
Proof for Optimization:
Programming Logic Support for Java JIT Compilers

Claire L. Quigley

Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow, G12 8RZ, Scotland.

claire@dcs.gla.ac.uk

Abstract: One of Java’s weakest areas is its low execution speed in comparison to
compiled languages like C. The mobile nature of bytecode adds to the problem, as many
checks are necessary to ensure that downloaded code from untrusted sources is rendered
as safe as possible. The use of the Bytecode Verifier and JIT compilers can improve
the performance of Java code, but both offer limited possibilities for optimization. We
propose one approach to this problem, namely proving properties of bytecode programs
that allow extra optimizations to be made, or facilitate existing optimizations. This paper
describes the progress made so far in developing a Bytecode Programming Logic for
this purpose.

1 Introduction

One significant disadvantage of interpreted bytecode languages, such as Java, is their
low execution speed in comparison to compiled languages like C. The mobile nature of
bytecode adds to the problem, as many checks are necessary to ensure that downloaded
code from untrusted sources is rendered as safe as possible. Despite these drawbacks,
there do exist ways of reducing the negative aspects of such systems.

One approach is to carry out static type checking at load time, as in the case of the Java
Bytecode Verifier. This reduces the number of runtime checks that must be done and
also allows certain instructions to be replaced byquick instructions, which are imple-
mented more efficiently. Another approach is the use of a Just In Time (JIT) Compiler
that takes the bytecode and produces corresponding native code at runtime.

The JIT may produce a straightforward translation of bytecode to native code, or it
may apply a range of optimizing transformations, from simply inlining the code (re-
moving the overhead of the interpreter implementation) in basic JITs to more com-
plex techniques like copy propagation, assertion merging, live variable analysis, dead
code elimination, strength reduction, common subexpression elimination, and loop un-
rolling [5,6].

There are, however, limits to the amount of optimization that can safely be done by the
Verifier and JITs; some operations simply cannot be carried out safely without a certain
amount of runtime checking. But what if it were possible to prove that the conditions
the runtime checks guard against would never arise in a particular piece of code? In

314 C. L. Quigley

this case it might well be possible to dispense with these checks altogether, allowing
optimizations not feasible at present. In addition to this, because of time constraints,
current JIT compilers tend to produce acceptable code as quickly as possible, rather
than producing the best code possible. By removing the burden of analysis from them
it may be possible to change this.

The Annotated JIT project [11], which is described in more detail in Section 2.2, at-
tempts to combat these difficulties by developing anannotating compiler. In addition
to producing bytecode from Java source code, this compiler annotates the resulting
class file with information obtained during analysis of the code. The annotations can be
used by an annotation-aware JIT compiler (AJIT) to produce faster native code—and to
produce it more quickly—than would be possible for a standard JIT compiler.

But this raises the question. If the AJIT is capable of increasing the performance of JIT
compilers so effectively, why is it necessary to approach the problem from a formal
point of view? The answer lies in the concept oftrust . A user receiving annotated class
files must simply trust that the producer has not annotated the file in such a way that
the AJIT will generate unsafe code. Such a situation may occur as the result of errors in
the optimising compiler leading to incorrect annotations, or as a result of a deliberate
attack on the integrity of the user’s system.

A formal proof of the correctness the annotations applying to a particular program ob-
viously eliminates the first problem and may also help to avoid the second perhaps by
utilising a method along the lines of Proof Carrying Code [13]. Users could be reassured
that the annotations attached to a class file have been formally verified to preserve cer-
tain properties—note that this does not mean that the program has been proved to be
correct, only that it does or does not do certain things. This ‘lightweight’ approach to
program verification is the basis of the Java Extended Static Checking project [8]. In
addition to this, users could be supplied with some representation of the proof which
they could themselves check, or perhaps (with time constraints in mind) the program
could be digitally signed.

