) = f (i))] ∧ ∃i1.(¬I0(x, f) ∨ ¬I1(i1, x, f)) (11)

Verifying that Invariants are Context-Inductive 347

Existential quantifiers are irrelevant for satisfiability, so we may remove them.
In the resulting formula, the only remaining quantifiers are universal. We show
that this formula is semi-universal. For this, assume that there exists a model
M for the part of (11) outside the scope of universal quantifiers. In particular,
M gives values to the variables x , which we denote by vM(x). Since we have
assumed I is semi-universal, this means that there exists a value for f , denoted
v(f), such that M′ : (vM(x), v(f)) constitutes a model for ∀i1.I1.

Finally, we show how to extend M′ to a model for the universally quan-
tified part of Formula (11). For this, we just have to give a value v(f) to
function f . Clearly, choosing v(f) such that for all i0 ∈ Z, v(f)(i0) is equal
to e2(i/i0, x/vM(x), f /v(f)) if e1(i/i0, x/vM(x), f /v(f)) holds, and v(f)(i0)
equals v(f)(i0) otherwise, will satisfy the whole quantified part of Formula (11).
Here, e.g., e1(i/i0, . . .) denotes replacing i by i0 in e1, etc, and the proof is done.

5 Application: a Sliding Window Protocol

We present an example of deductive verification using pvs and vici. The main
verification effort is performed in pvs, and vici is employed to prove that some
invariants are inductive or context-inductive. The sliding window protocol is a
well-known case study for verification methods, both deductive and algorithmic.
A recent paper with complete references is [23].

The Sliding Window Protocol. The architecture of the protocol is repre-
sented in Figure 2. There are two entities, Sender and Receiver, communicating
through unreliable channels that may lose data. The sender obtains data from a
fifo stream of data called the Source. Each data element is first saved into the
sender’s window, a fifo buffer called sndWindow. Then, the sender takes each
data element from its window, associates an index to it (a natural number that
keeps track of the order in which data has been obtained from the source), and
sends the resulting record called a Message to the Message Channel MsgChan.
The latter is a lossy fifo, which may lose, but not reorder or create messages.

On the receiver side, messages are removed from MsgChan and, if a message’s
index is within the bounds of the receiver’s window rcvWindow, it is stored there,
otherwise, it is discarded. The receiver delivers contiguous sequences of messages
to the external data Target, and acknowledges the highest-indexed message that
it has delivered, by sending that index to the acknowledgment channel AckChan,
which is also a lossy fifo queue. Finally, the sender reads acknowledgments from
AckChan and, depending on what it has read, it retransmits part of its window
and removes acknowledged data, leaving space for data from the data source.

Specifying the protocol in pvs. The protocol is specified as an extended au-
tomaton encoded in a pvs theory (cf. [20] for details). The state of the automaton
is encoded as a pvs record type, with fields for all state variables for the sender,
receiver, and channels. All the channels source, target, ackChan msgChan and

348 V. Rusu

targetsndWindow RcvWindow

msgChan

ackChan

ReceiverSender

source

Fig. 2. Architecture of the Sliding Window Protocol

windows sndWindow, rcvWindow are modeled as uninterpreted functions. The
whole protocol is translated into a pf-automaton in a straightforward manner.

Verifying properties, and how vici increases automation. The main
safety property required from the protocol is that the sequence of data delivered
to the data target is a prefix of the sequence obtained from the data source.

main_safety_property: THEOREM invariant(LAMBDA (s: State):

FORALL (i: nat): (i < s‘rcvLow IMPLIES s‘target(i) = s‘source(i)))

The verification consists in strengthening the main safety property in order to
obtain an inductive invariant. This requires a number of auxiliary invariants to
be proved. For example, the following lemmas describe such auxiliary invariants:
they say essentially that the data source and the sender’s window (including all
past content) are identical up to some indexes, and the indexes are also equal:

source_equals_send : LEMMA invariant(LAMBDA (s: State) :

FORALL (i : nat) : i < s‘sndWinIndex IMPLIES s‘source(i) = s‘sndWindow(i))

source_equals_send_1: LEMMA invariant(LAMBDA(s: State):

s‘sndWinIndex=s‘sourceIndex)

With vici the second lemma is generated automatically and the first lemma
is automatically proved (i.e., the first predicate is inductive in the context of
the second one). By contrast, using pvs amounts to performing two invariant-
strengthening steps, i.e., running a proof strategy, failing, examining the results,
then running the strategy again. This requires some amount of user intervention.