Keeping in mind the aim of making Java programs run faster, we are developing a pro-
gramming logic for bytecode programs which will allow properties of bytecode pro-
grams pertaining to the optimisations mentioned above to be formally verified. Based
on an inductive definition of an execution relation for sequences of bytecode, it will
include rules for common patterns of bytecode instructions.

Section 2 of this paper gives a brief summary of the work on which our programming
logic is based; Sections 3–6 describe the development of the logic in some detail and
outlines the current state of the work; and Section 7 is concerned with other possible
applications for the logic.

2 Related Work

Two pieces of work have provided a basis for our own research: Cornelia Pusch’s for-
malisation of the JVM in Isabelle/HOL [15], and the Annotated JIT project [11].

Proof for Optimization: Programming Logic Support for Java JIT Compilers 315

2.1 An Operational Semantics for Java

In her paperFormalizing the Java Virtual Machine in Isabelle/HOL[15], Cornelia
Pusch describes her formalisation of the JVM in the theorem prover Isabelle (using
the HOL object logic) [14]. The author’s aim is to provide a formal version of the Java
Virtual Machine (JVM) Specification [12] which is not prey to the ambiguities and in-
consistencies which tend to creep into informal specifications (and indeed do in the
case of the JVM Specification). As this is a not inconsiderable undertaking, the theo-
rem prover Isabelle is used to ensure a degree of reliability not likely to be achieved in
a proof ‘by hand’. Although a large subset of the Java language is formalised, there are
areas which are not treated in this preliminary implementation; these include exception
handling and dynamic class loading.

The paper outlines the formalisation of both static aspects of Java programs, such as
well-formedness of class files, and relations between classes; and properties of the Java
run-time system including object initialisation and the JVM heap. The author also de-
scribes an operational semantics for the subset of the JVM instruction set considered
so far. This work is part of theBali project [3] which is concerned with formalization
of various aspects of the Java language in Isabelle/HOL. It makes an important contri-
bution to the new VerifiCard project [4] coordinated by the LOOP Project [2] which
is also involved in the formalization of Java. VerifiCard aims to formalize aspects of
JavaCard [1], a subset of the Java language used on smartcards, and will include proofs
of properties at the bytecode level.

My own work uses Pusch’s formalisation of the JVM as a platform on which to build
a programming logic for bytecode programs. This, along with certain extensions to the
instruction set covered by Pusch, is described in detail in Section 3 of this report.

2.2 Annotating the Java Bytecodes in Support of Optimization

In [11] the authors begin by observing that while Java provides a portable, platform-
independent stack machine, it does so at the expense of execution speed, as stack ma-
chines do not map well onto today’s CPUs, which rely heavily on the use of register
and caches for speed. In addition to having no concept of registers, Java bytecodes are
also unable to express optimizations like instruction scheduling, elimination of runtime
checks, strength reduction, and automatic reclamation of memory.

With the goal of achieving C-like performance while retaining bytecode’s portability
and preserving compatibility with existing JVMs, the authors have developed ananno-
tating compiler. This behaves initially like a traditional optimizing compiler, analysing
the code and performing optimizations before emitting bytecode. But rather than dis-
carding the information produced by the analysis, as would normally be the case, the
compiler attaches the relevant information to each emitted bytecode in the form of an
annotation.

The annotations contain information on register allocation, memory disambiguation,
memory reclamation, and run-time checking that would normally have to be recom-
puted by the JVM—and in some instances might not be possible to recompute from

316 C. L. Quigley

the bytecode as too much information may have been lost. Annotations are stored sep-
arately from the bytecode in a classfile in order not to interfere with the running of the
program on standard JVMs. A JVM with an annotation aware JIT compiler, however,
can use the annotations to produce code that is closer to optimal more quickly.

3 A Programming Logic for Bytecode

In order to prove properties of bytecode programs, it was necessary to develop a logical
framework that would support this. It was decided to build a programming logic, similar
to that developed by C.A.R. Hoare for reasoning about properties written in a simple
imperative language [10], but for bytecode programs.

The Hoare logic is based on the relation

{P} C {Q} ≡ ∀ σ σ′. ((P (σ) ∧ σ, C → σ′) ⊃ Q(σ′))

whereP andQ are pre and post conditions respectively,σ andσ′ are states andC is a
command in the language. The equation above states that if a predicateP holds in state
σ and the commandC is executed inσ, and execution terminates, the resultant state
will be σ′ in which the predicateQ will hold. This relation, in which termination is not
guaranteed, is known aspartial correctness; a similar relation in which termination is
guaranteed is calledtotal correctness.

The decision to prove properties of the bytecode programs themselves, rather than the
corresponding Java source was made based on two main factors:

– Java programs are downloaded by consumers as bytecode, not source
– It is perfectly feasible (albeit not common in practice) to produce Java bytecode

from another high level language, e.g. C, ML.

But this introduced several new problems, the fact that bytecode is ‘flat’ and contains
goto instructions presented difficulties not encountered in the standard logic which
dealt with a structured programming language.

The Hoare logic has three main components, however, which it seemed could be applied
to bytecode programs, namely:

– Definition of the evaluation of a section of code in the language (based on the
operational semantics)

– Definition of a pre- and post-condition relation on execution of code.
– Higher level rules for combining patterns of code

The development of a bytecode programming logic based on these components is de-
scribed in the rest of this chapter.

Proof for Optimization: Programming Logic Support for Java JIT Compilers 317

4 Extending the Semantics

As Pusch’s work formalised a subset of the JVM, certain instructions are omitted, in-
cluding all arithmetic instructions, such asiadd , isub , etc. In order to prove proper-
ties of real programs, however trivial, it was necessary to extend the model to include
this class of instructions.

Initially, the instructions:iadd add the two integers at the top of the stack, andiinc
var val increment local variablevar by integer valueval were added to the existing
Load and Store instructions of the model.

Problems were also encountered with the representation of branching instructions. In
Java bytecode these are absolute jumps to a label, and in Pusch’s model are represented
by relative branches, where the new value of the program counter is obtained by adding
an offset to the current value. This offset is positive for a branch forward, negative for a
branch backwards.

While this convention appears to have been eminently suitable for Pusch’s higher-level
proofs, we experienced several difficulties while using it to reason about lower-level
properties. In particular, problems arose with proofs involving branches backwards
where a negative integer was added to the program counter (a natural number cast to
an integer) and the result was then cast to a natural. All this type-casting rendered the
proofs in Isabelle very awkward and it was decided to abandon the representation of a
backwards branch with a negative offset.

In place of the two varieties of branching instructions in Pusch’s model
—conditional_branch andunconditional_branch —there are now four
branching instructions:conditional_branch_fwd ,
conditional_branch_bwd , unconditional_branch_fwd ,
and unconditional_branch_bwd , all of which take a natural number as off-
set, which is either added or subtracted to the current program counter depending on
whether the branch is forwards or backwards. This keeps all branching proofs in the
realm of natural number arithmetic and simplifies matters considerably.

4.1 Execution of a Sequence of Bytecode

One point that needed to be clarified was the actual meaning of{P} xs {Q} in the
context of a bytecode program. In the standard Hoare logic, execution begins at the
start of the sequence of commands,xs, and finishes at the end (assuming the program
terminates). But with bytecode there is the possibility of jumpinginto the code at some
point after the start ofxs andout at a point before the end ofxs.