Of a total of eleven invariants needed for proving the main safety property,
three are inductive and are generated automatically using our techniques, and
two are inductive in the context of the former. We have also verified a liveness
property of the protocol, which required proving three auxiliary invariants, two
of which are inductive. Thus, half of all auxiliary invariants were proved auto-
matically using vici, the remaining ones were proved interactively using pvs.

6 Conclusion, Related Work, and Future Work

We have present an approach called vici to enhance the automation of deductive
verification for a class of systems called pf-automata. The latter are extended
automata with guards and assignments in a decidable fragment of the theory
of Presburger arithmetic with uninterpreted function symbols, allowing, with

Verifying that Invariants are Context-Inductive 349

some restrictions, existential and universal quantifiers. The approach consists in
automatically generating auxiliary invariants, and automatically verifying that
candidate invariants are inductive in the context of the auxiliary invariants gen-
erated. The candidate invariants are also expressed in the same fragment of
the theory of Presburger arithmetic with uninterpreted function symbols. The
approach can be employed to verify programs that operate on arrays, or com-
munication protocols with unbounded channels that carry unbounded values.
Two simple examples, a bubble-sort algorithm and a sliding window protocol,
are used to demonstrate the potential usefulness of the vici approach.

Related Work. The integration of automatic, algorithmic methods into de-
ductive techniques has received quite a lot of attention recently. Invariant gener-
ation [3, 2], abstraction [1, 8] and ways to combine them within theorem proving
have been proposed [12, 21, 18]. A class of automata with uninterpreted func-
tion symbols is studied in [5], where simulation between automata in the class
is shown decidable. The only results we are aware of about automata extended
with Presburger arithmetic and function symbols are reported in [13]. Here, the
Omega tool is used to analyze graphs whose edges are annotated by quantifier-
free formulas in the logic, to compute, e.g., a superset of the reachable states.

Future Work. The main ongoing work is implementing vici and applying it
to case studies. The implementation is based on the ics tool [6] from the pvs
group at SRI International’s Computer Science Laboratory, an efficient decision
procedure for (among other theories) the quantifier-free fragment of Presburger
arithmetic with uninterpreted functions.

The vici toolset is represented in Figure 3. (Currently, only the core of vici is
implemented, cf. Fig. 3.) Dashed lines represent modules that we are implement-
ing, as opposed to solid lines, which representing existing software. The toolset
consists of translators between pvs and ics formats of the specification under
proof and of the properties, a symbolic simulator, and an invariant generator.
The symbolic simulator described in more detail in [19] can be used to debug the
specification and to verify safety properties (it is a semi-decision procedure that
may invalidate safety properties, but cannot prove them). Once this debugging
is done, most of the verification effort happens at the pvs level, where the user
performs invariant strengthening, which may further modify (debug) the specifi-
cation and generates new candidate invariants. The core of vici implements the
techniques described in Section 4.2. The user may call it on candidate invariants
to check their inductiveness. However, the invariants not in the scope of vici still
have to be proved interactively in pvs. More case studies are needed to assess
the usefulness of vici for automating deductive verification.

Acknowledgment. Duncan Clarke and Elena Zinovieva are implementing vici.

350 V. Rusu

(PVS)(PVS)
Properties

PVS

ICS

Specification
(ICS) (ICS)

Properties

Specification

Symbolic

Simulation

Invariant
Generation

False

True

VICI
core

Fig. 3. The vici toolset.

References

1. S. Bensalem, Y. Lakhnech, and S. Owre. Constructing abstractions of
infinite state systems compositionally and automatically. In Conference
on Computer-Aided Verification, LNCS 1427, 1998.