The first thing to consider was the very basic question of how to define execution of a
sequence of bytecode instructions. A straightforward recursive definition of the form

exec∗ [] σ = σ
exec∗ (x :: xs) σ = exec∗ xs (exec x σ)

318 C. L. Quigley

was not feasible, as the execution ofxs would not necessarily be linear—execution
might well jump back to the beginning ofxs after a few instructions. Pusch’s formal-
isation recognises this by defining execution of several bytecode instructions as the
reflexive transitive closure of a series of single execution steps

exec all :: [bytecode, jvm state, jvm state] −→ bool
CFS ` s− jvm → t ≡ (s, t) : {(s, t). exec (CFS, s) = Some t}∗
But this only tells us whether a pair of states is in the set of pairs of states defined by
this relationship. To enable us to define a partial correctness relation we need to know
that, for a sequence of bytecode instructions, if we start executing in stateσ we will
finish execution in stateσ′. This brought us back to the very important question: how
do we define ‘finishing’ execution of a sequence of bytecode instructions?

One way to do this is to state that execution of a sequence of instructions has finished
when the program counter is no longer pointing into the sequence. This led to an
inductive definition of a relation describing the execution of a list of bytecode instruc-
tions, identified within a classfile by astart position and afinish position. If execution
began in stateσ, it would result in stateσ′, where the program counter ofσ′ was outside
the section delimited bystart andfinish .

Once this definition of execution, symbolised by−→, was in place, it was possible to
base the Hoare-like relation{P} xs {Q} on it. This provided a more solid base from
which rules such as that for loops could be proved. The two definitions are described in
more detail below.

5 The execblock (−→) Relation

– CFS is a set of Classfiles
– s andf are triples of the form(classname, method locator, program counter)each

allowing identification of a single instruction inCFS.
– σ andσ′ are states, each consisting of(exception option, heap, frame stack list).

The relation< CFS, σ >
s−→
f

σ′ is True if executing the sequence of instructions in

CFS that begins at the instruction indentified bys and ends at the instruction identified
by f , in the stateσ, results in the stateσ′, where the instruction identified byσ′ is
not contained the sequence of instructions inCFS bounded bys andf . Also pc(s) ≤
pc(f), pc(s) ≤ pc(σ), ands andf should identify instructions in the same method of
the same class. The relation is described by the rules:

exec(CFS,σ) = σ′;

pc(s) ≤ pc(σ) ≤ pc(f);

same method s σ σ′ f ;

pc(f) < length(method CFS s);

pc(σ′) < pc(s) ∨ pc(f) < pc(σ′)

< CFS, σ >
s−→
f

σ′
(1)

Proof for Optimization: Programming Logic Support for Java JIT Compilers 319

exec(CFS,σ) = σ′′;

pc(s) ≤ pc(σ) ≤ pc(f);

same method s σ σ′′ f ;

pc(f) < length(method CFS s);

< CFS, σ′′ >
s−→
f

σ′

< CFS, σ >
s−→
f

σ′ (2)

with (1) referring to the case in which one step of execution results in the program
counter being outside the sequence of instructions under consideration; (2) the case
where, after one step of execution, the program counter is still within the block of code
delimited bys andf .

Derived Theorems for−→ Working with these rules, several properties were proved
for the−→ relation.

Theorem 1 Given a block in the relation and the position of the program counter on
exit pc(σ′), it is possible to extend the relation to include all instructions in the method
on the opposite side of the block frompc(σ′), and all instructions up to it on the same
side.

< CFS, σ >
s−→
f

σ′;

y < pc(σ′); x < s; f < y;

y < length(method CFS s)

< CFS, σ >
x−→
y

σ′
(3)

s f

σ ’

x y

Theorem 2Add two blocks with gap in middle, extend on both sides.

< CFS, σ >
s−→
f

σ′′;

< CFS, σ′′ >
s′−→
f ′ σ′;

f < s′; y < pc(σ′);

x < s; f ′ < y;

y < length(method CFS s)

< CFS, σ >
x−→
y

σ′
(4)

s f s’ f’

’’σ
σ ’

x y

320 C. L. Quigley

Theorem 3Add two blocks with overlap, extend on both sides.

< CFS, σ′′ >
s−→
f

σ′;

< CFS, σ >
s′−→
f ′ σ′′;

s <= s′; f <= f ′;

y < pc(σ′); x < s; f ′ < y;

y < length(method CFS s)

< CFS, σ >
x−→
y

σ′
(5)

s f f’

σ ’

x y

σ ’’

s’

Theorem 4 A block of size one is equivalent to execution of that instruction, provid-
ing the instruction is not a “degenerate” branch (one which branches back to itself, or
branches outside the bounds of the method), or an instruction which results in a frame
being pushed or popped from the stack, i.e. method invocation or return. The later con-
straint is due to the current, simplified, definition ofexec_block which demands that
the initial and final states be in the same method.

The predicate on branching instructions is due to the fact that it would be possible to
create a bytecode program (though probably not via a conventional compiler), which
pushed the valueNull onto the stack, followed by some other values, then had a
branch if not null instruction which looped back to itself. Initially the top value on
the stack would not beNull , but every time the branch instruction was evaluated, the
top value on the stack would be popped, leading eventually to a state where the top
valuewasNull and the loop was exited. This would mean that this instruction was in
theexec_block relation, but that this instance of the relation wasnot equivalent to a
single-step execution of the initial state.

get instr(CFS, s) = x;

not degenerate branch x;

not shift frame x;

pc(s) < length (method CFS s)

< CFS, σ >
(s)−→
s

σ′ ≡ exec(CFS,σ) = σ′
(6)

6 A Pre- and Post-Condition Relation for Execution of Bytecode

6.1 The triple ({}) Relation

The Relation{P} xs {Q} is True if, for all classfilesCFS containing the instruction
sequencexs bounded by the instructions identified bys andf , if the conditionP holds

Proof for Optimization: Programming Logic Support for Java JIT Compilers 321

in stateσ and< CFS, σ >
s−→
f

σ′ then conditionQ holds in stateσ′. Also, the program

counter in stateσ must point at the first instruction ofxs (pc(σ) = pc(s)) or at a target
instruction withinxs; the program counter in stateσ′ must point at the instruction in
the method code immediately followingxs (pc(σ′) = pc(f) + 1) or at a target instruction
in the method (but outsidexs).

p [] q ≡ ∀ CFS σ σ′. p(σ) −→ q(σ′) (7)

{p}x : xs{q} = ∀ CFS σ σ′ s f,

(< CFS, σ >
s−→
f

σ′ ∧ fromto s f = x : xs ∧
(pc(σ) = pc(s) ∨ targ) ∧ (pc(σ′) = pc(f + 1) ∨ targ) ∧
p(σ))
−→ q(σ′)

(8)

6.2 Lemmas for{} Relation

The following lemmas for precondition strengthening (9) and postcondition weakening
(10) have been proved for thetriple relation.

∀σ.P σ ⊃ Q σ;

{R} xs {Q}
{P} xs {Q} (9)

∀σ.R σ ⊃ Q σ;

{P} xs {R}
{P} xs {Q} (10)

6.3 High Level Rules

Imposing Structure—a Rule for Loops in Bytecode The next stage in developing
our Programming Logic, was to develop rules for bytecode patterns corresponding to
higher level structures like loops and conditional branches.

public class SimpleWhile {
public static void main(String args[])

{
int i=0;
while (i<5)

{ i++; }
}

}

322 C. L. Quigley

corresponding to the bytecode

Method void main(java.lang.String[])
0 iconst_0
1 istore_1
2 goto 8
5 iinc 1 1
8 iload_1
9 iconst_5

10 if_icmplt 5
13 return

From examining the bytecode of the example program above and other programs con-
taining for andwhile loops, it appeared that there were two equivalent forms that
such structures took which seemed to be dependent on the compiler used to produce the
bytecode.