2. S. Bensalem and Y. Lakhnech. Automatic generation of invariants. Formal
Methods in System Design, 15(1):75–92, 1999.

3. N. Bjorner, Anca. Browne and Z. Manna. Automatic generation of in-
variants and intermediate assertions. Theoretical Computer Science,
173(1):49-87, 1997.

4. C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, C. Paulin-
Mohring, C. Muñoz, C. Murthy, C. Parent, A. Säıbi, and B. Werner. The
Coq Proof Assistant Reference Manual Version 6.1. Technical Report RT-
0203, INRIA, July 1997.

5. W. Damm, A. Pnueli and S. Ruah. Herbrand automata for hardware
verification. Conference on Concurrency Theory, LNCS 1466, 1998.

6. J.-C. Filliâtre, S. Owre, H. Rueß. and N .Shankar. ICS: Integrated
Canonizer and Solver, To be presented at Computer-aided Verification
(CAV’2001).

Verifying that Invariants are Context-Inductive 351

7. S. Graf and H. Saidi. Verifying invariants using theorem proving. In
Conference on Computer-Aided Verification, LNCS 1102, 1996.

8. S. Graf and H. Saidi. Construction of abstract state graphs with pvs. In
Conference on Computer-Aided Verification, LNCS 1254, 1997.

9. M. Gordon and T.F. Melham. Introduction to the HOL system. Cambridge
University press, 1994.

10. J. Halpern. Presburger arithmetic with uninterpreted function symbols is
Π1

1 -complete. Journal of Symbolic Logic, 56:637–642, 1991.
11. N. Halbwachs, Y.E. Proy, and P. Roumanoff. Verification of real-time

systems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, 1997.

12. K. Havelund and N. Shankar. Experiments in theorem proving and model
checking for protocol verification. In Formal Methods Europe, LNCS 1051,
1996.

13. W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpiesman, and
D. Wonnacott. The Omega library interface guide. Available at
www.cs.umd.edu/projects/omega.

14. Z. Manna and A. Pnueli. Tools and rules for the practicing verifier. In
CMU Computer Science: A 25th Anniversary Commemorative ACM Press
and Addison-Wesley, 1991

15. Z. Manna and A. Pnueli. Temporal verification of reactive systems. Vol. 1:
Specification, Vol. 2: Safety. Springer-Verlag, 1991 and 1995.

16. Z. Manna and the STeP group. STeP: deductive-algorithmic verification
of reactive and real-time systems. In Computer-Aided Verification, LNCS
1102, 1996.

17. S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification
for fault-tolerant architectures: Prolegomena to the design of pvs. IEEE
Transactions on Software Engineering, 21(2):107-125, 1995.

18. V. Rusu and E. Singerman. On proving safety properties by integrating
static analysis, theorem proving and abstraction. In Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1579, 1999

19. V. Rusu and E. Zinovieva. Analyzing automata with Presburger arith-
metic and uninterpreted function symbols. In ICALP’01 Workshop: Ver-
ification of Parameterized Systems (VEPAS’01), to appear in Electronic
Notes in Theoretical Computer Science 50(4), 2001. Currently available at
http://www.irisa.fr/pampa/perso/rusu/vepas.

20. V. Rusu. Verifying a sliding window protocol using pvs. To appear in
Formal Techniques for Newtworked and Distributed Systems (FORTE’01),
currently available at http://www.irisa.fr/pampa/perso/rusu/forte.

21. H. Säıdi and N. Shankar. Abstract and model check while you prove. In
Conference on Computer-Aided Verification, LNCS 1633, 1999.

22. R. Shostak. A practical decision procedure for arithmetic with uninter-
preted function symbols. Journal of the ACM, 26(2):351–360, 1979.

23. M. Smith and N. Klarlund. Verification of a sliding window protocol using
IOA and MONA. In Formal Description Techniques & Protocol Specifica-
tion, Testing and Verification, Kluwer Academic Publishing, 2000.