Unconditional
Branch

Conditional
Branch

xs

ys

ys

Conditional
Branch

xs

Unconditional

Branch

wherexs represents the body of the loop. Having determined this, the next step was
to formulate a rule for such bytecode sequences. We decided to begin by considering
loops with the structure shown on the left in the diagram above.

The while rule in the standard Hoare logic is

{P ∧ S} C {P}
{P} while S do C {P∧ ∼ S} (11)

WhereP is an invariant of the loop andS is the loop guard. In a similar rule for the
bytecode representation of a while loop it seemed obvious thatxs in the diagram above
would correspond toC (the body of the loop), and that the invariantP did not depend
on the language we were dealing with. This left the question of what constitutedS, the
loop guard, in the bytecode.

The loop guard is not explicit in the bytecode—as it is in the higher level language. If we
consider what role the loop guard plays in the imperative language, however, it becomes

Proof for Optimization: Programming Logic Support for Java JIT Compilers 323

clearer. In the imperative language, evaluation of the loop guard determines whether or
not the body of the loop is executed this time round; in the bytecode evaluation of the
conditional branch determines whether or not the body of the loop is executed this time
round. So this must mean thatS is the condition tested by the conditional branch and
our proposed rule looks something like this

{P ∧ (CBB cond)} xs {P}
{P} [(UBF |xs| + 1)]@[xs]@[ys]@[(CBB |xs@ys|)] {P ∧ ∼ (CBB cond)} (12)

But this is not quite accurate. The conditional branch instructions test certain properties
of the value or values at the top of the stack, e.g. ‘Jump if the value at top of the stack
is equal to Null’, or ‘Jump if the value at the top of the stack is not equal to zero’. A
side effect of the comparision is to pop the values involved in this comparision off the
stack, with the result that any predicate involving the top of the stack is only correct
immediately before execution of the branch instruction. So a rule stating that the
condition holds anywhere other than just before the branch is executed—including just
before execution ofxs , the loop body, as in our proposed rule—is incorrect.

The solution to this particular problem is to ‘wind back’ the conditional being tested un-
til we have a condition in terms of actual variables and values rather than items on the
stack. We are, in effect, reconstructing the original guard condition present in the Java
source code which is concealed in the bytecode instructions. If we look at the bytecode
for the loop we can see that the sequence of instructionsys is executed prior to the
conditional branch every time through the loop. These instructions ‘set up’ the stack so
that the correct values are there ready for the comparison. By taking theweakest pre-
condition of these instructions and the condition of the branch we are able to determine
the actual guardS.

In the case of our example program, the relevant instructions are

16 iload_1
17 iconst_5
18 if_icmplt 5

The condition is ‘is the second value on the stack less than the value at the top?’, i.e.
hd (tl stk) < hd stk and we want to determine the weakest precondition of this with
respect to the instructions

iload_1
iconst_5

which, when calculated using the hoisting technique and simplified, islv1 < 5. As the
value ofi is stored in local variable 1 (as can be seen from the initialisation instructions
at the start of the program

0 iconst_0
1 istore_1

324 C. L. Quigley

the weakest precondition is thereforei < 5 , the loop guard of the original Java pro-
gram, and our rule is now

{P ∧ wp(ys, CBB cond)} xs {P}
{P} [(UBF |xs|+ 1)]@[xs]@[ys]@[(CBB |xs@ys|)] {P∧ ∼ (wp(ys,CBB cond))}

(13)

6.4 Towards a Proof of the Soundness of the Loop Rule

Having proposed this rule for looping patterns of bytecode, we are currently working
on a proof of its soundness. The standard Hoare logic while rule for a simple impera-
tive programming language (14) states that ifP is an invariant for one execution ofC
wheneverB holds then it is also an invariant for the execution of the statementwhile
B C, and thatB will be false on termination of the loop.

{P ∧ S} C {P}
{P} while S do C {P∧ ∼ S} (14)

Proofs of its soundness can be found in [7] and [17], and they can be broken down into
proofs of each of the two properties described above. In [7] these are represented by the
following lemmas:

∀ C s1 s2. EV AL C s1 s2 ⊃ (∀ B′ C′. (C = while B′ C′) ⊃ ∼ (B′ s2)) (15)

∀ C s1 s2.

EV AL C s1 s2 ⊃
(∀ B′ C′. (C = while B′ C′) ⊃
(∀ s1 s2. P s1 ∧ B′ s1 ∧ EV AL C′ s1 s2 ⊃ P s2) ⊃
(P s1 ⊃ P s2))

(16)

For the Bytecode Programming Logic, equivalent lemmas might be defined as:

∀ σ σ′ CFS s f. < CFS, σ >
s−→
f

σ′ ∧
(fromto s f CFS =
[(UBF |xs|+ 1)]@[xs]@[ys]@[(CBB|xs@ys|)] ⊃
∼ ((wp(ys, CBB cond)) σ′)

(17)

Proof for Optimization: Programming Logic Support for Java JIT Compilers 325

∀ σ σ′ CFS s f. < CFS, σ >
s−→
f

σ′ ∧
fromto s f CFS =
[(UBF |xs|+ 1)]@[xs]@[ys]@[(CBB|xs@ys|)] ⊃
(∀ σ σ′ CFS s f. < CFS, σ >

s−→
f

σ′ ∧
(fromto s f CFS = [xs] ∧
P σ ∧ ((wp(ys, CBB cond)) σ) ⊃ P σ′)) ⊃
(P σ ⊃ P σ′)

(18)

One major difference between the execution of a while loop in the imperative language
and a loop sequence in the bytecode is the effect of executing the “structure” of the loop.
In the imperative language, the rules for execution state that executing a while statement
in an initial state in which the loop guard is false results in an unchanged state . In the
bytecode, execution of a loop sequence in which the guard is false in the initial state
results in a different state, as evaluating the sequences which constitute the “structure”
of the loop means the value of the program counter will have changed. Similarly, with
the situation where the body of the loopis executed, if a while statement is executed in
stateσ in which the loop guard is true, we can talk of executing the body of the loop in
the same state—evaluation of the loop guard does not affect the state. Again, this is not
the case in the bytecode sequence.

This seemed likely to add greatly to the complexity of a proof of the bytecode rule.
But closer inspection of the effect of executing the “structure” of a bytecode loop se-
quence, i.e. the instructionsUBF , ys, andCBB, revealed that the only element of the
state affected (assuming the instructions concerned satisfied certain constraints) was
the program counter. This led us to the idea ofmeta-equality of states: states which
are the same apart from the value of the program counter. As the branch condition does
not mention the program counter, and assuming that the loop invariant does not either,
meta-equal states in the bytecode execution can take the place of equal states in the
imperative execution. This definition reduces the differences between the two sets of
lemmas and hopefully will simplify the proof.

At present we do not have a proof of the bytecode loop rule, but are considering various
proof strategies including structural induction onxs, the body of the loop.

7 Applications

Once our definition of the Bytecode Programming Logic is complete, we hope to use it
in a number of areas affecting JIT compilers.

Array Bounds Checking In some JVM implementations the number of native code
instructions for theaload instruction (load a value from an array onto the stack) [9]

326 C. L. Quigley

could be halved by the removal of array bounds checking instructions. If it could be
proved prior to loading that runtime checks on the array bounds were unnecessary, it
would enable standardaload instructions to be replaced by fasteraload_quick
instructions—currently not available in any JVM implementation, but obviously ad-
vantageous. This tied in with the AJIT project, which also addressed the problem of
array bounds checking. We aim to use the Bytecode Programmin Logic to prove that,
just prior to an array access in a small Java bytecode program, the array reference is
non-null and the array index is inside the bounds of the array.

Exception handling One other possible optimization involves proving that a method
never calls a particular exception, thereby allowing elimination of the code required to
handle the exception. Exception handler code accounts for a not insignificant percentage
of the code of a method and it is most likely that work will focus on user-defined and
thrown exceptions, although several of the standard Java exceptions should be amenable
to this treatment (in particular, those concerned with array bounds checking should be
largely dealt with by the work of the previous section).

Virtual Registers One feature of Java which contributes substantially to its inefficiency
is the stack-based model. This does not map directly onto any of the CPUs currently in
use, all of which rely on the use of registers, caches and various instruction scheduling
algorithms to achieve high performance. Much of the JVM’s execution time is wasted
on moving values on and off the stack (some estimates put stack operations at 40 per
cent of all instructions executed [16]). The AJIT project has developed annotations
allowing what they term ‘virtual register allocation’, calculated at compile time, to be
used by the AJIT at runtime to allocate real machine registers. Again, they do not yet
formally verify that these allocations are safe, but using the Bytecode Programming
Logic it may be possible to do this.

Memory Disambiguation Another possible area of interest is memory disambigua-
tion. Proving that two memory operations have no overlapping range—e.g. instruction
A writes to a memory location which is subsequently read by instruction B—can lead
to further optimizations. Again, this is an area which has been addressed by the AJIT
project but without any formal verification as yet.

8 Conclusions and Further Work

We have described the initial stages of development for a Programming Logic for Java
bytecode programs. This has presented some interesting challenges due to the essential
differences between bytecode and the imperative languages : not only must we deal
with the problem ofgoto instructions, but much of the control information explicit in
a high-level language does not exist in an easily recognised form in the bytecode.

Proof for Optimization: Programming Logic Support for Java JIT Compilers 327

In the future we hope to continue our work on the Logic in order to obtain a more
complete system which we can use to prove the properties mentioned in Section 7,
leading to faster, more efficient, and trustworthy JIT compilers.

References

1. Java Card Technology. http://java.sun.com/products/javacard/.
2. The LOOP Project. http://www.cs.kun.nl/ bart/LOOP/index.html.
3. Project Bali. http://www4.informatik.tu-muenchen.de/ isabelle/bali/.
4. VerifiCard Project Summary. http://www.verificard.org/.
5. Jeffrey D. Ullman Alfred V. Aho, Ravi Sethi.Compilers: Principles, Techniques and Tools.

Addison Wesley 37, 1986.
6. Andrew Appel. Modern Compiler Implementation in Java. Cambridge University Press,

1998.
7. J. Camilleri and T. Melham. Reasoning with Inductively Defined Relations in the HOL

Theorem Prover. Technical Report 256, University of Cambridge Computer Laboratory,
1992.

8. David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Extended Static
Checking. Technical Report 159, Compaq SRC, 1998.

9. Tim Harris. A just-in-time Java bytecode compiler. CST Part II project dissertation, Univer-
sity of Cambridge, 1997.

10. C.A.R. Hoare. An axiomatic basis for computer programming.Communications of the ACM,
12(10):576–583, October 1969.

11. Joseph Hummel, Ana Azevedo, David Kolson, and Alexandru Nicolau. Annotating the Java
Bytecodes in Support of Optimization.Concurrency: Practice and Experience, 9(11):1003–
1016, November 1997.

12. Tim Lindholm and Frank Yellin.The Java Virtual Machine Specification. Addison-Wesley,
1997.

13. George C. Necula. Proof-Carrying Code. InProceedings of the 24th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, January 1997.

14. Lawrence C. Paulson. Isabelle, a Generic Theorem Prover.LNCS, 828, 1994.
15. Cornelia Pusch. Formalizing the Java Virtual Machine in Isabelle/HOL. Technical report,

Technische Universit¨at München, June 1998.
16. P. Wayner. Sun Gambles on Java Chips. BYTE Magazine, November 1996.
17. Glynn Winskel.The Formal Semantics of Programming Languages. The MIT Press, 1993.

